
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Redundancy-Free Self-Supervised Relational
Learning for Graph Clustering
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Yongdao Zhou , and Ming Zhang

Abstract— Graph clustering, which learns the node represen-
tations for effective cluster assignments, is a fundamental yet
challenging task in data analysis and has received considerable
attention accompanied by graph neural networks (GNNs) in
recent years. However, most existing methods overlook the
inherent relational information among the nonindependent and
nonidentically distributed nodes in a graph. Due to the lack
of exploration of relational attributes, the semantic information
of the graph-structured data fails to be fully exploited which
leads to poor clustering performance. In this article, we propose
a novel self-supervised deep graph clustering method named
relational redundancy-free graph clustering (R2FGC) to tackle
the problem. It extracts the attribute- and structure-level rela-
tional information from both global and local views based on an
autoencoder (AE) and a graph AE (GAE). To obtain effective
representations of the semantic information, we preserve the
consistent relationship among augmented nodes, whereas the
redundant relationship is further reduced for learning discrimi-
native embeddings. In addition, a simple yet valid strategy is used
to alleviate the oversmoothing issue. Extensive experiments are
performed on widely used benchmark datasets to validate the
superiority of our R2FGC over state-of-the-art baselines. Our
codes are available at https://github.com/yisiyu95/R2FGC.

Index Terms— Deep clustering, graph representation learning,
redundancy reduction, relationship preservation (REpre).

I. INTRODUCTION

CLUSTERING, as one of the most classical and funda-
mental components in machine learning and data mining

communities, has attracted significant attention. It serves
as a critical preprocessing step in a variety of real-world
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applications such as community detection [1], anomaly
detection [2], domain adaptation [3], and representation learn-
ing [4], [5], [6]. The underlying idea of clustering is to assign
the samples to different groups such that similar samples
are pulled into the same cluster while dissimilar samples are
pushed into different clusters. Hence, clustering intuitively
reflects the characteristics of the whole dataset, which could
provide a priori information for various downstream domains,
including computer vision and natural language processing.

Among many challenges therein, how to effectively par-
tition the whole dataset into different clusters remains a
fundamental yet open challenge such that the intrinsic dis-
tribution information of the dataset can be well-preserved.
To achieve this goal, a large number of advanced approaches
have been developed over the past decades [7], [8]. The
traditional clustering methods such as subspace clustering [8]
and spectral clustering [7] aim at projecting the data samples
into a low-dimensional space coupled with additional con-
straint information so that the samples in the latent space
can be clearly separated. However, the two-stage training
paradigm of the traditional methods is typically suboptimal
since the representation learning and clustering are dependent
on each other that should be jointly optimized. Moreover,
the traditional algorithms have limited model capacity that
unavoidably limits their applicability and potential. Recently,
benefiting from the strong representation capability of deep
learning, massive deep clustering algorithms are proposed
to show great potential and advantages over the traditional
approaches [9], [10], [11], [12], [13]. The core essence of
deep clustering is to group the data samples into different clus-
ters through deep neural networks in an end-to-end fashion.
In this way, clustering and representation learning are jointly
optimized to learn clustering-friendly representations without
manual feature extraction. For example, CC [9] jointly learned
effective representations and cluster assignments by leveraging
the power of instance- and cluster-level contrastive learning in
an end-to-end manner.

With the prevalence of graph-structured data, graph neural
networks (GNNs) have been extensively studied and achieved
remarkable progress for many promising graph-related tasks
and applications [14], [15], [16]. One fundamental problem
therein is graph clustering, which divides nodes in a graph
into different clusters. GNNs can be well-used for enhancing
graph clustering performance to learn effective cluster assign-
ments [17], [18], [19], [20], [21], [22], [23], [24], [25], [26].
Recently, there has been an increasing body of approaches
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on graph clustering. For example, SDCN [18] first incorpo-
rated the topological structure knowledge into deep clustering
accompanied by autoencoder (AE) [27] and GNN. To better
combine node attributes and structure information, DFCN [21]
improved the graph AE (GAE) [28] and developed a fusion
mechanism to dynamically integrate both sides for robust
target distribution generation. Based on AE, AGCC [24]
incorporated the attention mechanism to fuse learned node
representations and leveraged a self-supervised mechanism to
guide the clustering optimization procedure.

Despite the promising achievements of previous methods,
a majority of the existing graph clustering approaches still
suffer from two key limitations.

1) Neglect the Exploration of Relational Information: Most
existing GNN-based methods only use message-passing
to aggregate neighboring information of the nodes in
a graph. The high-order attributive and structural rela-
tionships of the non-IID graph-structured data are not
well-exploited, which leads that the underlying distribu-
tion information cannot be well-revealed for meaningful
representations.

2) Fail to Reduce Redundant Information: Many clustering
methods mainly focus on exploring graph information
from multiple perspectives, unavoidably incorporating
much redundant information into the learned represen-
tations, while the redundancy reduction is not taken
into account, which prevents obtaining discriminative
representations and excellent clustering performance.
As such, it is highly promising to develop an approach
that can fully explore the intrinsic relational information
among nodes and decrease the redundant information for
effective cluster assignments.

Toward this end, this article proposes a novel deep cluster-
ing method called relational redundancy-free graph clustering
(R2FGC). The key idea of R2FGC is to exploit attribute- and
structure-level relational information among the nodes from
both global and local views in a redundancy-free manner.
To achieve the goal effectively, R2FGC first learns com-
pact representations from an AE and a GAE to explore the
attributive and structural information from complementary
perspectives. Then, the relational information is extracted
based on the learned representations from global and local
views. Moreover, to fully benefit from the extracted rela-
tionships, we preserve the consistent relationship such that
the relational information for the same node is invariant
to augmentations, whereas the correlations of the relational
distribution for different nodes are reduced for learning dis-
criminative representations. Furthermore, R2FGC combines
the redundancy-free relational learning from both attribute and
structure levels with an augmentation-based fusion mechanism
to optimize the embedded representations in a self-supervised
fashion. Comprehensive experiments are conducted to show
that the proposed method can greatly improve the cluster-
ing performance compared with the existing state-of-the-art
approaches over multiple benchmark datasets. To summarize,
the main contributions of our work are as follows.

1) General Aspects: This article studies the inherent rela-
tional learning for non-IID graph-structured data and

explores redundancy-free representations based on rela-
tional information for the graph clustering task.

2) Novel Methodologies: We propose a novel approach
to exploit attribute- and structure-level relational infor-
mation among the nodes, which aims to extract
augmentation-invariant relationships for the same node
and decrease the redundant correlations between differ-
ent nodes. Our R2FGC is beneficial to obtain effective
and discriminative representations for clustering.

