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Semi-supervised node classification is a crucial challenge in relational data mining and has attracted increas-

ing interest in research on graph neural networks (GNNs). However, previous approaches merely utilize

labeled nodes to supervise the overall optimization, but fail to sufficiently explore the information of their

underlying label distribution. Even worse, they often overlook the robustness of models, which may cause

instability of network outputs to random perturbations. To address the aforementioned shortcomings, we de-

velop a novel framework termed Hybrid Curriculum Pseudo-Labeling (HCPL) for efficient semi-supervised

node classification. Technically, HCPL iteratively annotates unlabeled nodes by training a GNN model on

the labeled samples and any previously pseudo-labeled samples, and repeatedly conducts this process. To

improve the model robustness, we introduce a hybrid pseudo-labeling strategy that incorporates both predic-

tion confidence and uncertainty under random perturbations, therefore mitigating the influence of erroneous

pseudo-labels. Finally, we leverage the idea of curriculum learning to start from annotating easy samples, and

gradually explore hard samples as the iteration grows. Extensive experiments on a number of benchmarks

demonstrate that our HCPL beats various state-of-the-art baselines in diverse settings.
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1 INTRODUCTION

With the increasing popularity of cloud computing technologies and the Internet of Things, as

well as the expansion of social media, structured data is rising at an unprecedented rate. A graph

is an effective and powerful tool for representing a large number of relational data across vari-

ous domains including biology, social networks, information science, and so on [25]. Thus, the

exploration of graph-structured data is very critical and necessary. In recent years, graph neural

networks (GNNs) have been proposed and shown incredible performance in studying graph-

structured data. Typically, GNNs are capable of combining vertex attributes and graph topology

information to learn vertex representations for a variety of downstream graph-based tasks, includ-

ing node classification [29, 31, 54, 79], graph classification [27, 35], graph clustering [26, 70], link

prediction [7, 73], and traffic forecasting [23, 37]. Here in this article, we study semi-supervised

node classification, which aims to forecast the categories of unlabeled nodes using a limited num-

ber of labeled nodes.

Indeed, various GNN algorithms for semi-supervised node classification have been devel-

oped [21, 29, 52], the bulk of which rely on the construction of diverse neighborhood propagation

strategies for learning effective node representations. The most prominent technique is graph con-

volutional networks (GCNs) [29], which aggregate node representations of their local neighbors

iteratively. Following GCNs, a number of graph convolutions have been developed sequentially us-

ing a variety of message passing algorithms. For example, Graph Attention Network (GAT) [52]

integrates the attention mechanism into the message passing process that enables feature infor-

mation to be passed adaptively. By eliminating nonlinearities and compressing weight matrices

between successive layers, Simple Graph Convolution (SGC) [60] reduces the computational

cost of a GCN. Hamilton et al. [21] propose to sample node neighborhoods for higher efficiency.

Graph Isomorphism Network (GIN) [66] further improves the expressive capability of GCNs

and is capable of capturing different graph structural information. GNNs have also been applied

to various applications such as multi-view learning [69] and recommendation [40, 67].

Despite the remarkable performance in semi-supervised node classification, existing approaches

go through two critical constraints that may impair model performance. On the one hand, these

methods typically leverage the unlabeled nodes when propagating their attributes during the mes-

sage passing process using GNNs, while ignoring the information of underlying label distribution.

This problem may lead to easy underfitting, particularly in the absence of adequate annotated

labels, thus limiting the performance of the network [54]. On the other hand, they usually pay

less attention to the robustness of the model. Existing GNNs often have predefined attributes and

neighborhood propagation patterns, which leads to each node being extremely reliant on its initial

features and neighbors. When networks are attacked by noise in real-world applications [75], they

may output unstable predictions, leading to considerable performance deterioration.

Numerous semi-supervised learning algorithms have been comprehensively investigated in re-

cent years for making full use of the unlabeled datum [9, 30, 41, 50, 51]. Pseudo-labeling [30] is one

of the most classic methods in this field. It needs a predictor to iteratively output the categories

of unlabeled samples and involve well-classified examples in the training dataset. On this basis,

further works usually encourage the classifier to make predictions with a small entropy on unla-

beled samples [20]. Pseudo-labeling techniques have a lot of downstream applications in various

tasks. For example, FixMatch [49] combines pseudo-labeling and consistency regularization to ad-

dress the problems of label scarcity for image classification. Cross Pseudo Supervision (CPS) [9]

introduces pseudo-labeling techniques into semantic segmentation problems. However, pseudo-

labeling techniques are predominantly studied in the visual domains but have not been well ap-

plied to effectively solving node classification problems on graphs yet. Therefore, it is promising

to explore unlabeled nodes on the graph with semi-supervised techniques.
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Toward this end, this article develops a simple but effective approach called Hybrid Curricu-

lum Pseudo-Labeling (HCPL) for semi-supervised node classification. The core of our idea is

to sufficiently explore the unlabeled data through a pseudo-labeling strategy. Specifically, we it-

eratively annotate unlabeled nodes by training a model on the labeled samples and any previ-

ously pseudo-labeled samples, and repeat the process in a self-training way. Moreover, we not

only involve a perturbed GNN predictor with the adaptive decoupling of the representation trans-

formation and neighborhood propagation, but also introduce a hybrid pseudo-labeling strategy to

increase the robustness under noise attack. We take both prediction confidence and uncertainty

into account while dealing with noise, alleviating the impact of potential erroneous pseudo-labels.

