
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

CLEAR: Cluster-Enhanced Contrast for
Self-Supervised Graph Representation Learning

Xiao Luo , Wei Ju , Graduate Student Member, IEEE, Meng Qu, Yiyang Gu, Chong Chen , Member, IEEE,

Minghua Deng , Xian-Sheng Hua , Fellow, IEEE, and Ming Zhang

Abstract— This article studies self-supervised graph represen-
tation learning, which is critical to various tasks, such as protein
property prediction. Existing methods typically aggregate repre-
sentations of each individual node as graph representations, but
fail to comprehensively explore local substructures (i.e., motifs
and subgraphs), which also play important roles in many graph
mining tasks. In this article, we propose a self-supervised graph
representation learning framework named cluster-enhanced Con-
trast (CLEAR) that models the structural semantics of a graph
from graph-level and substructure-level granularities, i.e., global
semantics and local semantics, respectively. Specifically, we use
graph-level augmentation strategies followed by a graph neural
network-based encoder to explore global semantics. As for local
semantics, we first use graph clustering techniques to partition
each whole graph into several subgraphs while preserving as
much semantic information as possible. We further employ a
self-attention interaction module to aggregate the semantics of
all subgraphs into a local-view graph representation. Moreover,
we integrate both global semantics and local semantics into
a multiview graph contrastive learning framework, enhancing
the semantic-discriminative ability of graph representations.
Extensive experiments on various real-world benchmarks demon-
strate the efficacy of the proposed CLEAR over current graph
self-supervised representation learning approaches on both graph
classification and transfer learning tasks.

Index Terms— Contrastive learning (CL), graph clustering,
graph representation learning, self-supervised learning.

I. INTRODUCTION

GRAPHS have been given increasing prominence as
basic representing tools for a variety of structured and

sophisticated data, such as social networks [1], [2], road
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networks [3], and biological protein–protein interaction net-
works [4], and so on. Typically, a graph is comprised of
a finite set of vertices, together with a set of connections
implying the relationship between pairs of these vertices
(termed edges). Previous researches have investigated numer-
ous aspects of graphs, including node classification [5]–[7],
link prediction [8], [9], and graph classification [10], [11].
Among them, a crucial problem therein is to learn discrimina-
tive representations of entire graphs, which is vital for a range
of domains and tasks, such as predicting protein properties in
biological networks [12] and inferring molecule properties in
drug discovery [13], [14].

Graph neural networks (GNNs) have achieved remarkable
success nowadays in learning graph-level representat-
ions [15]–[18]. GNNs generally leverage neighbor-aware mes-
sage passing mechanisms to produce discriminative node
representations. Specifically, each node collects information
from its local neighbors, which is then aggregated to iteratively
update the node representation. At last, current graph-level
representation learning methods embrace graph-level rep-
resentations by summarizing all the node representations.
Typically summarization operations include averaging over
all nodes [19] and more complicated graph pooling strate-
gies [16], [17], [20]. In this manner, the learned graph
representation can reflect graph structural-semantic informa-
tion for various downstream applications. Despite their high
performance, existing GNN methods are usually trained in
a supervised fashion, requiring a large amount of labeled
data. However, labeled data is often prohibitively expensive to
obtain in many domains [14]. For instance, density functional
theory [21] methods are time-consuming to determine the
properties of chemical molecule graphs. Meanwhile, in real-
world situations, a large number of unlabeled data is always
accessible. Therefore, unsupervised or self-supervised graph
representation learning approaches are highly anticipated. Tra-
ditional graph kernel methods, which resort to handcrafted
kernel functions, could result in poor generalization and
consequently inferior performance. Inspired by the success
in self-supervised contrastive learning (CL), many recent
works [22]–[25] have brought the technique to self-supervised
graph representation learning. The basic idea of these methods
is to augment graphs from multiple perspectives. By enforcing
a graph to have similar representations to its own augmented
graphs and different representations from other augmented
graphs, these methods are able to learn effective graph-level
representations, achieving impressive results in many tasks.
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Fig. 1. Chemical example for illustration of the importance of graph
substructures. The substructure circled by orange dotted lines contains key
multiple rings (i.e., motifs), and thus, indicates the crucial molecule properties.

Typically, existing self-supervised methods [24], [25] com-
pute graph representations by aggregating the representation of
every single node, allowing these methods to well capture the
node-level semantics. Although nodes are the most important
structural attributes in a graph, there are other critical attributes
as well, ranging from edges, and motifs to subgraphs. The
graph substructures (i.e., motifs and subgraphs) are widely
recognized to contain critical characteristics [26]. As depicted
in Fig. 1, rings serve as important indicators for property pre-
diction in molecular chemistry [27]. As such, we would also
wish to capture the semantic information of local substructures
for graph representations, so that the learned representations
can capture diverse structural semantics of graphs. However,
this problem is nontrivial due to the following challenges:
1) loss of semantic. Some methods attempt to sample a
subgraph from the whole graph for CL [24], which may lose
some vital semantics. For example, in chemistry, the graph
property often depends on several dense subgraphs containing
key graph motifs. If some of the pivotal patches are not
included in the sampled subgraph, the semantics of the graph
may be lost, damaging the performance of graph representation
learning. 2) Neglection of intersubstructure information.
The interaction between local substructures usually indicates
underlying semantics. To be specific, in biology, some graph
motifs may interact and determine the graph property jointly.
However, most self-supervised methods [23], [25] are inherent
flat, as they only globally summarize node representations by
a sum-pooling or mean-pooling [28], failing to model sub-
structure interactions, which is hard to hierarchically embed
the accurate semantic information in graphs.