3) Multifaceted Experiments: We perform extensive exper-
iments on various commonly used datasets to demon-
strate the effectiveness of the proposed approach.

II. RELATED WORK

A. Graph Neural Networks

Recent years have witnessed great progress in GNNs
and achieved state-of-the-art performance. The concept of
GNNs was proposed [29] before 2010 and has become
an ever-increasing theme. A general paradigm of GNNs
is to iteratively update node representations by aggregating
neighboring information based on message-passing [30]. Rep-
resentative method graph convolutional network (GCN) [31]
extended the classical convolutional neural networks to the
case of graph-structured data. Subsequent work graph attention
network (GAT) [32] further leveraged the attention mecha-
nism [33] to dynamically aggregate the features of neighbors.
With the powerful capability of GNNs, the learned graph
representations can be used to serve a variety of downstream
tasks, such as node classification [31], [34], graph classifica-
tion [35], [36], [37], and graph clustering [18], [38].

B. Deep Clustering

The goal of deep clustering is to focus on using the
excellent representation ability of deep learning to serve the
clustering process, which has achieved remarkable progress.
The existing methods can be categorized into three main
groups based on the training objectives: 1) reconstruction-
based methods; 2) self-augmentation-based methods; and
3) spectral-clustering-based methods. The first group uses
the AE to reconstruct the original input, which incorporates
desired constraints on feature embeddings in the latent space.
For instance, DEC [39] iteratively conducted the process of
representation learning and clustering assignments via min-
imizing the Kullback–Leibler (KL) divergence. To preserve
important data structure, IDEC [40] introduced AE to improve
the clustering so that the local structure of data generating
distribution can be maintained. The second group aims to
encourage the consistency between original samples and their
augmented samples by optimizing the networks. For example,
IIC [41] sought to achieve the consistency of assignment
probabilities by maximizing the mutual information of paired
samples. The third group aims at constructing a robust affinity
matrix for effective data partitioning. For instance, RCFE [42]
used the idea of rank constraints and clusters data points
in a low-dimensional subspace. Li et al. [43] used multiple
features to construct affinity graphs for spectral clustering.
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Benefiting from the breakthroughs of GNNs on graph-
structured data, GNNs are capable of organically integrating
node attributes and graph structures in a united way and
have emerged as a promising way for graph clustering.
The basic idea is to group the nodes in the graph into
several disjoint clusters. Similar to the deep clustering meth-
ods, a majority of the existing graph clustering approaches
[18], [22], [23], [24], [44], [45], [46], [47] also continue
the paradigm of AE, in which the GAE and the variational
GAE (VGAE) are leveraged to operate on graph-structured
data. For example, to dynamically learn the importance of
the neighboring nodes to the center node, DAEGC [45] used
the GAE to capture a compact representation by encoding the
graph structures and node attributes. EGAE [23] learned the
explainable representations based on the GAE that can also be
used for various tasks. Compared with previous methods, our
work further explores graph clustering by simultaneously pre-
serving the relational similarity and reducing the redundancy
of the learned representations based on both AE and GAE.

C. Self-Supervised Learning (SSL)

Recently, SSL revitalizes and has achieved superior perfor-
mance across numerous domains. This technique is completely
free of the need for explicit labels [48], due to its powerful
capability in learning effective representations from unla-
beled data. The core procedure of SSL is first designing
a domain-specific pretext task and training the networks
on the pretext task, such that the learned representations
can be more discriminative and applicable. Recently, many
SSL approaches have been proposed to marry the power
of SSL and deep learning [49], [50], [51], [52] and have
shown competitive performance in various downstream appli-
cation [53], [54], [55], [56], [57]. For example, SimCLR [49]
used multiple data augmentations and a learnable nonlinear
transformation to train an encoder, such that the model can pull
the feature representations from the same samples together.
To alleviate the issue of the large batch size of SimCLR,
MoCo [50] introduced a moving-averaged encoder to set up
a dynamic dictionary for SSL. Furthermore, our proposed
R2FGC inherits the advantages of SSL to preserve the consis-
tent relationship and reduce the redundant information among
nodes from global and local views for graph clustering.

III. NOTATIONS AND PROBLEM DEFINITION

In this section, we first briefly give the basic notations
and formal terminologies in a graph. Then we introduce the
concept of GCN and the problem formalization of graph
clustering.

A. Notations

Let G = (V, E, X) denote an arbitrary undirected graph,
where V = {v1, . . . , vn} is the vertex set with n nodes, E
is the edge set, X = (x1, . . . , xn)

⊤
∈ Rn×d is the node

attribute matrix with xi corresponding to node i for i =

1, . . . , n, and d is the dimensionality of the node attributes.
A = (ai j ) ∈ Rn×n denote the adjacency matrix which is

generated according to the adjacency relationships in E , and
ai j = 1 if (vi , v j ) ∈ E , i.e., there is an edge from node vi

to node v j , otherwise ai j = 0. The adjacency matrix can be
normalized by S = D̃−1/2ÃD̃−1/2, where Ã = (ãi j ) = A + I,
I ∈ Rn×n is the identify matrix for adding self-connections,
and D̃ = diag(d̃1, . . . , d̃n) is the corresponding degree matrix
with d̃ i =

∑n
j=1 ãi j .

B. Graph Convolutional Network

GCN generalizes the classical convolutional neural networks
to the case of graph-structured data. It uses the graph directly
and learns new representations by aggregating the information
of a node and its neighbors. In general, a layer of GCN has
the form

H(l+1)
= σ

(
SH(l)W(l))

where H(0) is the input data, σ(·) is an activation function,
such as Tanh and ReLU, and H(l) and W(l) are the learned
embedded representation and the trainable weight matrix in
the lth (l > 0) layer, respectively.

C. Graph Clustering

Given an unlabeled graph with n nodes, the target of the
graph clustering task is to divide these unlabeled nodes into
K disjoint clusters {C1, . . . , CK } based on a well-learned
embedding matrix Z̃ ∈ Rn×d ′

, where d ′ is the number of
dimension of the latent embeddings. The nodes in the same
cluster are highly similar and cohesive, while the nodes in
different clusters are discriminative and separable.

IV. PROPOSED METHOD

In this section, we introduce our proposed method named
R2FGC. R2FGC mainly contains four parts, i.e., attribute-
and structure-level representation learning module, REpre and
de-redundancy module, augmentation-based representation
fusion module, and joint optimization module for graph clus-
tering. Fig. 1 shows the framework overview of the proposed
R2FGC. In the following, we present the four components and
the complexity analysis for R2FGC.

A. Attribute- and Structure-Level Learning Module

AE can reasonably explore the node attribute information,
whereas the GAE can effectively capture the topological struc-
ture information. To gain a more comprehensive embedding
and a better performance on downstream tasks, we consider
both AE and GAE to reconstruct the input and learn fusional
representation.