Note that curriculum learning [4] is a training strategy that trains a learning model from easier

data to harder data. Inspired by this, we utilize the idea of curriculum learning to annotate easy

samples with high confidence and robustness and then annotate hard samples with less confi-

dence and robustness. This strategy learns the model in a meaningful order and helps the model

free from error accumulation. In this way, our HCPL can sufficiently explore the unlabeled data

through a pseudo-labeling strategy. Experimental results on several popular benchmark datasets

demonstrate our HCPL outperforms a wide range of state-of-the-art approaches. To sum up, the

contributions of this work are as follows:

— We develop a novel approach named HCPL for semi-supervised node classification, which

leverages curriculum learning to produce confident pseudo-labels to make full use of the

abundant unlabeled data while existing works usually do not explore semantic information

in unlabeled data.

— We study the model robustness and introduce a novel hybrid pseudo-labeling strategy that

takes into consideration both prediction confidence and prediction uncertainty to produce

accurate pseudo-labels.

— Extensive experiments on six graph datasets show that HCPL achieves remarkable perfor-

mance compared with a variety of state-of-the-arts in different settings.

2 RELATED WORK

2.1 GNNs

Recent years have witnessed increasing attention in research to apply deep learning methods

to graph-structured data. GNNshave come into the spotlight due to their superior capability for

graph representation learning [32, 34, 47, 55, 64] with wide applications such as fake new detec-

tion [24, 68]. Pioneering efforts use spectral-based approaches for localized and effective graph

convolution. GCN simplifies GNN into spatial-based models [29], which utilizes the adjacent ma-

trix and increases the effectiveness of GNNs. These spatial-based approaches are typically based

on a neighborhood aggregation mechanism that updates node representation via the aggregation

of information from its neighbors. Following that, several GCN variants have been developed sub-

sequently, including GAT [52], SGC [60], and GIN [66]. GAT incorporates the attention mechanism

to assess the importance of different neighbors on the center node and uses the attention scores

as feature aggregation weights. Inspired by the Weisfeiler-Lehman algorithm [46], GIN [66] im-

proves the expressive capability of GCNs via capturing different graph structures. However, the

majority of GNN-based methods train the model using the cross entropy on labeled nodes to op-

timize the model, which neglect the abundant unlabeled nodes. In contrast, our research builds

on the strength of GNNs and focuses on enhancing semi-supervised node classification via cur-

riculum learning in a pseudo-labeling way. GNNs can also be applied to various settings such

as PU learning [61], open-world learning [62], unsupervised domain adaptation [63], and cross-

modal retrieval [39]. For example, LSDAN [61] incorporates the attention mechanism with GNN to
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model node significance from both short and long terms. OpenWGL [62] utilizes a variation graph

autoencoder to explore unseen nodes in the test set. GCLN [63] models both attraction and repul-

sion forces for consistency learning within a single graph and across graphs. DAGNN [39] adopts

multi-hop GNN to investigate the relationship between labels for effective cross-modal retrieval.

2.2 Semi-supervised Learning

Semi-supervised learning (SSL) has recently drawn a lot of interest and achieved a lot of success

in a variety of fields. SSL is capable of reducing the need for labeled data by using a vast volume

of unlabeled data. Because unlabeled data can be quickly obtained with minimal human effort, the

performance of models may be improved at a low cost using SSL. Two mainstream methodolo-

gies of SSL are self-training and consistency regularization. The pioneer semi-supervised learning

works are based on self-training (so-called pseudo-labeling) [8, 30, 48, 51], which uses the class

predictions of models as pseudo-labels to train unlabeled data in a supervised way. Specifically, un-

labeled samples are iteratively added to the training data by annotating them with a weak model

trained with labeled data. Another line of SSL is based on recent breakthroughs in consistency

learning [5, 49], which encourages the network to make consistent predictions when it comes to

noise perturbation on unlabeled samples. Semi-supervised learning techniques have been exten-

sively utilized in a variety of fields such as computer vision and knowledge mining [1, 9, 13, 43, 49].

Inspired by recent advances in visual domains, our proposed HCPL effectively combines curricu-

lum learning and semi-supervised learning, and develops a novel pseudo-labeling strategy for effec-

tive semi-supervised node classification on graphs. Our work is also related to teaching-to-learn

and learning-to-teach (TLLT) [15], which also adopt an easy-to-hard curriculum strategy for

graph-based semi-supervised learning. TLLT aims to perform the message propagation based on

the teacher module and choose the following samples from the learner module in an alternative

manner. ML-TLLT [18] introduces this framework to solve the problem of multi-labeled learning,

which studies every possible label for the unlabeled samples along with the label dependencies.

SMMCL [19] incorporates curriculum learning to learn the procedure of label propagation on

graphs. MMCL [17] leverages curriculum learning to acquire the difficulty of accurately classi-

fying each unlabeled sample for semi-supervised image classification. Gong et al. [16] adopt TLLT

into the saliency detection, which successfully identifies the salient objects in images with high

propagation quality.

2.3 Graph-based Semi-supervised Learning

Semi-supervised node classification is the most fundamental problem in graph data mining [14,

29, 33, 56, 59], which has various applications in social analysis [42], bioinformatics [65], image

annotation [76], text generation [58], and noise cleaning [74]. For example, ASFS [72] explores the

pairwise relationships in the latent and then utilizes the graph structure to guide semantics learn-

ing in a semi-supervised setting. This work utilizes a classic feature selection framework while

ours adopts GNNs for semi-supervised node classification. For semi-supervised node classifica-

tion, only a few annotation nodes are available in the graph to predict the labels of the remaining

nodes. Traditional methods of solving this problem are typically based on graph Laplacian regular-

izations [3, 36, 77]. For example, Belkin et al. [3] propose to exploit the geometry of the marginal

distribution and give a new form of regularization. Recently, GNNs have emerged as a powerful

approach to learn from the graph. However, existing GNN methods usually focus on developing

effective message passing patterns [29, 60], but neglect to sufficiently exploit the information of

unlabeled nodes. Our article, by contrast, tackles this issue through effective pseudo-labeling for

better semi-supervised node classification. We believe our method can be extended to tackle vari-

ous graph-related semi-supervised tasks [12].
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Fig. 1. Illustration of our proposed approach HCPL. The model is first trained under the supervision of labeled

nodes. Then, the model is used to predict and assign pseudo-labels for unlabeled nodes. We use curriculum

learning to iteratively select a subset of pseudo-labeled samples based on a hybrid selection strategy, and

add them to the labeled set. Afterward, a new model is re-trained under the supervision of the expanded

labeled data. The process will stop when all data is exhausted during iterative training.