To tackle the above-mentioned challenges, in this article,
we propose a principled framework called cluster-enhanced
contrast (CLEAR) for self-supervised graph-level representa-
tion learning. Our approach models the structural semantics of
a graph at graph-level and substructure-level granularities, i.e.,
global semantics and local semantics, respectively. The global
semantics is learned by graph-level augmentation strategies
followed by a GNN-based encoder, which learns the node
representations and aggregates them into a global-view graph
representation. To capture the local semantics, we partition the
whole graph into several clusters (i.e., subgraphs) by utiliz-
ing graph clustering algorithms [29], [30]. These algorithms
are able to damage as few as possible intersubgraph edges.
Thus the pivotal patches are typically contained in one or
several subgraphs. In this way, we can sufficiently explore
underlying semantics from the local view. After encoding each

subgraph via the GNN-based encoder, we further leverage
a self-attention interaction module to first model subgraph
interactions and then effectively aggregate different subgraph
representations as well as subgraph interaction representa-
tions into a local-view graph representation. To combine
both global- and local-view representations, we propose a
multiview CL framework that guides the network to learn
consistent representations at different granularities, enhancing
the semantic-discriminative ability of graph-level representa-
tions. We validate our proposed CLEAR on a wide range of
graph classification benchmark datasets and large-scale OGB
datasets. The results demonstrate that our CLEAR achieves
state-of-the-art performance by significantly outperforming the
baselines on both graph classification and transfer learning
tasks. The main contributions in this article can be highlighted
as follows.

1) To explore the semantics of local substructures, we con-
struct local-view graph representations while mining as
much semantic information as possible by random graph
clustering and subgraph-interaction modeling.

2) We introduce a unified self-supervised graph repre-
sentation learning framework CLEAR. Benefiting from
CL at different granularities, CLEAR can well produce
discriminative graph representations.

3) Extensive experiments have shown that the proposed
method outperforms current state-of-the-art methods on
a wide range of datasets in both graph classification and
transfer learning downstream tasks.

II. RELATED WORK

In this section, we introduce some related fields, problems,
and works involved in our research. We begin by providing a
brief review of graph representation learning. Then, we intro-
duce the existing graph CL approaches. Finally, we introduce
several graph clustering techniques.

A. Graph Representation Learning
In recent years, the emphasis on graph mining has evolved

away from structural feature engineering and toward graph
representation learning [31], which includes node-level [32]
and graph-level representation learning [22]. While the former
has been intensively investigated recently with considerable
success, the latter is understudied yet critical to the perfor-
mance of graph machine learning models in abundant domains,
such as drug discovery and bioinformatics. With the devel-
opment of neural networks, GNNs [5], [28], [33], [34] have
been widely utilized for learning useful graph-level represen-
tations in many fields. The majority of existing GNN methods
inherently follow a message-passing scheme [35] recursively
to embed graphs into a continuous and low-dimensional space.
Despite their effectiveness in learning graph-level representa-
tions, these approaches are usually trained in a supervised fash-
ion, which requires a large amount of labeled data for training.
Unfortunately, annotating samples is often costly, hindering
these methods from real-world practice [14]. To tackle this
issue, our work studies self-supervised graph representation
learning, which fully explores the semantic information of the
unlabeled data from different granularities.
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B. Graph Contrastive Learning

Recently, CL utilizes self-supervised information between
contrastive pairs generated via stochastic perturbation of the
initial inputs, achieving remarkable success in various fields,
e.g., computer vision [36], [37] and natural language process-
ing. Extensive efforts have been made to incorporate CL into
GNNs [24], [25], [38] recently. As pioneering efforts, Deep
Graph Infomax (DGI) [38] and InfoGraph [22] maximize the
mutual information between local and global representations
on the augmented graphs from node-level and graph-level,
respectively. Subsequent techniques [23]–[25] are often built
on the framework of visual CL, which enforces a graph to
have similar representations to its own augmented graphs
and different representations from other augmented graphs.
CuCo [23] borrows the idea of curriculum learning to sort
negative samples for graph CL. JOint Augmentation Opti-
mization (JOAO) [25] proposes to automatically select dynam-
ical and adaptive graph augmentation strategies for various
datasets. Graph contrastive learning with adaptive augmenta-
tion (GCA) [32] develops adaptive graph augmentations to
incorporate various priors of the graphs. However, these meth-
ods generally suffer from failing to comprehensively capture
semantic information in local substructures, while our work
better explores the semantic information via graph clustering
and explicitly incorporates the intersubstructure information.

C. Graph Clustering
Another category of related work is graph clustering

[39]–[41], which aims to identify disjoint partitions of graph
nodes where connections between nodes within the same
partition are significantly denser than connections between
nodes across partitions. There have been several graph cluster-
ing algorithms for this task. Spectral methods that minimize
weighted cuts [42] form an important class of such algorithms
and are shown to be effective for problems, such as image
segmentation [43]. Multilevel graph partitioning algorithms,
such as Metis [44] are well known to scale well for some
large-scale graph datasets. Graclus [30] optimizes weighted
cuts or normalized cuts by optimizing an equivalent weighted
kernel K-means objective. Recently, graph clustering has been
applied to different tasks in various domains. For example,
Cluster-GCN [45] utilizes graph clustering to improve the
memory and computational efficiency of GNNs for node
classification. GCAGC [46] proposes to use the graph to
discriminate the common objects, boosting the performance
of co-saliency detection. In contrast to these supervised tasks,
our work utilizes graph clustering algorithms in unsupervised
scenarios, which efficiently capture semantic information from
a local view. To the best of our knowledge, we are the first
to integrate graph clustering into the self-supervised graph
representation learning task.

III. PROBLEM DEFINITION

In this section, we first briefly present formal terminology
and then introduce the problem formulation.

Definition 1 (Graph): Let G = (V , E, X) represent a
graph with V representing the vertex set and E representing
the edge set. xv denotes the feature vector of the node v

and X ∈ R
|V |×d f

denotes the node feature matrix, where d f

is the dimension of features.
Self-supervised graph representation learning is a funda-

mental topic in data mining with a wide range of applications,
including predicting protein properties and inferring chemical
compound functionalities. It is beneficial to train a graph
encoder that can generate informative representations of an
entire graph from a collection of unlabeled graphs. Formally,
the self-supervised graph representation learning problem is
defined as follows.

Definition 2 (Self-Supervised Graph Representation Learn-
ing): Given a set of unlabeled graphs G = {G1, . . . , G N },
we aim to learn an embedding vector zi ∈ R

d for each
graph Gn under the guidance of the data itself, where d
is dimension of hidden embeddings and N is the number
of graphs. The generated embeddings {z1, . . . , zN } will be
used for downstream applications, such as graph property
prediction.