The AE module feeds the attribute information into the mul-
tilayer perceptrons and extracts the latent representations by
minimizing the reconstruction loss between the input raw data
and the reconstructed data. The corresponding optimization
objective is formalized as

min LAE =
1
n

∣∣∣∣X − X̂AE
∣∣∣∣2

F

s.t. ZAE = φe(X)

X̂AE = φd(ZAE) (1)
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Fig. 1. Framework overview of the proposed method R2FGC. Relational learning and representation fusion are performed to jointly guide the self-supervised
graph clustering based on the latent representations from the encoders of AE and GAE. The relationship preservation (REpre) and de-redundancy contribute
to exploring inherent node relationship and filter redundancy relationship to learn effective and discriminative representations.

where X ∈ Rn×d is the input attribute matrix, X̂AE ∈ Rn×d is
the reconstructed data, || · ||F is the Frobenius norm, ZAE ∈

Rn×d ′

is the learned latent representation in AE, and φe and
φd are the encoder and decoder networks, respectively.

In the GAE module, following the improved version in [21],
a multilayer GCN is adopted to reconstruct the adjacency
matrix and the attribute information. The corresponding recon-
struction loss is formalized as

min LGAE =
α

n

∣∣∣∣S − Ŝ
∣∣∣∣2

F +
1
n

∣∣∣∣SX − X̂GAE
∣∣∣∣2

F

s.t. H(l+1)
e = σ

(
SH(l)

e W(l)
e

)
H(l+1)

d = σ
(

SH(l)
d W(l)

d

)
H(0)

e = X (2)

where α is a predefined hyperparameter, S is the normalized
adjacency matrix, Ŝ is the reconstructed adjacency matrix
produced by fusing the respective inner products of the learned
latent representation ZGAE ∈ Rn×d ′

resulting from the graph
encoder and the attribute representations X̂GAE (i.e., the recon-
structed weighted attribute matrix) resulting from the graph
decoder, and W(l)

e and W(l)
d are the layer-specific trainable

weight matrices in the lth graph encoder and decoder layers,
respectively. The detailed fusion mechanism is discussed in
Section IV-C, which unites the embedded representations from
both AE and GAE to promote latent presentation learning in
the graph augmentation fashion.

B. REpre and De-Redundancy Module

In this module, we learn the inherent relational information
among the nodes based on augmentations on a given graph.
One of the basic ideas is to preserve the similarity of the
relational information from two augmented views, while the
latent representation of the same node can vary after graph
augmentation. Hence, we aim to increase the consistency of
the relational information in each positive pair. It allows fine-
grained mining of the node relationship. On the other hand,

it is necessary to improve the discriminative capability of
the resulting representations for graph clustering, and thus,
we also decrease the correlation of the relational information
in each negative pair. In the following, we first introduce
the adopted graph augmentation strategies and relationship
extraction methods. Then, we describe the details of the
subsequent REpre and relationship de-redundancy (REder).

Based on the given graph, we first construct two different
graph views through augmentations, including the following.

1) Attribute Perturbation: For each value in the attribute
matrix, we disturb it by multiplying a Gaussian random
number with a small variance. This strategy performs a
slight disturbance on the node features, which would not
essentially change the semantic information.

2) Edge Deletion: We remove some edges based on the
node similarity obtained from the prelearned latent
embeddings. For each node, the edges that connect the
nodes with low similarity are dropped in a certain pro-
portion. Compared with random deletion, more semantic
information can be preserved by referring to the node
similarity.

3) Graph Diffusion: We transform the adjacency matrix to
a diffusion matrix by leveraging graph diffusion [58],
which contributes to providing additional local informa-
tion. Technically, given the transition matrix T, the graph
diffusion matrix U is formulated as

U =

∞∑
j=0

θ j T j

where θ j is the weight coefficient. We adopt the personalized
PageRank [59] to characterize graph diffusion, which is a
special case. Specifically, T is chosen as the normalized
adjacency matrix S and θ j = η(1−η) j with teleport probability
η ∈ (0, 1). Then, the resulting diffusion matrix U has the
form

U = η(I − (1 − η)S)−1. (3)
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After obtaining two augmented graph views G1
= {X1, S1

}

and G2
= {X2, S2

}, we perform AE and GAE on X1

and X2, which generates the attribute-level latent represen-
tations Z1

AE, Z2
AE and the structure-level latent representations

Z1
GAE, Z2

GAE. To meticulously characterize the relational infor-
mation, we explore the similarities of each node to some
anchor nodes from both global and local perspectives based
on these representations.

1) Extraction of Global Anchors: For capturing the global
relationship of a query node vi ∈ V , the target is to sample
diverse anchors from the whole graph nodes. Due to the
neighborhood aggregation mechanism in GNNs, we argue that
the high-degree nodes may receive more information when
passing messages, while the low-degree nodes would receive
less information. This may result in poor representations for
the nodes with low degrees. Hence, we perform nonuniform
sampling on the nodes to balance the qualities of the represen-
tations for low- and high-degree nodes. Specifically, we adopt
an inverse degree-weighted distribution for sampling anchors,
which puts a larger sampling probability on a lower degree
node. The sampling weight and probability for each node,
respectively, are as follows:

wi = β log(d̃ i +1)

pi =
wi∑

v j ∈V w j
, for any vi ∈ V

where β ∈ (0, 1) is a hyperparameter to control the skewness
of the distribution, and d̃ i is the degree of node vi . More-
over, quasi-Monte Carlo (QMC) sampling methods usually
can achieve a higher convergence rate than Monte Carlo
(MC) methods [60]. Hence, based on the defined discrete
distribution, we perform multinomial sampling in the QMC
fashion [61], [62]. Instead of the uniform random number
(the MC fashion), we leverage the randomized 1-D low-
discrepancy point set {(2i − 1)/(2M1) + ω mod 1 ∈ [0, 1] :

ω ∼ U (0, 1), i = 1, . . . , M1} to do multinomial sampling on
the discrete distribution in each training epoch. Randomization
is used to avoid the same sample in different epochs and
increase the randomness for extracting more diverse anchors.
For each node vi ∈ V , we denote the index set of the sampled
anchors from the global view as Ag

i and |Ag
i | = M1.

2) Extraction of Local Anchors: To fully explore the rela-
tional information, besides the global anchor sampling, we also
concentrate on the local relational information. Graph diffu-
sion removes the restriction of using only the direct neighbors
and alleviates the problem of noisy and often arbitrarily
defined edges. It leads that the diffusion matrix U in (3)
can acquire richer structural information in the local view
compared with the traditional GNNs. Hence, we leverage
graph diffusion to generate the local anchors according to the
scores in U. Specifically, the values in the i th row of U can
reflect the influence between node vi and all the other nodes.
We select the nodes with M2 largest scores in the i th row of U
as the local anchors of node vi . It makes that the local anchors
of vi share similar semantic information to vi , which allows
us to extract more effective local relationships. For each node
vi ∈ V , we denote the index set of the local anchors as Al

i
and |Al

i | = M2.