3 METHOD

To begin with, we introduce the problem definition and present our approach HCPL for semi-

supervised node classification on graphs. Previous methods usually neglect the label information

contained in unlabeled nodes as well as the robustness of the model. To tackle the issues, our ap-

proach is based on the exploration of unlabeled data via pseudo-labeling. Namely, we annotate

unlabeled nodes by training a model on labeled samples and any previously pseudo-labeled data

and then repeating this procedure in a self-training fashion. Specifically, we first propose a per-

turbed GNN predictor and present a hybrid pseudo-labeling technique, which takes both predic-

tion confidence and uncertainty into account under noise attack. Finally, an optimization pipeline

embraced with curriculum learning is used to dynamically and automatically select pseudo-labels.

The overall framework can be illustrated in Figure 1.

3.1 Problem Formulation

A graph is represented in a form of G = (V,E), in which V denotes a set of N nodes and E ⊆
V×V denotes a set of edges in the graph.xi ∈ RF denotes the attribute feature of nodevi , where F
is the dimension number of the node attributes. In addition, each nodevi is associated with a label

vector, i.e., yi ∈ {0, 1}C where C is the number of label categories. In our case, M (M < N ) nodes

in VL are annotated with their labels, while the labels of the other N − M nodes are unknown.

Our aim is to predict the unobserved labels for unlabeled nodes inVU in a graph. Take the social

network CORA as an example. Each node vi corresponds to a research paper, and two research

papers (i.e., vi and vj ) are linked if the paper vi is cited by the paper vj . There are seven classes

of topics, i.e., reinforcement learning, neural networks, case-based research, genetic algorithms,

probabilistic methods, rule learning, and theory. We need to classify all papers without labels into

their associated classes.

3.2 Perturbed GNN Predictor

Here, we present a perturbed GNN as the backbone of our HCPL. GNNs have been frequently

utilized to collect node attributive information as well as topological information on graphs using

deep neural networks. We begin with the introduction of the popular message passing procedure.

In formulation, the embedding of node vi ∈ V at the layer k is represented as h (k )
i . The message
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passing procedure in GNNs usually involves two steps: (i) Aggregation step, which collects the

semantic information from the neighborhood of node vi at the previous layer k − 1; and (ii) Com-

bination step, which merges the node embedding of vi at the previous layer with the obtained

neighbor embedding at the current layer. To summarize,

h (k )
N (vi )

= AGG
(k )
θ

({
h (k−1)

j

}
vj ∈N (vi )

)
,

h (k )
i = COM

(k )
θ

(
h (k−1)

i ,h (k )
N (vi )

)
,

(1)

where N (vi ) denotes the neighborhood of vi , and AGG
(k )
θ

and COM
(k )
θ

represent the aggregation

and combination operators at the layer k , respectively. After performing neighborhood aggrega-

tion K times, the embedding vectors at all layers are condensed into a single embedding vector:

hi = SUMθ

({
hk

i

}K

k=1

)
, (2)

where SUMθ represents the summarization operator. Widely used mean aggregator, LSTM aggre-

gator, and pooling aggregator [21] can also be utilized to generate informative and structure-aware

representations for various downstream tasks.

In our implementation, we begin with a Multi-Layer Perception (MLP) to process the initial

attributes. Formally, we have

zi = MLP (xi ), (3)

which will be concatenated into feature matrix Z ∈ R |V |×d and d is the embedding dimension.

Then, given the adjacent matrix A ∈ R |V |× |V | , we use the decoupled symmetrical normalization

propagation to generate node embeddings at every layer.

Hk = ÂkZ ,k = 1, 2, . . . ,K , (4)

where Ã = D̃−
1
2 ÂD̃−

1
2 and Â = A + I . Finally, we use an attention mechanism [2, 33] to aggregate

embeddings at all layers. Formally, the summarized node representation hi for node vi is written

as

wk
i = σ

(
hk

i W
)
,

hi =
wk

i h
k
i∑K

k ′=1w
k ′
i

,
(5)

where hk
i is the representation of the i-th node at the layer k , σ (·) denotes an activation function,

andW is a trainable matrix to acquire the weight.

Nonetheless, neighborhood propagation strategies are typically predefined in GNNs, leaving

each node largely reliant on its attributes and neighbors. The neural network could be misled dur-

ing graph convolution methods due to noise attacks on node properties and connection patterns.

Here, we utilize two popular graph augmentation strategies [71] to make it easier to generate

disturb-invariant node representations.

— Attribute Masking: We choose several vertices and mask a portion of their attributes af-

terward. The prior behind this strategy is that masking part of vertices will not change the

semantics of the node much. It serves as the dropout strategy in the deep neural network.

— Edge Deletion: Certain edges are randomly dropped out of the graph based on an i.i.d

uniform distribution. The strategy corresponds to the prior that the node semantics should

be robust to the random attacks of edge connectivity patterns.
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The augmented version of G is denoted as G̃. After our GNN, we feed the representation hi of

each node into a two-layer MLP classifier to produce the prediction vector pi ∈ RC . Formally,

pi = MLPθ (hi ), (6)

where θ is the parameter of the GNN predictor.