IV. PROPOSED METHOD

In this part, we introduce our proposed framework CLEAR.

A. Framework Overview
This article presents the CLEAR for self-supervised graph

representation learning, which models the structural semantics
of a graph at graph-level and substructure-level granulari-
ties, i.e., global semantics and local semantics, respectively.
It has been recognized that local substructures in graphs can
carry critical characteristics. However, capturing their semantic
information of them for representation learning is challenging
due to the potential loss of semantic and neglection of inter-
substructure information. As a consequence, prior works fail
to achieve satisfactory performance when label annotations are
very scarce in real-world applications.

In order to better explore local substructures in graphs,
the local semantics is learned using graph clustering as well
as a self-attention interaction module to aggregate both sub-
graph representations and subgraph interaction representations.
Moreover, the global semantics is learned via graph-level
augmentation followed by a GNN-based encoder. Finally,
we integrate both global semantics and local semantics into a
unified multiview CL framework. More details are illustrated
in Fig. 2.

The remainder of this section is organized as follows.
To begin, we briefly introduce our GNN-based encoder
in Section IV-B. Then, we introduce graph augmentation
strategies to generate global-view graph representations in
Section IV-C. Moreover, in Section IV-D, we demonstrate the
manner to explore local semantics to generate local-view graph
representations in detail. Finally, we formulate a multiview
CL framework in Section IV-E and analyze the computational
complexity in IV-F.

B. GNN-Based Encoder

GNNs have currently occurred as effective approaches for
learning graph-structured data. Existing techniques for acquir-
ing graph-level representations are on the basis of message
passing neural networks [35]. Particularly, for each node v ∈
V , the embeddings from its neighbors at layer k − 1 are first
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Fig. 2. Illustration of the proposed framework CLEAR. Our method first uses graph augmentation to generate global-view representations while using graph
clustering algorithms and a self-attention interaction module to generate local-view representations. Finally, the multiview CL framework is built across global
and local views.

aggregated. Then, the representation of node v at layer k,
namely, h(k)

v is updated recursively by merging its embedding
in the previous layer with its neighbor embedding. In formu-
lation, h(k)

v is calculated as follows:
h(k)

v = M(k)
θ

(
h(k−1)

v ,A(k)
θ

({
h(k−1)

u

}
u∈N (v)

))
(1)

in which N (v) represents the neighborhood of v. A(k)
θ and

M(k)
θ represent the aggregation and combination operations at

layer k, respectively. At last, a readout function is adopted
to summarize all the obtained node representation at the K th
layer into the graph-level representation. Formally

fθ (G) = READOUT
({

h(K )
v

}
v∈V

)
(2)

where fθ (G) is the graph-level representation and θ is the
parameter set of the encoder.

C. Global-View Graph Representation

Data augmentation is critical in self-supervised learning
which produces novel rational data through applying cer-
tain transformations without influencing the semantics [36].
Here, we focus on graph-level augmentations, which randomly
disturb some nodes, edges, and attributes in a whole graph
while maintaining most graph-level information (i.e., global
semantics). Specifically, given a graph G, we generate the

augmented graph Ĝg satisfying: Ĝg ∼ T (Ĝg|G), in which
T (·|G) is the predefined augmentation distribution conditioned
on the initial graph, incorporating the prior of data distribution.
We use four popular strategies to augment topological and
attributive information of the graph [25], as shown in Fig. 3.

1) Edge Deletion: We remove partial edges from each
graph obeying an i.i.d. uniform distribution. The drop-
ping probability of each edge follows an i.i.d. uniform
distribution by default. The underlying prior is that
missing certain edges does not influence the semantics
of the graphs in most cases.

2) Node Deletion: We randomly select certain nodes and
remove them as well as their related edges from the
graph. We also follow a uniform distribution to delete
each edge. The underlying prior is that the semantic

Fig. 3. Illustration of four types of adopted graph augmentation strategies.
We randomly select one of four augmentation strategies to produce
global-view graph representations.

information of graphs is mostly stable when parts of
nodes are missing.

3) Attribute Masking: We pick partial nodes and mask part
of their attributes at random. The strategy assumes that
missing partial node attributes will not hugely change
the semantic information.

4) Graph Diffusion: We randomly transform a graph using
diffusion [47] to provide a congruent perspective. This
augmentation strategy contributes to providing addi-
tional global information. Given the transition matrix
T which is used to transfer the adjacency matrix, the
diffusion matrix S can be formulated as

S =
∞∑

w=0

θr T w (3)

where θ is a coefficient to balance the distribution
of local and global signals. We use the Personalize
PageRank (PPR) kernel to characterize graph diffusion
in this article. Specifically, given the adjacency matrix A,
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the degree matrix D and the identity matrix I , the
diffusion matrix S is reformulated as

S = α
(
I − (1 − α)D−1/2 AD−1/2

)−1
(4)

where α is a random coefficient sampled in (0, 1) as the
random walk teleport probability [48]. The produced dif-
fusion matrix S will guide the message passing process
in the GNN-based encoder.

The default augmentation ratio for edge/node deletion
and masking is set to 0.2 empirically following recent
researches [24], [25]. For example, about 20% edges are
deleted from the graph using the strategy of the edge dele-
tion. Here, we first generate the augmentations by randomly
selecting one of the four augmentation strategies and then use
the GNN-based encoder to extract novel rational global-view
graph representations as follows:

zg = fθ (Ĝg). (5)

D. Local-View Graph Representation
As mentioned in the introduction, local substructures in a

graph are vital for learning graph-level representations. How-
ever, effectively exploiting semantics in substructures (i.e.,
local semantics) is challenging. For example, existing sub-
graph augmentation strategies [24] may lose some underlying
semantics. As such, we need to design a module to explore
local substructure patterns without loss of underlying seman-
tics and then encourage the substructures to be discriminative
for graph representation learning.