Based on these global- and local-view anchor sets
Ag

i , Al
i , i = 1, . . . , n, we extract the relational information

of the nodes in the sense of similarity. We use the AE
latent representations Z1

AE = (z1
AE,1, . . . , z1

AE,n)
⊤, Z2

AE =

(z2
AE,1, . . . , z2

AE,n)
⊤ to illustrate the detailed process. Specifi-

cally, given a query node vi ∈ V , we calculate the similarities
between the embedded representation of vi in Z1

AE and the
embeddings of these anchors in Z2

AE by

r1
g

(
i, kg

)
=
(
z1

AE,i

)⊤z2
AE,kg

, kg ∈ Ag
i

r1
l (i, kl) =

(
z1

AE,i

)⊤z2
AE,kl

, kl ∈ Al
i .

Similarly, we also calculate the similarities between the
embedding of vi in Z2

AE and those of the anchors in Z2
AE by

r2
g

(
i, kg

)
=
(
z2

AE,i

)⊤z2
AE,kg

, kg ∈ Ag
i

r2
l (i, kl) =

(
z2

AE,i

)⊤z2
AE,kl

, kl ∈ Al
i .

Hereafter, let ru
c (i) be the relationship vector composed by

ru
c (i, k) with k traversing the whole index set Ac

i of node vi , i ∈

{1, . . . , n}, and Ru
c = (ru

c (1), . . . , ru
c (n))⊤ be the relationship

matrix for any u ∈ {1, 2}, c ∈ {g, l}.
3) Relationship Preservation: To make the relational infor-

mation invariant to augmentation, we maximize the proximity
of r1

c(i) and r2
c(i) from both global and local views, i.e.,

we maximize the attribute-level relational similarities of all
the positive pairs under augmentation, which are formulated
by

Rg
AE =

1
n

n∑
i=1

(
r1

g(i)
⊤r2

g(i)∣∣∣∣r1
g(i)

∣∣∣∣ · ∣∣∣∣r2
g(i)

∣∣∣∣
)2

and

Rl
AE =

1
n

n∑
i=1

(
r1

l (i)
⊤r2

l (i)∣∣∣∣r1
l (i)

∣∣∣∣ · ∣∣∣∣r2
l (i)

∣∣∣∣
)2

.

We can similarly obtain the structure-level relational simi-
larities Rg

GAE and Rl
GAE corresponding to GAE from both

the views. This operation helps learn representations that are
more reflective of the relationships between the attribute and
topological information of all the nodes.

4) Relationship De-Redundancy: In addition, besides pre-
serving the relational similarity under augmentations, the
discriminative capability of the latent representation is also
important for the downstream graph clustering task. Hence,
we decrease the correlations of the relationship vectors for
different nodes from both global and local views. It contributes
to filtering redundant information and improving the separat-
ing capability for better clustering performance. Specifically,
we minimize the attribute-level relational correlations of all
the negative pairs, which are formulated as follows:

Cg
AE =

1
n(n − 1)

n∑
i, j=1,i ̸= j

(
r1

g(i)
⊤r2

g( j)∣∣∣∣r1
g(i)

∣∣∣∣ · ∣∣∣∣r2
g( j)

∣∣∣∣
)2

and

C l
AE =

1
n(n − 1)

n∑
i, j=1,i ̸= j

(
r1

l (i)
⊤r2

l ( j)∣∣∣∣r1
l (i)

∣∣∣∣ · ∣∣∣∣r2
l ( j)

∣∣∣∣
)2

.
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In like manner, we can obtain the corresponding structure-level
loss under GAE from global and local views, denoted by Cg

GAE
and C l

GAE, respectively.
Based on the above discussion, we can capture the

augmentation-invariant relational information and conduct
redundancy-free relational learning by minimizing the total
relationship loss LRE = LREA + LREG with

LREA = Cg
AE + C l

AE − Rg
AE − Rl

AE

LREG = Cg
GAE + C l

GAE − Rg
GAE − Rl

GAE. (4)

The loss LRE takes into account both efficient representation
learning and reduction of redundant information upon the
relationship extraction of the nodes, which allows for better
guidance of downstream tasks.

C. Augmentation-Based Representation Fusion Module

In this section, to obtain fine-grained representations of the
nodes, we discuss the fusion mechanism of the attribute- and
structure-level latent representations based on augmentations.
First, we take a weighted summation of the four parts to fuse
the embedded representations from the two levels as follows:

Z̃c = W1 ⊙
(
Z1

AE + Z2
AE

)
+ W2 ⊙

(
Z1

GAE + Z2
GAE

)
where W1, W2 ∈ Rn×d ′

are trainable weight matrices to
control the importance of the two types of representations,
and ⊙ is the Hadamard product. Based on Z̃c, we further
blend the embeddings from both global and local views to
refine the fused information. From the local view, we adopt
the neighborhood aggregation operation on Z̃c to enhance the
local information, whereas, from the global view, we use the
self-correlation matrix of the nodes characterized by Z̃c to
improve the exploitation of the global information, which is
normalized by the softmax function. Specifically, the final
formula of the fused representation is

Z̃ = δSZ̃c + softmax
(
SZ̃cZ̃⊤

c S⊤
)
SZ̃c (5)

where δ is a trainable weight parameter. With Z̃, we can obtain
the reconstructed attribute matrix X̂AE in (1) and weighted
attribute matrix X̂GAE in (2) by feeding Z̃ into the decoders
of AE and GAE, respectively. The reconstructed adjacency
matrix is calculated by fusing the self-correlations of the
learned representations in GAE, which is formulated as

Ŝ =
1
2

(
Z1

GAE

(
Z1

GAE

)⊤
+ Z2

GAE

(
Z2

GAE

)⊤)
+ X̂GAEX̂⊤

GAE.

The above fusion process is similar to [21].
In addition, under the neighbor aggregation mechanism,

GCN updates node representations by aggregating information
from the neighbors. However, when stacking multiple layers,
the learned representations would become indistinguishable,
seriously degrading the performance, which is the so-called
oversmoothing issue [63], [64]. Hence, it is important to
balance the message aggregation ability and oversmoothing
issue. To alleviate the problem in GAE, we incorporate a novel
propagation-regularization (PR) loss to enhance information
capturing while alleviating oversmoothing defined as

LPR =

∑
H∈E

ν(H, SH)

where E contains the embedding matrix in each layer of both
the encoder and the decoder in GAE, and ν(·) is the metric
function, such as the cross entropy, KL divergence, and the
Jensen–Shannon divergence. PR simulates a deep GCN by
supervision at a low cost, which enables current embeddings
to capture further information contained in the deeper layer.
Compared with directly increasing the GCN layers, we can
more finely balance the information capture ability and the
oversmoothing problem by adjusting the weight of the loss.