3.3 Hybrid Pseudo-Label Selection

In our framework, we first optimize the model using labeled data and then employ the trained

model to output the label distribution for unlabeled data. Furthermore, we seek to collect accurate

pseudo-labels and add these unlabeled data into the training set. Previous methods [30] usually

utilize the confidence scores for pseudo-labeling, which could generate biased and overconfident

samples, and therefore result in error accumulation. Therefore, we propose a hybrid pseudo-label

selection strategy based on both the confidence and uncertainty of the prediction, which will be

elaborated as follows.

Confidence-based Selection. Intuitively, based on the label distribution, we seek to select hard

samples with high confidence. Formally, letpc
i denote the probability of the i-th example belonging

to the class c , and the pseudo-label can be obtained as follows:

ỹc
i = 1

[
pc

i ≥ γ
]
, (7)

where γ is a fixed threshold. Note that the use of hard labels is associated with entropy minimiza-

tion [20], where the model prediction is enforced to be of low entropy on unlabeled samples.

Uncertainty-based Selection. However, the accuracy of pseudo-labels is still far from satisfac-

tory, since it does not take the robustness of the network into consideration. From a different per-

spective, the prediction is unreliable if the predicted distribution is unstable to random attack [43].

At this inspirit, we re-run the perturbed GNN predictor for W times where W is the running

number of the predictor, and calculate the uncertainty of pseudo-labels using the formulation of

standard deviation. Let pc
i denote the list ofW predictions, and we have

ỹc
i = 1

[
sd

(
pc

i

)
≤ η

]
, (8)

where η is another threshold and sd(·) denotes the standard error of theW predictions. In this way,

we consider the robustness of our model by selecting pseudo-labels invariant to random attacks,

and thus our model is more likely to produce correct pseudo-labels.

Finally, we combine the advantages of the two strategies by taking the intersection of selected

pseudo-labels. Note that, since we forward the GNN predictor for W times, we use the mean of

the prediction to replace the single output in Equation (7). In formulation,

ỹc
i = 1

[
sd

(
pc

i

)
≤ η

]
1

[
mean

(
pc

i

)
≥ γ

]
, (9)

where mean(pc
i ) denotes the mean of theW predictions. In this way, the pseudo-labels with both

high confidence and robustness will be selected, which greatly improves the accuracy of pseudo-

labels. In summary, the motivation of our strategy is to evaluate the difficulty of classifying each

sample accurately, which can guide sequential curriculum learning. Here, our hybrid pseudo-label

selection strategy is introduced based on both the confidence and uncertainty of the prediction. On

the one hand, we select samples with high maximal probabilities, for which the model has high

confidence about the prediction. On the other hand, we re-run the perturbed GNN predictor and

evaluate the variance of the predictions, which can reflect the uncertainty of the prediction. These

uncertainty scores can help us to evaluate the difficulty from different views. Finally, we take the

intersection of results from our hybrid strategy to detect reliable samples under both rules. Further
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Fig. 2. An example of our optimization pipeline with curriculum learning.

ablation studies also validate the effectiveness of our hybrid strategy and we believe our method

can be utilized in more semi-supervised settings such as cross-modal retrieval.

3.4 Optimization Pipeline with Curriculum Learning

In our framework, we first train the GNN predictor using labeled data. Specifically, we employ the

standard cross-entropy loss to train labeled nodes on the augmented graphs. Formally,

�s = −
1

|VL |
∑

xi ∈VL

yT
i logpi . (10)

Then, following the principle of self-training, we output the prediction for unlabeled data for

W times, and then select reliable pseudo-labels based on Equation (9). These unlabeled nodes and

their pseudo-labels are added to the labeled subset.

Note that a fixed threshold in selection is not optimal. For example, a large threshold γ may

lead to too few pseudo-labels while a small value may bring in too many inaccurate pseudo-labels

otherwise. As a result, we involve in a novel pipeline by adopting curriculum learning, resulting in

dynamic thresholds in the selection for multiple iterations. To be specific, we gradually select more

unlabeled samples from easy to difficult by increasing η and decreasing γ . In our implementation,

we use the percentile of scores to decide the thresholds. Assume the total number of iterations is

T and arдmaxc ∈C {mean(pc
i )} = c ′i . For the t-th iteration, the thresholds are adjusted with

γt = Percentile

({
mean

(
p

c ′
i

i

)}
xi ∈V U

, 100 − 100/T ∗ t
)
,

ηt = Percentile

({
sd

(
p

c ′
i

i

)}
xi ∈V U

, 100/T ∗ t
)
,

(11)

where Percentile (S,m) denotes the values of them-th percentile of set S . Then, we select pseudo-

labels with dynamic thresholds as follows:

ỹc
i = 1

[
sd

(
pc

i

)
≤ ηt

]
1

[
mean

(
pc

i

)
≥ γt

]
. (12)

Note that at T -th iteration, all the unlabeled nodes will be exhausted, i.e., annotated in self-

training. An example is illustrated in Figure 2. Through curriculum learning [8], we start from

easy samples with high confidence and low uncertainty, and gradually explore hard unlabeled

samples. We are also involved in two strategies. First, after each iteration, we restore the labeled

set and re-annotate every node in the unlabeled set. This enables pseudo-annotated nodes to enter

or leave the updated set. Second, we train the GNN predictor from scratch, i.e., reinitialize the

parameters in the GNN predictor after each iteration instead of popular fine-tuning. These two

strategies can discourage concept drift or confirmation bias introduced at the early stage of self-

training to be accumulated, improving the performance of our proposed HCPL. The whole pipeline

of the optimization process is illustrated in Algorithm 1.

4 EXPERIMENTS

In this part, by conducting extensive experiments on six real-world datasets to show the effective-

ness of our HCPL, we highlight the following results:

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 20, No. 3, Article 82. Publication date: November 2023.