1) Random Clustering Strategy: Graph clustering algo-
rithms [30] target generating the partitions over nodes in
the graph such that within-cluster links greatly outnumber
between-cluster links, which allows for better exploration of
the clustering and community structure in the graph. These
are exactly what we need because we decompose the original
graph into several subgraphs and the loss of semantics is
usually proportional to between-cluster links [45]. Besides,
the semantics of the graph is usually embedded in the dense
patch of the graph, implying that graph clustering can mostly
preserve underlying semantics in the original graph. From this
point, we propose a unified pipeline to explore underlying
semantics from a local view, which first uses graph clustering
algorithms to partition the graph and then aggregate the local
semantics with a self-attention interaction module. In detail,
given a set of cluster numbers C, we first randomly choose a
number C ∈ C, and then partition nodes in the graph into C
groups through efficient Metis [44]: V = [V1, . . . , VC ], where
Vt consists of the nodes in the tth partition. Thus, we have C
subgraphs as follows:

[Gl1 , . . . , GlC ] = [{
V 1, E1}, . . . , {V C , EC

}]
(6)

where each Ec only consists of the links between nodes in
V c. We feed these subgraphs to the GNN-based encoder and
get subgraph representations Z l = {zl1 , . . . , zlC }.

Remark 1: In our graph clustering strategy, the cluster num-
ber is randomly chosen in C, which is not a preset parameter.
This design extends the fixed graph clustering operation to

Fig. 4. Illustration of the self-attention interaction module gφ(·). We take
three clusters as an example. The composite subgraph representations are
first generated by mutual vector element-wise product of single-subgraph
representations. Then, all representations are aggregated by a multihead
attention network, producing a local-view graph representation.

a random augmentation strategy, which has the following
strengths for the exploration of local semantic information.
First, our random strategy has the potential to explore varying
local substructures, which fits the condition that different
graphs could have local semantic information of different
sizes. Second, a fixed clustering strategy may lead to the
permanent removal of crucial edges, thus bringing in biased
semantic information and hindering efficient representations
while our random strategy can release this issue. Third, the
random clustering strategy tends to emphasize and encourage
stable and reliable substructures that are always inseparable
in different partitions. Intuitively, these substructures are sig-
nificant indicators of graph semantics, which can promote
effective graph representation learning.

Remark 2: In our model, Metis is adopted following [45]
due to its efficiency and scalability in the PyTorch Geometric
library [49]. We have tested other graph clustering methods,
such as Graclus [30] and weighted cuts [50] with random clus-
ter sizes, which do not bring much change to the performance.

2) Self-Attention Interaction Module: Of note, graph motifs
may interact and determine the graph property jointly. Inspired
by attention mechanism [51] and factorization machines [52],
we use a self-attention interaction module gφ(·) to aggregate

the subgraph representations into a local-view representation

zl = gφ(Z l) in Fig. 4, where φ represents the module para-
meter set. Specifically, we first produce composite subgraph
representations to model the subgraph interaction informa-
tion, which resulting in C(C − 1)/2 composite embedding
vectors: Il = {zl1,2 , zl1,3 , . . . , zlc−1,c }, where zli, j = zli � zl j

and � denotes the elementwise product of vectors. We unite
Z l and Il to obtain a hybrid feature set Ẑ l involved in
C(C + 1)/2 embedding vectors, which are re-ordered as
{ẑl1 , . . . , ẑlC(C+1)/2 }. We then use a multihead self-attention net-
work to aggregate these embedding vectors. Each embedding
ẑlr is mapped into query vector and key vector, and we calcu-
late their dot product as the attention to learn the importance of
semantics underlying the feature vector. Formally, we define
Qh,Kh and Vh ∈ R

(d/H )×d as transformation matrices of a
query, a key and a value, respectively, where H is the number
of heads. Then, the weight αh

r is determined by the dot-product
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of the query and the key as follows:

αh
r =

(
Qh · zlr

i

)�(
Kh · zlr

i

)
√

d/H
, α̂h

r = exp αh
r∑C(C+1)/2

r �=1 exp αh
r �

(7)

where α̂h
r is viewed as the importance of the r th embedding.

Finally, we aggregate subgraph representations and subgraph
interaction representations to obtain a local-view graph repre-
sentation zl with the multihead operation

zl = H	
h=1

C(C+1)/2∑
r=1

α̂h
r Vh · ẑlr (8)

where 	 is the concatenation operator.
Next, we will integrate our local- and global-view represen-

tations into a unified CL framework.

E. Multiview Contrastive Learning Framework

Our CLEAR is a concise and effective CL framework to
enhance both global-view and local-view graph representa-
tions. From the global view, a graph G performs stochastic
graph augmentations T (·|G) to obtain two correlated views Ĝg

i
and Ĝg

j , as a positive pair. Then, graph-level representations zg
i

and zg
j are extracted by the GNN-based encoder fθ (·) for Ĝg

i

and Ĝg
j respectively. The noise-contrastive estimation loss [53]

is utilized to maximize the consistency between positive pairs
{zg

i , zg
j } compared with negative pairs. Specifically, a mini-

batch of M graphs are randomly sampling, producing 2M
random augmented graphs {Ĝm,i , Ĝm, j }M

m=1. For each positive
pair Ĝm,i and Ĝm, j , we consider the other (M −1) augmented
graphs within a minibatch as negative samples following [24]
and [25]. For convenience, we re-annotate zg

i and zg
j as zg

m,i

and zg
m, j for the mth graph in the minibatch. Then, two graph

representations for the mth graph are compared as follows:

�g↔g
m = − log

ezg
m,i �zg

m, j /τ

∑M
m�=1 ezg

m,i �zg
m� , j

/τ
(9)

where zg
m,i �zg

m, j denotes the cosine similarity of zg
m,i and zg

m, j

and τ is a temperature parameter set to 0.5 following [24],
[25], and [36].