Thereby, the total reconstruction loss is computed by

LREC = LAE + LGAE + ϵLPR (6)

where ϵ is the predefined hyperparameter to adjust the influ-
ence ratio, and the reconstruction losses LAE and LGAE in AE
and GAE are defined in (1) and (2), respectively.

D. Joint Optimization Module for Graph Clustering

Graph clustering is essentially an unsupervised task with no
feedback available as reliable guidance. To this end, we per-
form a clustering layer on the fused representation Z̃ in (5) and
use the soft labels derived by a probability distribution as a
self-supervised signal to jointly optimize the redundancy-free
relational learning framework for graph clustering.

First, using the Student’s t-distribution as a kernel, we cal-
culate the soft cluster assignment probabilities Q1 =

(q1,i j ), Q2 = (q2,i j ), Q3 = (q3,i j ) ∈ Rn×K upon the latent
embeddings Z̃, (Z1

AE +Z2
AE)/2, (Z1

GAE +Z2
GAE)/2, respectively,

to measure the similarities between the latent representations
and cluster centroids, i.e., each value indicates the probability
of assigning the i th node to the j th cluster. For example, q1,i j

is computed as follows:

q1,i j =

(
1 +

∣∣∣∣z̃i − µ j

∣∣∣∣2)−1

∑K
k=1

(
1 +

∣∣∣∣z̃i − µk

∣∣∣∣2)−1

where Z̃ = (z̃⊤

1 , . . . , z̃⊤
n )⊤ and µ j s are the cluster centroids.

The q2,i j and q3,i j can be calculated similarly. The µ j s are
initialized by performing k-means on the pretrained fused
representation. When the network is well-trained, we adopt
the fusion-based assignment matrix Q1 to measure the cluster
assignment probability of all the nodes, i.e.,

yi = argmax j∈{1,...,K }q1,i j (7)

where yi is the predicted cluster of node vi for i = 1, . . . , n.
Next, we introduce an auxiliary confident probability dis-

tribution P = (pi j ) ∈ Rn×K to improve the confidence of the
soft assignment, which is derived from Q1 and formulated as

pi j =
q2

1,i j/
∑n

i=1 q1,i j∑K
k=1

(
q2

1,ik/
∑n

i=1 q1,ik
) .

To make the data representation close to cluster centroids and
improve cluster cohesion, we minimize the KL divergence loss
between P and Q1, Q2, Q3 as follows:

LCLU =

n∑
i=1

K∑
j=1

pi j log
pi j(

q1,i j + q2,i j + q3,i j
)
/3

. (8)
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Algorithm 1 R2FGC
Input: Attribute matrix X; adjacency matrix A; cluster num-

ber K ; hyperparameters M1, M2; Maximum iterations
Imax ;

Output: Clustering result y;
1: Initialize the parameters in AE, GAE, the fusion part, and

the cluster centroids;
2: for i = 1 to Imax do
3: Obtain {X1, S1

} and {X2, S2
} by augmentation;

4: Update Z1
AE , Z2

AE and Z1
G AE , Z2

G AE by encoding X1

and X2 in AE and GAE;
5: Calculate R1

g, R2
g, R1

l , R2
l based on AE and GAE in

Section IV-B;
6: Update Z̃c, Z̃, Ŝ in Section IV-C and obtain X̂AE ,

X̂G AE in Section IV-A;
7: Calculate Q1, Q2, Q3, and P in Section IV-D;
8: Calculate the losses L RE , L REC , LC LU in (4), (6), (8),

respectively;
9: Conduct the backpropagation and update the whole

network in the proposed R2FGC by minimizing (9);
10: end for
11: Obtain the clustering result y with the fused representa-

tion Z̃ by (7);
12: return y;

Using the confident distribution P, the process self-supervises
the cluster assignment without any label guidance. We inte-
grate the latent representations from AE, GAE, and the fusion
mechanism in the self-supervised clustering procedure to
obtain more accurate clustering results.

To sum up, the total loss L in the whole framework of
R2FGC is composed of the relationship loss, the reconstruction
loss, and the self-supervised clustering loss, i.e.,

L = LRE + LREC + κLCLU (9)

where κ is a predefined hyperparameter to balance the weight
of the clustering loss. The training process of our proposed
R2FGC is summarized in Algorithm 1.

E. Computational Complexity Analysis

For the scalability of large-scale datasets, we adopt the
mini-batch stochastic gradient descent to optimize our method.
Assume that the batch size is B and the dimensions of
each layer of AE and GAE are d̄1, . . . , d̄ L1 and d̃1, . . . , d̃ L2 ,
respectively. Given a graph with n nodes and |E | edges,
the dimension of the original attributes is d . The time
complexities of AE and GAE are O(n

∑L1
i=1 d̄ i d̄ i−1) and

O(|E |
∑L2

i=1 d̃ i d̃ i−1) with d̄0 = d̃0 = d, respectively. For
each batch, the complexity of the relationship learning mod-
ule is O(B(B + d ′)(M1 + M2)) based on d ′-dimensional
latent representations. Moreover, we perform the representa-
tion fusion and PR in O(B2d ′

+ B log B) time and conduct the
self-supervised clustering in O(BK + B log B) time with K
classes in the task. Hence, the total computational complexity
of our method R2FGC is O(n

∑L1
i=1 d̄ i d̄ i−1+|E |

∑L2
i=1 d̃ i d̃ i−1+

n(B + d ′)(M1 + M2) + n(Bd ′
+ K )), which is linearly related

to the numbers of nodes and edges.

TABLE I
DESCRIPTION OF THE BENCHMARK DATASETS

V. EXPERIMENTS

In this section, we first introduce the experimental settings
and then conduct experiments to validate the effectiveness of
R2FGC. We aim to answer the following research questions.

1) RQ1: Compared with the state-of-the-art methods, does
our method R2FGC achieve better performance for
self-supervised graph clustering?

2) RQ2: How do different components of the proposed
method contribute to the clustering performance?

3) RQ3: How do the hyperparameters in R2FGC affect the
final clustering performance?

4) RQ4: How is the convergence of the proposed model
under different datasets?

5) RQ5: Is there any supplementary analysis that can
illustrate the superiority of R2FGC?