Towards Effective Semi-supervised Node Classification with HCPL 82:9

ALGORITHM 1: Training pipeline for our HCPL

Input: Attribute feature set {xi }xi ∈V ; Graph edge set E; Set of labeled nodesVL ; Stepping times

T ;

Output: Prediction result {pi }xi ∈VU .

1: Train GNN predictor usingVL only;

2: for t = 1 to T do

3: Forward the networks forW times to get the mean together with the standard deviation of

the predictions for all nodes inVU , i.e.,mean(pc
i ) and sd (pc

i )

4: Calculate the percentiles r1 and r2 for thresholds γt and ηt , respectively, with Equation (12)

5: Restore current labeled set ṼL usingVL

6: for xi ∈ VU do

7: if ∃c,mean(pc
i ) > γt and sd (pc

i ) < ηt then

8: ṼL ← ṼL ∪ (xv , c )
9: end if

10: Train GNN model using updated ṼL from scratch

11: end for

12: end for

— HCPL significantly outperforms all competing baselines that are compared to all experimen-

tal settings.

— Ablation studies demonstrate the efficiency of the different components of HCPL.

— The performance of our methods is stable to main hyper-parameters in proper ranges.

— Our HCPL is robust to random attack compared with baselines.

4.1 Experimental Setup

Datasets. Our HCPL is accessed on six widely used benchmark node classification datasets includ-

ing three paper citation datasets [6, 44], i.e., Cora, CiteSeer, and PubMed, two purchasing graph

datasets [45], i.e., Amazon Computers and Amazon Photo, and one co-author network dataset [45],

i.e., Coauthor CS. In three paper citation datasets, nodes denote publication and edges denote ci-

tation links. The purpose is to classify these nodes into different areas. Both purchasing graph

datasets are collected from Amazon, where nodes represent goods and edges are constructed when

two goods are often bought at the same time. CoauthorCS is a co-author network dataset where

nodes denote authors and edges indicate co-author relationships. The statistics of these datasets

are summarized in Table 1.

We utilize the same splits in the previous work [54] to construct train/validation/test datasets

for three citation datasets, while for the other three datasets, we randomly choose 30 nodes from

each category as labeled training data, 30 nodes as validation data, and other nodes as the test data.

For a fair comparison, we adopt the same dataset splits on all datasets for all baseline methods.

Compared Methods. To evaluate the effectiveness of our developed HCPL, we compare it with

the following state-of-the-art baseline models for semi-supervised node classification as follows.

— Chebyshev [10]: It is a formulation of CNNs that leverages the idea of spectral graph theory

to devise fast localized convolutional filters suitable for graph data.

— GCN [29]: It is a classic semi-supervised GNN model based on the spectral theory that gen-

erates node representations via aggregating information from neighbors.

— GAT [52]: It is a GNN model that improves GCN by incorporating the attention mechanism

to assign different weights to each neighboring node of a node.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 20, No. 3, Article 82. Publication date: November 2023.



82:10 X. Luo et al.

Table 1. Statistics of Six Datasets

Dataset #Nodes #Edges #Features #Classes Edge density Type

Cora 2,708 5,278 1,433 7 0.0004 Citation

CiteSeer 3,327 4,552 3,703 6 0.0004 Citation

PubMed 19,717 44,324 500 3 0.0001 Citation

Amazon Computers 13,752 245,861 767 10 0.0007 Co-purchase

Amazon Photo 7,650 119,081 745 8 0.0011 Co-purchase

Coauthor CS 18,333 81,894 6,805 15 0.0001 Coauthor

— SGC [60]: It is a fast algorithm that lowers the unnecessary computational cost of GCN via

removing the nonlinearity between layers and compressing the weight matrix.

— DGI [53]: It is an unsupervised approach for learning node representations, which focuses on

the mutual information between node-level representations and their associated graph-level

representations.

— GMI [38]: It presents a new method for measuring the similarity degree between input

graphs and hidden node embeddings, generalizing the concept of mutual information com-

putations to the graph domain.

— MVGRL [22]: It introduces a self-supervised approach, which learns node-level and graph-

level representations by maximizing mutual information between representations encoded

from different topological views of graphs.

— GRACE [78]: It is a novel framework based on contrastive learning for unsupervised graph

representation learning via a hybrid scheme for generating graph views on both topology

and feature levels.

— CG3 [54]: It is a novel GCN-based semi-supervised learning algorithm that enriches the label

information via leveraging node similarities and structural knowledge from two different

perspectives.

— AM-GCN [57]: It fuses multi-view information from topological structures and features us-

ing the attention mechanism.

Parameter Settings. We implement all the compared methods using PyTorch 1.8.0 and Pytorch

Geometric 1.7.2, which are capable of smoothly training GNNs for a range of applications con-

nected to graph-structured data. Extensive experiments are performed on an NVIDIA GeForce

GTX 1080 Ti. For simplicity, we adopt a two-layer GCN [29] as the GCN backbone as default and

include a model variant HCPL-A that utilizes GAT [52] as the backbone. The dimension number

of hidden embedding is set to 256 for all datasets and the number of iterations is set to 20. These

two hyper-parameters will be discussed in Section 4.4. Adam [28] is employed during optimiza-

tion due to its effectiveness. We set the learning rate to 0.01 and it decays with the rate 0.0005.

For all experiments, we present the mean accuracy with standard deviations from five runs. The

validation dataset is utilized to tune all hyper-parameters, and the test dataset can provide the final

results. For the parameters in the adopted baselines, we refer to their original papers and utilize

their tuning strategies for the best performance.