However, global-view CL cannot fully capture the under-
lying semantics within local substructures. To tackle this
issue, we develop both global and local CL to keep con-
sistent graph representations on both the whole graph and
local subgraph set. This strategy aims to take advantage
of global graph representations to enhance local subgraph
representations and vice versa. In detail, given a graph G,
first we randomly select two cluster numbers C and C � in

set C. After graph clustering, we obtain two subgraph sets

Z l
i = {Gl1

i , . . . , GlC
i } and Z l

j = {Gl1
j , . . . , G

l�C
j }. We feed

these subgraphs to the GNN-based encoder and self-attention
interaction module to get two local-view graph-level repre-
sentations zl

i and zl
j from Z l

i and Z l
j , respectively. Similarly,

we re-annotate zl
i and zl

j as zl
m,i and zl

m, j for the mth graph
in the minibatch. In our framework, we not only contrast
two local-view representations but also contrast a local-view

Algorithm 1 Learning Algorithm of CLEAR
Input: Unlabeled data G, batch size M , embedding
dimension d , propagation layer number L

1: Initialize model parameter with a Xavier initialization.
2: while not convergence do
3: Sample M samples from G and construct a minibatch.
4: for the m-th graph in the minibatch do
5: Generate two graph views Ĝg

m,i and Ĝg
m, j via graph

augmentation.
6: Obtain global-view graph representations zg

m,i and zg
m, j

through fθ (·).
7: Sample two different cluster number C and C � and

cluster the origin graph into subgraph sets.
8: Obtain local-view graph representations zl

m,i and zl
m, j

through fθ (·) and gφ(·).
9: end for

10: Optimize model parameters θ and φ with Eq.12.
11: end while
12: return GNN encoder fθ (·) and interaction module gφ(·).

representation and a global-view representation. The former
aims to generate a consistent representation for substructures
of different cluster scales, while the latter aims to produce
consistent graph representations for both local substructures
and the whole graph. Formally, the local-view CL loss for the
mth graph is formulated as

�l↔l
m = − log

ezl
m,i �zl

m, j /τ

∑M
m�=1 ezl

m,i �zl
m� , j

/τ
. (10)

Besides, the global-and-local CL loss is

�g↔l
m = − log

ezg
m, j �zl

m,i /τ

∑M
m�=1 ezg

m, j �zl
m� ,i /τ

. (11)

In summary, for the mth graph we produce three positive
pairs (zg

m,i , zg
m, j ), (zg

m, j , zl
m,i ), and (zl

m,i , zl
m, j ) for CL. The

overall loss function of CLEAR for the mth graph in a
minibatch can be defined as follows:

�m = 1

3

(
�g↔g

m + �g↔l
m + �l↔l

m

)
. (12)

The final loss is computed across all positive pairs in
the minibatch. The parameters in our framework are opti-
mized with the minibatch stochastic gradient descent (SGD)
algorithm effectively. The whole learning procedure of our
proposed model CLEAR is shown in Algorithm 1. The final
graph embedding of each graph is produced by our trained
encoder for various downstream tasks.

F. Complexity Analysis

The computing complexity of Algorithm 1 mainly depends
on graph clustering and neural network computation. We will
show that the complexity of graph clustering always takes
a small percentage of the whole computational time (less
than 21%) in Section V-F thanks to our efficient clustering
algorithm Metis [44].
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TABLE I

STATISTICS OF THE DATASETS

Therefore, our computing complexity mainly depends on
the encoder and the interaction modules Step 6 and Step 8.
For each graph G, ||A||0 represents the number of nonzeros
in its adjacency matrix. d f represents the feature dimension.
K represents the GNN layer number. |V | represents the
total number of nodes. The time complexity of obtaining a
global representation and all subgraph representations is both
O(K ||A||0d f + K |V |d f 2

) for each graph, while the time
complexity of the interaction module is negligible when cluster
number C is limited in our application. As a result, the com-
plexity of our CLEAR and the representative graph clustering
methods (GraphCL [24], JOAO [25], and CuCo [23]) are all
O(K ||A||0d f + K |V |d f 2

) for each graph, linearly related to
both |V | and ||A||0.

V. EXPERIMENTS

In this section, we evaluate the effectiveness of the proposed
CLEAR in both graph classification and transfer learning tasks
and compare it with a collection of state-of-the-art graph
representation learning approaches.

A. Experimental Settings

1) Evaluation Dataset: We perform extensive experiments
on several popular graph datasets1 following [22] and [24],
including two bioinformatics and five social network datasets.
The bioinformatics datasets include PROTEINS [54] and P. D.
Dobson and A. J. Doig (DD) [55], while the social network
datasets contains Internet Movie DataBase (IMDB)-B, IMDB-
M, REDDIT-B, REDDIT-M-5k, and COLLAB [56]. Following
recent works [22], we adopt all-ones vectors as input node
attributes if they are not available in these datasets. The
detailed statistics are summarized in Table I.

2) Compared Methods: To evaluate the effectiveness of our
models, we select three families of baselines, including graph
kernel methods, traditional graph embedding methods, and
graph CL methods.

The graph kernel methods include: 1) Graphlet Ker-
nel [57]—it introduces graphlets that is a kernel based on
counting occurrences of substructures of a small-size size
for graph pair comparison. 2) Shortest Path (SP) Kernel
[58]—the basic idea of the SP kernel is to measure the
similarity of the attributes and lengths of the SPs connecting
all pairs of nodes in two graphs. 3) Weisfeiler–Lehman
(WL) Kernel [59]—It is inspired by the Weisfeiler–Lehman

1https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets

test [62] of isomorphism on graphs and follows the par-
adigm of the iterative relabeling process. 4) Deep Graph
Kernel (DGK) [56]—It learns the latent representations of
subgraph patterns via leveraging the dependency information
between substructures inspired by language modeling and deep
learning.

The traditional graph embedding methods include:
1) Sub2Vec [60]—it formulates a subgraph embedding
problem and presents an unsupervised approach to learning
feature representations of arbitrary subgraphs. 2) Graph2Vec
[61]—it is a neural embedding framework to learn data-driven
distributed representations of graphs using neural networks in
an unsupervised manner.

The graph CL methods include in the following: 1) Info-
Graph [22]—it maximizes the mutual information between
the graph-level representation and patch-level representations
at different granularity (e.g., nodes, edges, and triangles)
to learn whole-graph representations. 2) GraphCL [24]—it
designs four types of graph augmentations to incorporate
various priors, including node dropping, edge perturbation,
attribute masking, and subgraph following the scheme in visual
CL [36]. 3) CuCo [23]—it leverages the idea of curriculum
learning and studies the impact of negative samples on learning
graph-level representations following the framework of CL.
4) JOAO [25]—it presents a bilevel optimization model to
choose appropriate data augmentation strategies for specific
datasets in an automatic and adaptive manner.