A. Experimental Settings
1) Datasets: For comparison, we perform the proposed

method R2FGC on five commonly used benchmark datasets.
Four of them are graph datasets, including a paper network
ACM,1 a shopping network AMAP,2 a citation network CITE,3

and an author network DBLP4; another is a nongraph dataset,
i.e., a record dataset HHAR [65]. Following [18], for the
nongraph data, the adjacency matrix is generated by the undi-
rected k-nearest neighbor graph. Table I briefly summarizes
the information of these benchmark datasets.

2) Compared Methods: To illustrate the superiority of
our proposed R2FGC, we compare its clustering perfor-
mance with some state-of-the-art clustering methods, which
are divided into four categories, i.e., the classical shal-
low clustering method k-means, the AE-based methods, the
GCN-based methods, and the combination of AE and GCN.
The AE-based methods contain AE [27], DEC [39], and
IDEC [40]. They convert the raw data into low-dimensional
codes to learn feature representations by AE and then per-
form clustering over the learned latent embeddings. The
GCN-based methods include GAE, VGAE [28], DAEGC [45],
and ARGA [46]. They adopt the GCN encoder to learn
the node content and topological information for clustering.
In addition, some methods combine AE and GCN to boost

1http://dl.acm.org/
2https://github.com/shchur/gnn- benchmark/raw/master/data/npz/

amazon_electronics photo.npz
3http://citeseerx.ist.psu.edu/index
4https://dblp.uni-trier.de
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TABLE II
CLUSTERING PERFORMANCE ON FIVE BENCHMARK DATASETS (MEAN±STD). THE BEST RESULTS IN ALL THE METHODS AND ALL THE BASELINES

ARE HIGHLIGHTED IN BOLD AND UNDERLINE, RESPECTIVELY

the embedded representations for clustering, which contains
SDCN [18], DFCN [21], and AGCC [24]. These methods
integrate GCN with AE from different perspectives to jointly
train the clustering network.

3) Training Procedure: The training of our method R2FGC
includes two phases. First, following [21], the AE and GAE
are pretrained independently for 30 epochs to minimize their
respective reconstruction loss functions. Both the subnetworks
are integrated into a united framework for another 100 epochs
to obtain the initial representations and cluster centroids. Then,
we train the whole network for at least 300 epochs until
convergence to minimize the total loss in (9). Following the
compared methods, to alleviate the adverse influence of the
randomness, we repeat the experiment ten times to evaluate
our method and report the mean values and the standard
deviations (i.e., mean±std) of the considered metric values.
We implement our method using PyTorch 1.8.0 and PyTorch
Geometric 1.7.2, which can easily train GNNs for a variety of
applications associated with graph-structured data.

4) Parameter Settings: For a fair comparison, we adopt the
same parameter setting for AE and GAE as [21], i.e., the layers
of the encoder (/decoder) for AE and GAE are set to 4 and 3,
respectively; the dimensions of the encoder (/decoder) for AE
are set to 128, 256, 512, and 20 in turn; the dimensions of the
encoder (/decoder) for GAE are set to 128, 256, and 20 in turn.
The network is trained with the Adam optimizer. The learning
rate is set to 5e−5 for ACM, 1e−4 for DBLP, and 1e−3 for
AMAP, CITE, and HHAR, respectively. The hyperparameters
M1 and M2 are set to {256, 8}. Moreover, the parameters
α, η, β, ϵ, κ are set to 0.1, 0.2, 0.8, 5e3, and 10, respectively.
The optimization stops when the validation loss comes to a
plateau.

5) Evaluation Metrics: To evaluate the clustering perfor-
mance of each compared method, we adopt four widely
used evaluation metrics following [18], i.e., accuracy (ACC),
normalized mutual information (NMI), average rand index
(ARI), and macro F1-score (F1). For each metric, a larger
value implies a better clustering result.

B. Performance Comparison (RQ1)

The experimental results of our method and 11 compared
methods on five benchmark datasets are reported in Table II,
in which the bold and underlined values indicate the best
results in all the methods and all the baselines, respectively.
From these results, we have the following observations.

1) Compared with shallow clustering method k-means,
these deep graph clustering methods clearly show prefer-
able performance. It indicates that the strong capability
for learning representation of deep neural network meth-
ods enables exploiting more meaningful information
from graph-structured data for clustering.

2) The purely AE-based methods (AE, DEC, and IDEC)
perform worse than the methods combining AE and
GCN (SDCN, DFCN, and AGCC) in most cases. The
reason may be that the AE-based methods only leverage
the attribute information to learn the latent represen-
tation, which overlooks the structure-level semantic
information. Similarly, the purely GCN-based methods
(GAE, VGAE, DAEGC, and ARGA) also show inferior
performance than SDCN, DFCN, and AGCC in most
circumstances. It indicates that integrating AE into GCN
can capture the attribute and structure information more
effectively from complementary views.
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3) Our method R2FGC achieves the best clustering per-
formance compared with all the baselines in terms of
the four considered metrics over all the datasets. For
both graph and nongraph data, our approach represents a
significant improvement over the baselines. For example,
compared with the best results among all the baselines,
for the ACM dataset, our method relatively improves
1.68%, 4.35%, 5.10%, and 1.82% on ACC, NMI, ARI,
and F1; for the AMAP dataset, our method improves
5.72%, 6.75%, 11.55%, and 5.18% on ACC, NMI, ARI,
and F1; and for the DBLP dataset, our method improves
6.51%, 16.29%, 19.87%, and 6.39% on ACC, NMI,
ARI, and F1, respectively.

4) The reasons for the superiority of our method R2FGC
are that 1) R2FGC extracts the inherent relational
information based on AE and GAE from both local
and global views under augmentation, which allows
for better exploration of both attribute and structure
information; 2) Under augmentation, R2FGC preserves
the consistent relationship among the nodes but not
the latent representations, which expects to learn more
essential representations of the semantic information;
3) R2FGC decreases the redundant relationship among
the nodes for learning discriminative and meaningful
representations, which can better serve the graph clus-
tering; 4) R2FGC couples AE and GAE together in
the representation fusion mechanism to fully integrate
and refine the attribute and structure information; and
5) R2FGC also brings the PR to mitigate the possible
over-smoothing problem caused by GAE to promote the
clustering performance. With the addition of relationship
extraction, REpre, and de-redundancy strategies, R2FGC
outperforms all the baselines upon the fusion mechanism
of AE and GAE and the regularization method of
alleviating oversmoothing.

C. Ablation Study (RQ2)

In this section, to further investigate the validity of our pro-
posed method, we conduct some ablation experiments to study
the contribution of each component of R2FGC. We mainly
focus on the influence of global-view relationship extraction
(gloRE), local-view relationship extraction (locRE), REpre,
REder, and PR. In addition, we make some discussion on the
proposed global sampling strategy.