4.2 Experimental Results

Table 2 displays the compared results on six datasets. From the table, the following observations

can be obtained:

— GCN-based algorithms (i.e., GCN, GAT, and SGC) overall perform better than the traditional

method (i.e., Chebyshev), which shows that the superior representation-learning ability of

GCN helps to enhance the performance for semi-supervised node classification.
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Table 2. Results on Six Datasets in Terms of Accuracy (in %) Over Five Runs

Methods Cora CiteSeer PubMed
Amazon Amazon Coauthor

Computers Photo CS

Chebyshev [10] 80.7 ± 0.2 70.2 ± 0.6 77.4 ± 0.1 72.5 ± 0.0 88.4 ± 0.1 90.4 ± 0.2

GCN [29] 81.3 ± 0.4 71.5 ± 0.2 78.8 ± 0.6 77.7 ± 0.7 88.1 ± 0.8 91.6 ± 0.7

GAT [52] 82.7 ± 0.1 70.7 ± 0.4 78.5 ± 0.2 79.5 ± 0.2 88.0 ± 0.6 91.2 ± 0.5

SGC [60] 77.7 ± 0.0 72.6 ± 0.0 76.4 ± 0.0 74.8 ± 0.1 87.9 ± 0.1 90.2 ± 0.2

DGI [53] 80.9 ± 0.3 71.4 ± 0.2 76.3 ± 1.1 77.7 ± 0.8 85.3 ± 0.9 90.6 ± 0.5

GMI [38] 81.6 ± 0.4 71.9 ± 0.5 81.8 ± 0.4 78.9 ± 0.1 84.9 ± 0.0 90.7 ± 0.0

MVGRL [22] 81.3 ± 0.4 71.9 ± 0.1 79.3 ± 0.1 79.5 ± 0.8 88.1 ± 0.2 91.7 ± 0.1

AM-GCN [57] 81.0 ± 0.3 72.8 ± 0.4 OOM 80.9 ± 0.7 91.3 ± 0.2 OOM

GRACE [78] 82.8 ± 0.3 71.3 ± 0.7 79.0 ± 0.2 75.1 ± 0.1 83.2 ± 0.1 91.2 ± 0.2

CG3 [54] 83.5 ± 0.3 73.7 ± 0.2 79.2 ± 0.6 80.5 ± 0.1 90.0 ± 0.2 92.4 ± 0.1

HCPL (Ours) 84.2 ± 0.6 74.4 ± 0.7 82.4 ± 0.7 82.2 ± 0.8 92.3 ± 0.5 93.2 ± 0.4

HCPL-A (Ours) 84.5 ± 0.4 73.6 ± 0.5 81.6 ± 0.4 83.4 ± 1.2 92.6 ± 0.7 92.5 ± 0.3

OOM means out-of-memory.

— The methods (i.e., DGI, GMI, MVGRL, GRACE, CG3, and HCPL) that explore the represen-

tations or label distribution of unlabeled data perform better than other methods, showing

that utilizing additional unlabeled datum by unsupervised or semi-supervised learning is an

important complement to supervised learning, enhancing model performance.

— In all of the datasets, our approach produces the best results. In particular, on the large-scale

datasets Amazon Computers and Amazon Photo, our HCPL outperforms the best baseline

CG3 by 2.1% and 2.6%, respectively, validating the efficiency of our HCPL. We claim this

improvement can be attributed to two reasons: (i) Our hybrid pseudo-labeling strategy in-

corporates both prediction confidence and uncertainty to generate accurate pseudo-labels

for unlabeled nodes. (ii) Our curriculum learning pipeline gradually explores unlabeled sam-

ples to avoid overconfident annotations.

— We have conducted one-sample paired t-tests to justify that the improvements with the best

baseline are statistically significant with p-value < 0.05 on all the datasets. However, the

variance of our HCPL is a little larger than that of baselines on several datasets. A poten-

tial reason is that in some cases, wrong pseudo-labels could make the performance a little

unstable when studying unlabeled nodes. In practice, we suggest running multiple times

and selecting the best model based on validation datasets. We calculate the classification

accuracy on all test nodes.

— The performance improvement compared with the best baseline (CG3) is limited in Cora.

The potential reason could be the high homophily ratio of Cora and thus low risk of biased

pseudo-labeling, which makes curriculum learning less important. In practice, we can mea-

sure the risk of biased pseudo-labeling by active learning and then design the algorithm

accordingly.

Moreover, we can validate that GAT can still benefit from our hybrid curriculum pseudo-labeling

by comparing GAT and HCPL-A. Moreover, our HCPL-A can perform better than all the baselines in

most cases, which validates our superiority again. Of note, our HCPL is trained in an iterative way.

Hence, we access the accuracy of our HCPL at each iteration to observe whether the performance

will improve as the number of iterations grows under curriculum learning. The results of the three

datasets are shown in Figure 3. We can observe that the performance increases in most cases

after each iteration, which validates that our proposed HCPL benefits from pseudo-labeling and

curriculum learning.
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Fig. 3. Results on three datasets Cora, CiteSeer, and PubMed w.r.t. the number of iteration. We can observe

that model performance improves as the number of iterations grows before saturation in most cases.

Table 3. Results on Cora Dataset with Different Label Rates in Terms of

Classification Accuracies (in %)

Label Rate 0.5% 1% 2% 3% 5% 10% 20% 50%

Chebyshev 37.9 59.4 73.5 76.1 80.7 82.6 82.4 82.9

GCN 47.8 63.9 72.7 76.4 81.3 82.1 85.0 86.5

GAT 57.1 70.9 74.3 78.2 82.7 83.4 85.3 87.2

SGC 48.4 66.5 69.7 73.9 77.7 78.9 81.2 79.9

DGI 68.0 73.4 76.7 78.3 80.9 81.2 81.3 81.6

GMI 67.8 71.6 75.5 77.6 81.6 84.0 84.2 84.7

MVGRL 57.6 67.6 76.2 77.8 81.3 83.8 84.5 84.9

GRACE 63.8 73.5 75.2 76.2 82.8 83.6 84.4 85.9

CG3 68.1 74.2 77.3 79.1 83.5 84.3 85.1 86.6

HCPL (Ours) 71.7 75.4 78.2 81.1 84.2 84.9 86.3 88.4

Table 4. Results on CiteSeer Dataset with Different Label Rates in Terms of

Classification Accuracies (in %)