3) Parameter Settings: We implement our CLEAR and
baseline methods in Scikit-learn and PyTorch. We use
Graph Isomorphism Network (GIN) [28] to parameterize the
GNN-based encoder in our CLEAR due to its effectiveness,
which consists of three graph convolutional layers followed by
a sum-pooling layer. To provide rigorous comparative analysis,
we also use GIN when comparing graph CL methods. The
cluster number set C is set to {2, 3, 4, 5, 6}. We have tested
max{C ∈ C} from 3 to 10 by validation, and find that
max{C ∈ C} = 6 is enough for all datasets. A larger maximum
does not bring much improvement in performance. For a fair
comparison, we set the batch size to 64 and the number of
epochs to 20 for all the compared methods. For all datasets, the
embedding dimensions of the hidden layers are 64. We set the
number of attention heads as 2 for simpleness following [63].
The model is optimized with an Adam optimizer [64] with
the initial learning rate set to 0.01 and weight decay set
to 0.0005. The parameters for all baseline approaches are
carefully tuned to obtain the best performance. The source
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TABLE II

RESULTS OF GRAPH CLASSIFICATION ACCURACY (IN %) ON DIFFERENT BENCHMARK DATASETS. THE REPORTED RESULTS ARE MEAN AS WELL AS
THE STANDARD DEVIATION OF PREDICTION ACCURACY OVER FIVE RUNS USING DIFFERENT RANDOM SEEDS. BOLD RESULTS

INDICATE THE BEST PERFORMANCE

code of CLEAR is available at https://github.com/juweipku/
CLEAR.

4) Protocol: By strictly following the employed protocol in
previous researches [22], [23], we evaluate the classification
accuracy across the ten folds within the cross validation
with LIBrary for Support Vector Machines (LIBSVM) [65].
Five runs of training and testing are conducted using different
random seeds and the mean accuracy and standard deviation
are reported in the results.

B. Performance Comparison
We summarize the quantitative results of different methods

in Table II. According to the results, the following observations
can be derived.

1) Most of the graph kernel methods and traditional unsu-
pervised learning methods perform worse than graph CL
methods. For instance, Graph2Vec performs worse than
InfoGraph on six of eight datasets. Maybe the reason
is that these approaches require hand-crafted designs
and suffer from poor generalization. Instead, graph CL
methods are able to extract more discriminative informa-
tion from graph-structured data, showing the powerful
representation learning ability of GNNs.

2) Among the previous state-of-the-art graph CL methods,
CuCo achieves almost the best performance on most
datasets. This is because CuCo can take better advantage
of the effective negative sample selection and training
strategies, which are prone to be effective and efficient.
Specifically, Infograph, GraphCL, and JOAO are not as
effective as CuCo on most datasets. Maybe the reason
is that they typically require a large number of hard
negative samples [66], and hard negatives are difficult to
obtain by random sampling, which hinders these meth-
ods from learning discriminative representation, leading
to poor performance.

3) Our framework CLEAR achieves the best performance
on all seven datasets, which demonstrates the effec-
tiveness of our framework. Specifically, the average
improvement of our CLEAR over the best baseline
CuCo is 3.17% on seven datasets. From the results,

we deem that this improvement over state-of-the-art
methods is mainly from both our effective semantic
information exploration of local substructures via graph
clustering as well as our multiview CL framework,
which encourages consistency from both global and
local views.

C. Ablation Study
To understand the contributions of different components

in our model, we conduct ablation experiments to validate
their effectiveness. In particular, we introduce the four model
variants as follows.

1) CLEAR-L: We do not produce local-view graph repre-
sentations and only contrast two global-view represen-
tations. Here, the subgraph augmentation strategy [24]
is also involved.

2) CLEAR-A: We replace the attention mechanism with the
average operation to aggregate both subgraph semantic
information and subgraph interaction information.

3) CLEAR-FM: We do not model the subgraph interaction
and only aggregate subgraph semantic information.

4) CLEAR-LG: The global-and-local contrastive loss (i.e.,
�

g↔l
m ) is removed.

The results are recorded in Table III. We summarize the
following findings: first, we can observe a consistent perfor-
mance gain when comparing our full model with CLEAR-L
on three datasets, illustrating the importance and necessity
of our designs for modeling semantic information from a
local view. The comparison also demonstrates that directly
adopting a subgraph augmentation strategy [24] may lose
some vital semantic information. Second, since different sub-
graph representations imply different semantic information and
contribute differently to the final local-view representation,
the results from the comparison of CLEAR-A and CLEAR
indicate the effectiveness of the attention mechanism. Third,
considering subgraph interaction can further improve model
performance, as reflected by the better performance of CLEAR
over CLEAR-FM. Fourth, CLEAR-LG shows worse perfor-
mance compared with the full model, which, hence, illustrates
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TABLE III

ABLATION STUDY OF SEVERAL MODEL VARIANTS (IN %). BOLD NUMBERS INDICATE THE BEST PERFORMANCE. THE RESULTS SHOW THE
CONTRIBUTION OF DIFFERENT COMPONENTS IN THE PROPOSED FRAMEWORK

Fig. 5. Self-supervised representation learning accuracy gain (in %) when contrasting different augmented pairs, compared with training without
any augmentation under seven datasets. Warmer colors indicate larger performance gains. The accuracies of baselines (without augmentation) are
75.02%, 78.18%, 71.80%, 47.73%, 88.15%, 55.77%, and 68.98% for the seven datasets, respectively.

that CL across local and global views can be beneficial to
enhance the consistency and semantic-discriminative ability
of graph-level representations. According to these findings,
we can conclude that different model components indeed bring
benefits to our framework and improve the performance.