1) Effects of gloRE and locRE: In the relationship extrac-
tion module, we explore the inherent relationship from both
global and local views. The former view learns the global
relationship of the nodes and the latter concerns the neighbor
relationship. We perform some ablation experiments to verify
the respective effectiveness of the global- and local-view
strategies. Specifically, we consider the following two cases.

1) R2FGC w/o gloRE: R2FGC without considering the
gloRE.

2) R2FGC w/o locRE: R2FGC without considering the
locRE.

The corresponding results are displayed in Table III. From
the comparison of R2FGC w/o gloRE and R2FGC w/o locRE,

for the ACM dataset, locRE has a greater effect than the
global-view one on clustering in terms of ACC, NMI, ARI,
and F1, while for the CITE and DBLP datasets, the gloRE
may have a more prominent contribution. As for the AMAP
and HHAR datasets, R2FGC w/o gloRE and R2FGC w/o
locRE show close metric values, which indicates that global-
and local-view extractions almost play equal roles. Moreover,
R2FGC consistently shows better performance than R2FGC
w/o gloRE and R2FGC w/o locRE over the five considered
datasets. Hence, these results illustrate that both the views
are necessary and important for achieving good clustering
performance.

2) Effects of gloRE, locRE, and PR: In addition, REpre
is used to learn the effective representations by preserving
the consistent relationship information, whereas the REder
conduces to reduce the confusing information, which benefits
obtaining discriminative embeddings. Moreover, we adopt PR
to relieve the oversmoothing issue. Hence, we also explore
their respective efficiencies in the ablation experiments, i.e.,
four cases are considered as follows.

1) R2FGC w/o REpre: R2FGC without considering REpre.
2) R2FGC w/o REder: R2FGC without considering REder.
3) R2FGC w/o REpre and REder: R2FGC without both

REpre and de-redundancy.
4) R2FGC w/o PR: R2FGC without adopting the PR trick.
The corresponding results are also shown in Table III.

Comparing R2FGC w/o REpre with R2FGC w/o REder, it is
observed that REpre outperforms REder for the ACM dataset;
REder shows more significant power to improve the clustering
performance for the AMAP, CITE, and DBLP datasets; these
two strategies have almost equal impact on the HHAR dataset.
Moreover, by contrasting with R2FGC w/o REpre & REder,
both R2FGC w/o REpre and R2FGC w/o REder give better
clustering results with higher metric values, which implies that
both REpre and REder possess the capability to promote the
effect of graph clustering. In addition, by comparing R2FGC
w/o PR and R2FGC w/o REpre & REder, for the ACM,
AMAP, and HHAR datasets, the oversmoothing issue has a
more significant impact on clustering performance, whereas
for the CITE and DBLP datasets, the relationship extraction
is more important for good performance. For example, R2FGC
on the ACM dataset has 1.99% relative improvement over
R2FGC w/o PR in terms of NMI; R2FGC on the CITE dataset
obtains 6.28% improvement over R2FGC w/o REpre & REder
in terms of ARI. Hence, these results demonstrate that all
the proposed components in R2FGC are efficient for reaching
informative representation and good performance for graph
clustering.

3) Discussion on Global Sampling Strategy: To fur-
ther illustrate the effectiveness of the QMC inverse
degree-weighted distribution sampling for extracting global
anchors, we perform experiments to compare it with two
MC cases on the AMAP, DBLP, and HHAR datasets, i.e.,
we consider the following three cases.

1) R2FGC With QMC Global Sampling (Ours): R2FGC
with considering QMC inverse degree-weighted distri-
bution sampling, i.e., the low-discrepancy point set is
used in multinomial sampling.
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TABLE III
ABLATION STUDY ON FIVE BENCHMARK DATASETS (MEAN±STD). THE RESULTS SHOW THE CONTRIBUTIONS OF GLORE, LOCRE, REPRE, REDER,

AND PR IN THE PROPOSED METHOD AND THE BEST RESULTS ARE HIGHLIGHTED IN BOLD

2) R2FGC With MC Global Sampling: R2FGC with consid-
ering MC inverse degree-weighted distribution sampling,
i.e., the uniform random numbers are used.

3) R2FGC With SRS: R2FGC with considering simple ran-
dom sampling for drawing global anchors.

The results are depicted in Fig. 2. Comparing the three
strategies, R2FGC with QMC global sampling shows better
performance over the three considered datasets in terms of
the average ACC, NMI, ARI, and F1 scores. Moreover,
R2FGC with MC global sampling outperforms R2FGC with
SRS, which implies that inverse degree-weighted distribution
sampling is indeed effective to avoid poor representations.
In addition, from the error bars in Fig. 2, we can also find
that R2FGC with QMC global sampling leads to smaller
variances for the metric values, which benefits from the high
convergence rate of the QMC sampling strategy. The sampled
global anchor set is a better representation of the target
distribution, which motivates the subsequent representation
learning to have a better and more stable performance.
In this way, our proposed sampling method guarantees good
robustness to relationship extraction and thus to clustering
performance.

Fig. 2. Performance comparisons with respect to different global sampling
strategies on the AMAP, DBLP, and HHAR datasets. (a) ACC. (b) NMI.
(c) ARI. (d) F1.

D. Parameter Sensitivity Analysis (RQ3)

In this section, we examine the sensitivity of the pro-
posed R2FGC to hyperparameters. For gloRE and locRE
in Section IV-B, we need to predefine the numbers of the
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Fig. 3. Performance comparisons with respect to different amounts of global anchors M1 and local anchors M2 on (a) ACM, (b) AMAP, (c) CITE, and
(d) HHAR datasets.

Fig. 4. Performance comparisons with respect to different loss weight parameters κ and ϵ on (a) ACM, (b) AMAP, (c) CITE, and (d) DBLP datasets.

global and local anchors M1 and M2 for sampling. Hence,
we investigate the effect of varying M1 and M2 on the ACM,
AMAP, CITE, and HHAR datasets. For each dataset, we con-
sider M1 = {128, 256, 512, 1024} and M2 = {4, 8, 16, 32}.
When M1 is varied, we fix M2 to its optimal setting as
in Section V-A, and vice versa. In addition, we explore
the impact of two loss weight parameters ϵ and κ on the
ACM, AMAP, CITE, and DBLP datasets. We vary ϵ across
{5e2, 1e3, 5e3, 1e4

} and κ across {1, 5, 10, 50}. The results are
depicted in Figs. 3 and 4, respectively.

1) Performance of Different Amounts of Global Anchors:
From Fig. 3, it can be seen that the average accuracies for the
considered datasets are relatively stable as M1 changes. It may
be due to that with the QMC multinomial sampling, the drawn
anchors can well mimic the defined inverse degree-weighted
distribution even if M1 is small. It helps solve the problem
caused by varying qualities of the learned representations
for the nodes with different degrees. On the other hand,
we draw different samples in different training epochs based
on the randomization strategy, which increases the diversity
of the samples to catch a broad relationship, even with a
small number of global anchors. Therefore, the clustering
performance is robust to the number of global anchors based
on the proposed sampling strategy.