Label Rate 0.5% 1% 2% 3% 5% 10% 20% 50%

Chebyshev 34.0 58.3 64.6 67.2 71.3 71.7 72.2 75.7

GCN 47.6 55.8 65.3 69.2 71.7 72.6 73.4 77.6

GAT 53.2 63.9 68.3 69.5 71.2 72.1 75.1 79.0

SGC 46.8 59.3 67.1 68.6 72.7 73.0 74.5 78.8

DGI 61.0 65.8 67.5 68.8 71.6 72.3 73.1 76.5

GMI 54.4 63.5 66.7 68.5 72.5 74.8 75.0 75.9

MVGRL 61.3 65.1 68.5 70.3 71.2 72.8 73.1 74.8

GRACE 61.8 62.5 70.7 71.4 71.9 73.0 74.2 76.6

CG3 62.9 70.1 70.9 71.7 73.9 74.5 74.8 77.2

HCPL (Ours) 64.4 71.4 71.9 73.0 74.6 75.1 75.7 80.4

Further, we experiment in the cases where the labeled samples are changed to access the perfor-

mance of the HCPL in handling different supervision. We choose a proportion of labeled samples

for model training in each run following [54]. We first choose the Cora dataset as an example where

the label rates are varying in 0.5%, 1%, 2%, 3%, 5%, 10%, 20%, and 50%. The result is summarized in

Table 3. Again, we can see that our HCPL consistently beats other baselines in different settings,

demonstrating the superiority of our HCPL in tackling scarce supervision. We also conduct similar

experiments on datasets CiteSeer and PubMed following the setting (i.e., label rate) in [54]. The

result is shown in Tables 4 and 5 and similar results can be detected in two datasets.
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Table 5. Results on PubMed Dataset with Different Label Rates in Terms

of Classification Accuracies (in %)

Label Rate 0.03% 0.05% 0.1% 0.3% 0.5% 3% 10%

Chebyshev 58.9 67.2 71.5 77.4 80.1 82.1 82.9

GCN 61.3 65.6 72.3 78.8 80.8 83.9 86.1

GAT 62.8 66.7 71.1 78.5 80.1 83.6 84.8

SGC 61.0 64.3 68.5 76.4 77.8 78.6 79.2

DGI 61.5 66.2 71.4 76.3 79.9 80.2 80.4

GMI 58.7 65.2 76.3 81.8 82.5 83.2 83.7

MVGRL 60.3 67.3 73.4 79.3 81.9 82.7 83.6

GRACE 64.9 68.6 73.6 79.0 80.4 81.4 82.5

CG3 67.0 71.1 74.5 79.2 81.7 82.3 82.9

HCPL (Ours) 70.9 74.0 77.6 82.4 82.8 84.7 87.2

Table 6. Comparison with Variants for Ablation Study (in %)

Methods Cora CiteSeer PubMed
Amazon Amazon Coauthor

Computers Photo CS

HCPL w/o aug 83.5 ± 0.7 73.4 ± 1.1 82.1 ± 0.7 81.6 ± 0.4 91.8 ± 0.4 92.9 ± 0.3

HCPL w/o cur 83.2 ± 0.6 73.2 ± 0.5 81.3 ± 0.6 81.4 ± 0.6 91.6 ± 0.3 92.6 ± 0.5

HCPL - inv cur 82.8 ± 0.8 72.5 ± 0.9 80.9 ± 1.1 80.8 ± 1.5 91.3 ± 0.8 92.1 ± 0.7

HCPL - random 83.5 ± 0.7 73.4 ± 0.7 81.5 ± 0.9 81.7 ± 1.0 91.6 ± 0.9 92.7 ± 0.5

HCPL w/o unc 83.9 ± 0.3 73.3 ± 0.8 81.5 ± 0.8 81.8 ± 0.7 91.9 ± 0.6 92.8 ± 0.7

HCPL (Ours) 84.2 ± 0.6 74.4 ± 0.7 82.4 ± 0.7 82.2 ± 0.8 92.3 ± 0.5 93.2 ± 0.4

4.3 Ablation Study

In this part, we perform extensive experiments over core components of the proposed HCPL. In

particular, five model variants are compared with the full model, which only remove one part of

our framework with the other components kept:

— HCPL w/o aug: We delete the perturbation over the input in the GNN-based predictor.

— HCPL w/o cur: We remove the curriculum strategy and annotate all the unlabeled nodes for

self-training.

— HCPL w/o unc: We remove the uncertainty-based selection strategy and only use confidence

to select pseudo-labels.

— HCPL - inv cur: We annotate from the hard examples to easy examples.

— HCPL - random: We annotate samples randomly during iterations.

The results are in Table 6. First, we can see a decline in the performance of HCPL w/o aug, demon-

strating the necessity of augmentation strategies, which also improve the robustness of HCPL. Sec-

ond, HCPL performs better than HCPL w/o cur and HCPL inv cur, validating that pseudo-labeling

may introduce some biases to deteriorate the performance while our curriculum learning strategy

is capable of releasing this issue. Moreover, we analyze the homophily ratio of each dataset, which

denotes the fraction of edges that connect nodes from the same category in a graph. A lower ho-

mophily ratio will increase the challenges of semi-supervised learning under label scarcity, which

makes curriculum learning more important. In particular, the homophily ratios for Cora and Cite-

Seer are 0.810, and 0.736, respectively. From ablation studies, it can be observed that when we

remove curriculum learning, the performance will drop 1.18% and 1.61% for Cora and CiteSeer,

respectively. This validates our analysis that the curriculum learning strategy is more suitable for
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Fig. 4. Performance w.r.t. embedding dimension of hidden layers.