D. Effect of Augmentation Strategies

As previously indicated, augmentation strategies are critical
to graph CL. Therefore, in this part, we evaluate the impact
of different data augmentation strategies on our CLEAR.
The results of varying the augmentation strategies to pro-
duce Ĝ1 and Ĝ2 are shown in Fig. 5 with the following
observations. First, it is clear that using graph augmentation
strategies boosts the performance significantly when compared
with the results without using augmentation in most cases.
The explanation for this is that when proper augmentation
strategies are adopted, the model is urged to learn repre-
sentations invariant to corresponding noisy perturbations by
maximizing the agreement between two augmented graphs.
Second, some augmentation strategies may have a negative
impact on performance. The potential reason is that a few
augmentations are likely to change the semantics of graphs

during the learning process, resulting in poor performance.
Consequently, we randomly choose one of four augmentation
strategies to tackle this potential issue in our implementation.
Furthermore, we may use validation to choose target-invariant
augmentation strategies on different datasets.

E. Parameter Sensitivity
In this section, we examine the sensitivity of the proposed

CLEAR to various hyperparameters. Specifically, we investi-
gate the effect of varying different embedding dimensions in
hidden layers, different layer numbers, and different encoder
architectures on representative benchmark datasets.

1) Effect of Different Embedding Dimensions: We begin
by analyzing the influence of the embedding dimensions of
hidden layers d on four representative datasets. It is known
that the greater value of the embedding dimensions generally
implies a larger model capacity. Therefore, we expect the
model to perform well as dimensions increase. We fix other
parameters to the ones which could achieve the best results
and vary d in {8, 16, 32, 64, 128, 256} and show the results in
Fig. 6. It can be seen that a larger embedding dimension mostly
results in better accuracy before saturation. Nevertheless, too
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Fig. 6. Performance w.r.t. hidden dimension d. We can observe that model performance improves as the dimensions d grow before saturation in most cases.
(a) PROTEINS. (b) DD. (c) REDDIT-B. (d) COLLAB.

Fig. 7. Performance w.r.t. layer numbers K . We can observe that three propagation layers are sufficient to capture the structural semantics. (a) PROTEINS.
(b) DD. (c) REDDIT-B. (d) COLLAB.

Fig. 8. Left: Performance with different encoder architectures. Right:
Training curves of CLEAR on PROTEINS.

large dimensions could hurt the performance owing to over-
fitting resulting from the redundancy of parameters.

2) Effect of Different Layer Numbers: We next experiment
with different model depths on four representative datasets
to investigate whether our model can benefit from multiple
embedding propagation. Specifically, the layer number is
searched in the range of {1, 2, 3, 4, 5}. Fig. 7 shows the experi-
ment results and we can observe that by increasing the depth of
the GNN-based encoder from one to three, the performance on
four datasets is improved. Generally, three propagation layers
are sufficient to capture the structural semantics. The deeper
layer may introduce noise and oversmoothing, leading to an
inferior performance on downstream tasks.

3) Effect of Different Encoder Architectures: We study the
effect of different encoder architectures in Fig. 8. We select
four well-known GNNs, including GCN [5], GraphSAGE [67],
GAT [34], and GIN [28]), and show the performance on
four representative datasets. It can be observed that GIN
outperforms the other three basic models on several datasets
consistently, which verifies the efficacy of GIN with strong
representation capacity. This also illustrates the reason why
GIN is selected as the base model for GNN-based approaches.
Finally, we plot the learning curves of four different encoder
architectures on PROTEINS and find that GIN has the smallest

TABLE IV

AVERAGE RUNNING TIME OF GRAPH CLUSTERING ALGORITHM (METIS)
AND WHOLE EXECUTION IN A BATCH. THE LAST COLUMN SHOWS THE

RATIO OF THE CLUSTERING TIME TO THE ENTIRE TIME

training loss among four encoder architectures, which also
demonstrates that GIN is able to fit the graph data very well.
Also, we can see the empirical convergence of our framework.

F. Efficiency Analysis
As shown in Algorithm 1, the computing complexity of

our method mainly depends on graph clustering and network
propagation. We have analyzed that the complexity of network
propagation in CLEAR is comparable with other CL methods.
In this part, we need to figure out whether our extra graph
clustering algorithms bring in a large cost to the whole
framework. In Table IV, we present the average running time
of graph clustering and the whole execution in a batch on
all datasets. As a scalable and fast graph clustering library,
Metis [44] is adopted for graph clustering. From Table IV,
we observe that the graph clustering algorithm only takes
a small portion of the whole execution time, demonstrating
a small extra cost when applying such algorithms and their
scalability on large datasets.

G. Case Study

In Fig. 9, we randomly select an example and visualize
the attention distributions of two heads in the self-attention
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Fig. 9. Example of attention distributions in the self-attention interaction
module. The left is the whole graph and the right shows heat maps to represent
the attention values of two heads. The color scale represents the intensities
of the weights, where a darker color indicates a higher value.

Fig. 10. Two molecular cases of graph clustering. Each dashed box represents
a functional group with its name around and the red crosses partition each
molecular into four or three clusters.

interaction module. Our graph clustering algorithm partitions
the whole graph on the left into three subgraphs (i.e., the
subgraph column in the middle), and the learned quantitative
weights of two heads learned by our multihead self-attention
mechanism are visualized on the right. The diagonal (nondi-
agonal) elements in matrices represent the attention weights
for single (composite) subgraph representations. An interest-
ing observation is that the first subgraph (i.e., the densest
part in the whole graph) gets the biggest weight in both
two heads, implying that the dense patches typically con-
tain the most semantic information. Additionally, the com-
posite subgraphs also get considerable weights in both two
heads, indicating the necessity of modeling subgraph inter-
actions to capture sufficient semantic information in local
substructures. We further try other samples and find similar
observations verifying the importance of dense substructures
as well as substructure interactions in graph representation
learning.

Moreover, we show two molecular cases in Tox21 datasets
to study the benefits of graph clustering for representation
learning. As shown in Fig. 10, we partition each molecule
into four or three clusters. From the visualization, each cluster
mostly corresponds to one or two functional groups. This
validates that our graph clustering can explore the local
information in these functional groups more efficiently with
less perturbation of nodes from other groups, which benefits
graph representation learning for downstream tasks.