2) Performance of Different Amounts of Local Anchors:
As for M2, it can be found that on the four datasets,
as M2 increases, it promotes the clustering performance first
and then shows a weakening tendency. The possible reason
may be that small M2 cannot well collect the neighboring
information, whereas large M2 may absorb nodes involved
in other clusters, which can disturb the extraction of local
relationship. Hence, a moderate number of local anchors
is preferable, and a well-designed deterministic sampling is
desirable to avoid the intake of inconsistent information from
other nodes.

3) Performance of Different Amounts of Loss Weights:
As shown in Fig. 4, when κ is small, increasing ϵ leads
to a decrease in model performance. This is because large
ϵ enhances the information aggregation ability of the nodes,
which is equivalent to a deep GCN and thus increases the risk
of oversmoothing, while small κ means a low self-supervision
ability, which results in poor cohesion and insufficient dis-
crimination in node representations. With the increase in κ ,
better representation cohesion is achieved, and increasing ϵ

appropriately is promising to improve the performance by
balancing the strength of neighbor aggregation in GCN and
the weakness of oversmoothness. However, when ϵ becomes
excessively large, there may be a slight decline in performance
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Fig. 5. Curves of the training loss against the number of epochs on (a) AMAP
and (b) HHAR datasets.

due to the oversmoothing issue on some datasets. In addition,
when ϵ is fixed, increasing κ results in an increasing trend
in model performance on the ACM and AMAP datasets.
However, on the CITE and DBLP datasets, excessively large
κ leads to a decreasing trend. One possible reason is that
CITE and DBLP represent citation networks and author net-
works, respectively, where different articles and individuals
may belong to distinct disciplines or communities. Forcing
strong cohesion in these cases may lead to suboptimal results.
Overall, we recommend to set κ around 10 and ϵ around 5e3

for satisfying performance. When dealing with a new dataset,
a small-scale hyperparameter tuning around the recommended
values is needed due to the dataset’s specific characteristics.

E. Empirical Convergence Analysis (RQ4)

In this section, we analyze the convergence of our proposed
method R2FGC, and the curves of the training losses are shown
in Fig. 5. It can be observed that our method demonstrates
graceful convergence across different datasets AMAP and
HHAR. The reason behind this can be attributed to our
pretraining learning based on AE and GAE, which provides
us with a well-initialized representation. As a result, the initial
loss optimization has the correct gradient direction, leading to
a rapid decrease in loss. In addition, our method effectively
maintains the relational similarity between nodes in the graph
while reducing the redundancy of learned representations.
This allows the learned representations to possess highly rich
semantic information and strong discriminative capabilities.
It enables similar nodes closer to each other while better
distinguishing unrelated nodes, facilitating the formation of
clusters. This also motivates the training objective to converge
to lower value, leading to better clustering performance.

F. Analysis of Oversmoothing Issue (RQ5)

To verify the superiority of the proposed PR loss in alleviat-
ing oversmoothing issue, we compare the effects of different
GCN layers in the GAE encoder and different values of ϵ

by mean average distance (MAD) and clustering performance
(i.e., ACC). MAD reflects the smoothness of node represen-
tations by calculating the mean of the average cosine distance
between the nodes and other nodes [64]. A smaller MAD
indicates a higher global smoothness. The analysis results are
shown in Fig. 6.

It can be observed that as the number of GCN layers in
the GAE encoder increases, indicated by the dashed line in

Fig. 6. Comparisons of the MAD and clustering ACC with respect to different
GCN layers in the GAE encoder and regularization parameter ϵ on (a) AMAP
and (b) DBLP datasets.

the figure, both MAD and ACC exhibit a decreasing trend.
It implies that larger GCN layers cause nodes to immensely
absorb information from farther neighbors and thus can lead
to indistinguishable node representations, exacerbating the
oversmoothing issue and resulting in performance degradation.
On the other hand, our proposed PR loss shows a slight
decrease in MAD and a gradual increase in clustering perfor-
mance as ϵ increases to a certain value (e.g., 2e3 for AMAP,
1e4 for DBLP). This suggests that our PR loss is equivalent to
simulating a GCN of a fractional layer, which possesses the
capability to ease the increase in smoothness and meanwhile
enhance the expressive power of node representations, thereby
promoting the clustering performance. However, when ϵ is
particularly large, both MAD and ACC decrease sharply. This
is because excessively large ϵ amplifies the risk of oversmooth-
ness. Therefore, selecting an appropriate weight is crucial in
balancing node expressiveness and the oversmoothing issue.

G. Visualization of Clustering Results (RQ5)
To visually verify the validity of our proposed R2FGC,

we plot 2-D t-distributed stochastic neighbor embedding
(t-SNE) visualizations [66] for the learned representations on
the ACM, CITE, DBLP, and HHAR datasets. We compare
the t-SNE visualizations of the embeddings resulting from
R2FGC with those from the raw data and DFCN (the best
method among the baselines in Section V-B) to enable a visual
comparison. The plots are shown in Fig. 7. The results of
t-SNE on the four raw data clearly have poor separability for
different clusters. Compared with the raw data, more distin-
guishing visualizations in R2FGC and DFCN demonstrate that
deep graph clustering methods indeed make great performance
improvements. Comparing R2FGC with DFCN, the latent
representations obtained by our method R2FGC show better
separability for different clusters, where the samples from the
same cluster have better aggregation and those from different
clusters have a bigger gap. Such a phenomenon illustrates
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Fig. 7. t-SNE visualizations on the ACM, CITE, DBLP, and HHAR datasets. Distributions of the embeddings from (a) raw data, (b) DFCN, and (c) our
proposed R2FGC.

that our proposed method learns more discriminative repre-
sentations and produces more effective cluster assignments
compared with the state-of-the-art methods.

VI. CONCLUSION

In this article, we study self-supervised deep graph clus-
tering and propose a novel method termed R2FGC. R2FGC
introduces the relational learning for the graph-structured
data, in which the attribute- and structure-level relationship
information among nodes are extracted based on AE and
GAE. To achieve effective representations, R2FGC preserves
consistent relationships among the nodes under augmentation,
whereas the redundancy relationship is filtered for discrimina-
tive representations. R2FGC also cooperates a representation
fusion mechanism with the relational learning to instruct
downstream self-supervised clustering tasks jointly. The exper-
imental results on various benchmark datasets demonstrate
the validity and superiority of the proposed method. In the
future, we aim to extend relational learning to other scenarios
including multiview graph clustering, interpretable clustering,
and other promising applications such as face clustering and
text clustering.
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