Fig. 5. Performance w.r.t. total iteration.

challenging tasks. Third, removing the uncertainty-based selection strategy leads to a decline in

performance, which shows it can produce more accurate pseudo-labels with the consideration

of model robustness. Fourth, although these model variants can still perform well with the effec-

tiveness of the remaining components, we can always observe a decline in these model variants

compared with the full model, which validates the effectiveness of every component.

4.4 Sensitivity Analysis

In this part, we study the sensitivity of hyper-parameters in HCPL, i.e., embedding dimension in

the hidden layer and the total number of iterations, respectively.

We first study the influence of different hidden embeddings by varying the dimension in [32,
64, 128, 256, 512, 1024] with other settings fixed. We plot the result on all the datasets in Figure 4

and observe that the performance almost first increases and then stays stable as the embedding

dimension grows. The potential reason is that a large hidden dimension would improve represen-

tation, but the model will tend to be saturated when the dimension is above a certain value.

Next, we study the effect of different numbers of iterations. Specifically, we fix all the other

hyper-parameters and vary the iteration number in {5, 10, 20, 50}. The results are plotted in

Figure 5. We can observe that in most cases increasing the iteration number leads to a gain in

performance. Perhaps it is because a larger iteration number brings in fewer pseudo-labels at each

iteration, which is usually reliable for self-training. However, a too-large number of iterations

accompanies a higher computational cost. As a result, we set the number of iterations to 20 as the

default.

4.5 Robustness Analysis

In this part, we test the robustness of our HCPL by perturbing the graph, i.e., deleting edges or

masking node attributes at random. Figure 6 illustrates the performance of three methods (GCN,

GAT, and HCPL) when varying the perturbation rate from 10% to 90% on three datasets Cora,
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Fig. 6. Robustness analysis on the datasets Cora, PubMed, and Amazon Photo in terms of classification

accuracy (in %).

Table 7. The Compared Running Time Cost of the Compared Methods (Seconds)

Methods Cora CiteSeer PubMed
Amazon Amazon Coauthor

Computers Photo CS

Chebyshev 7.9 8.2 11.1 17.6 10.4 17.5

GCN 6.6 7.2 10.7 19.9 11.2 21.4

GAT 8.7 8.8 6.8 16.1 8.3 14.7

SGC 3.8 3.9 3.9 3.7 3.6 7.5

DGI 16.8 19.1 59.6 56.3 31.7 90.2

GMI 90.5 85.5 520.8 624.8 396.5 812.6

MVGRL 287.1 296.9 489.9 554.0 472.2 578.7

AM-GCN 18.5 7.9 OOM 1055.0 237.6 OOM

GRACE 145.7 69.6 209.8 297.8 215.6 590.6

CG3 1156.0 1036.1 1326.8 1702.4 1563.7 3512.4

HCPL (Ours) 52.4 59.9 70.4 125.5 75.8 189.2

OOM means out-of-memory.

PubMed, and Amazon Photo, respectively. It can be shown that our HCPL obtains the best re-

sults under various random attack perturbation rates. Moreover, our HCPL decreases less as the

perturbation rate grows, demonstrating the robustness of our HCPL.

4.6 Efficiency Analysis

In this part, we analyze the efficiency of competing methods by comparing their running time. The

compared results on six datasets are collected in Table 7. From the results, we can find that our

method has better efficiency compared with various recent works (i.e., MVGCL, CG3, and AMGCN).

Actually, besides GNNs, these current works, i.e., MVGCL, CG3, and AMGCN utilize additional

complex techniques, which could bring in huge computational cost. MVGCL introduces different

data augmentation strategies to generate multiple topological views for mutual information max-

imization. CG3 needs to calculate data similarities and involves both local graph convolution and

global hierarchical graph convolution. AMGCN extracts node embeddings from different views

and then fuses them using the attention mechanism. These techniques bring more computational

cost than our curriculum learning. Although some of the early methods have better efficiency, their

performance is much worse than ours. Therefore, our HCPL exhibits competitive model scalability

from the comparable running time.

4.7 Visualization

In this subsection, we demonstrate the t-SNE visualization [11] of the node embeddings generated

by four methods on Cora, CiteSeer, and Amazon Photo. The compared results can be found in
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Fig. 7. t-SNE visualization on three datasets Cora, CiteSeer, and Amazon Photo.

Figure 7. From the results, the embeddings generated by our HCPL are more discriminative on

these three datasets since these embeddings belonging to different categories can be better sep-

arated. This finding can result from our hybrid pseudo-labeling strategy, which provides extra

high-quality supervision for the neural network, therefore validating our superiority again.

5 CONCLUSION

In this research, we investigate the problem of semi-supervised node classification on graphs and

propose a simple yet effective model HCPL. Note that pseudo-labeling techniques are predomi-

nantly studied in the visual domains but have not been well applied to effectively solving node

classification problems on graphs yet. In this article, our HCPL annotates unlabeled samples by

training a classification model on the labeled nodes as well as pseudo-labeled nodes, and repeats

the procedure with self-training. We propose a hybrid pseudo-label selection strategy for reliable

guidance. Moreover, the concept of curriculum learning is introduced to progressively learn from

simple pseudo-labels to hard pseudo-labels in terms of confidence and uncertainty. In this way, our

HCPL can sufficiently explore the unlabeled data through our pseudo-labeling strategy. Extensive

experiments on six well-known benchmarks validate the effectiveness of the proposed HCPL. In

future work, we will attempt to introduce our pseudo-labeling strategy into other graph-related

tasks such as link prediction and graph classification.
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