H. Transfer Learning
This section is devoted to the empirical evaluation of the

capability of our approach on large datasets. To achieve the
goal, we apply CLEAR to transfer learning for predicting
chemical molecule properties and biological protein functions.
Following [69], we first pretrain the proposed model on a
large-scale ZINC15 database and then fine-tune it on a range
of open graph benchmark (OGB) [71] datasets to explore the
transferability of the different pretraining schemes.

1) Datasets: To test the out-of-distribution performance of
our method, we conduct experiments on seven OGB [71]
molecule property prediction datasets to demonstrate its effi-
ciency. For pretraining, we choose a subset of the ZINC15
database [72], [73] with two million unlabeled molecule
graphs as in previous researches [69] using self-supervised
learning methods. For fine-tuning, we adopt seven large-scale
graph classification datasets in Moleculenet [74] to evalu-
ate the transferability, with the same scaffold dataset split
scheme [75] for a fair comparison.

2) Experiments Settings: Following [28], we adopt the GIN
as the GNN-based encoder with 300 hidden units followed by
a mean pooling readout function for pretraining. We adopt an
Adam optimizer with the learning rate fixed to 10−3 to pretrain
the GIN. An additional linear classifier is added on top of
the pretrained encoder for fine-tuning and an Adam optimizer
is adopted to train the model for 100 epochs. Tenfold cross
validation is conducted to present the mean and the standard
deviation of ROC-AUC scores over five times. Our CLEAR
is compared with nonpretrain (with only fine-tuning after ran-
dom initialization) and popular graph pretraining approaches.
Specifically, besides graph CL approaches GraphCL [24] and
JOAO [25], we select five representative pretraining techniques
elaborated in detail as follows: 1) EdgePred [68]: It randomly
removes part of edges while keeping all associated attributes
and reconstructs the adjacent matrix. 2) Infomax [38]:
It maximizes the mutual information between patch represen-
tations and their related graph-level representations created by
a readout function. 3) AttrMasking [69]: It masks parts of
node and edge attributes at random and then predicts their
values on the basis of their neighbor information in the graph.
4) ContextPred [69]: It aims to utilize subgraphs to predict
their structures and trains the GNN using negative sampling.
5) GraphPartition [70]: It presents a pretraining framework
that partitions the nodes in a graph into approximately equal
subsets while ensuring that the number of edges across differ-
ent subsets is minimized.

3) Performance Analysis: In Table V, we compare the
performance of the proposed CLEAR to various pretraining
baselines under the transfer learning setting, From the results,
we can find that our CLEAR achieves state-of-the-art perfor-
mance by significantly outperforming the competing baselines
on six of seven datasets. In particular, our approach can outper-
form the nonpretrain baseline by 12.5% on blood-brain barrier
penetration (BBBP) and 16.0% on beta-secretase (BACE),
which clarifies the efficacy of our multiview CL framework.
The highest performance of each dataset is dispersed among
competing baselines, demonstrating a considerable difference
in the properties of different downstream task datasets. As a
result, it is difficult to develop a generalized framework that
captures the common knowledge of various datasets, while our
method achieves the best results on most datasets, indicating
local semantics are critical for learning graph semantics.
Furthermore, in terms of average ROC-AUC, our approach
performs better than the best pretraining strategy GraphParti-
tion and CL approach JOAO, validating the superiority of our
CLEAR.

4) Transfer Learning on Different Levels: Finally, we study
the model performance of transfer learning at two different
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TABLE V

RESULTS ON DOWNSTREAM MOLECULAR PROPERTY PREDICTION BENCHMARK DATASETS. THE REPORTED RESULTS ARE MEAN AS WELL AS THE
STANDARD DEVIATION OF PREDICTION ACCURACY OVER FIVE TIMES USING 10-FOLD CROSS-VALIDATION. BOLD RESULTS INDICATE THE

BEST PERFORMANCE. THE TRANSFERABILITY OF OUR PROPOSED CLEAR OUTPERFORMS ALL THE COMPETING

BASELINES IN SIX OF SEVEN DATASETS

TABLE VI

PERFORMANCE OF TRANSFER LEARNING ACROSS DIFFERENT DATASETS

TABLE VII

PERFORMANCE OF TRANSFER LEARNING ACROSS DIFFERENT TASKS

levels, i.e., dataset level and task level. For the former, we pre-
train and fine-tune the GNN with the same self-supervised
representation learning task on the ZINC15 database and
OGB datasets, respectively. The performance of representation
learning is evaluated by training a linear classifier for down-
stream tasks. For the latter, we pretrain the network on OGB
datasets with the self-supervised representation learning task
and fine-tune it on the same dataset but with the classification
task. The results are shown in Tables VI and VII. From
the results, we have two observations. First, our CLEAR
outperforms the representative baseline JOAO consistently on
two tasks, which validates the effectiveness of our CLEAR.
Second, compared to the results in Table VII, the performance
in Table V which pretrains the network on large-scale ZINC15
datasets is better. The potential reason is that the model trained
on the large-scale datasets is more generalized to benefit the
performance in downstream tasks.

VI. CONCLUSION

In this article, we study self-supervised graph-level repre-
sentation learning, which aims to learn the representations of
an entire graph under the guidance of the data itself, and a
novel approach called the CLEAR is presented. CLEAR is a
unified framework, which models the structural semantics of
a graph at graph-level and substructure-level granularities via
graph clustering algorithms and graph augmentation strategies,
respectively. Moreover, a multiview CL framework has been

proposed to guide the model to learn consistent representations
from different views, enhancing the semantic-discriminative
ability of graph-level representations.

Comprehensive experiments on a variety of publicly avail-
able graph classification benchmark datasets and large-scale
OGB datasets for transfer learning demonstrate the effective-
ness of our proposed approach over a range of competitive
baselines. In the future, we will explore the following direc-
tions: 1) further explore the large pretraining and transfer
learning capabilities of the proposed method. 2) Extend the
proposed method to more practical application scenarios, such
as recommender systems, knowledge graphs, and molecular
biology. 3) Theoretically analyze the use of contrastive training
to improve the performance of graph-related tasks.
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