
416 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 1, JANUARY 2024

Towards Semi-Supervised Universal Graph
Classification

Xiao Luo , Yusheng Zhao , Yifang Qin , Wei Ju , and Ming Zhang

Abstract—Graph neural networks have pushed state-of-the-arts
in graph classifications recently. Typically, these methods are stud-
ied within the context of supervised end-to-end training, which
necessities copious task-specific labels. However, in real-world cir-
cumstances, labeled data could be limited, and there could be a
massive corpus of unlabeled data, even from unknown classes as a
complementary. Towards this end, we study the problem of semi-
supervised universal graph classification, which not only identifies
graph samples which do not belong to known classes, but also
classifies the remaining samples into their respective classes. This
problem is challenging due to a severe lack of labels and potential
class shifts. In this paper, we propose a novel graph neural network
framework named UGNN, which makes the best of unlabeled data
from the subgraph perspective. To tackle class shifts, we estimate
the certainty of unlabeled graphs using multiple subgraphs, which
facilities the discovery of unlabeled data from unknown categories.
Moreover, we construct semantic prototypes in the embedding
space for both known and unknown categories and utilize posterior
prototype assignments inferred from the Sinkhorn-Knopp algo-
rithm to learn from abundant unlabeled graphs across different
subgraph views. Extensive experiments on six datasets verify the
effectiveness of UGNN in different settings.

Index Terms—Graph neural network, semi-supervised learning,
OOD detection.

I. INTRODUCTION

GRAPHS have garnered growing interest due to their ca-
pacity of portraying structured and relational data in a

large range of domains. As one of the most prevalent graph
machine learning problems, graph classification aims to predict
the properties of whole graphs, which has widespread applica-
tions in visual and biological systems [1], [2], [3], [4]. In recent
years, graph neural networks (GNNs) have exhibited promising
performance in graph classification [5], [6], [7], which usually
follow the paradigm of message passing [8], [9], [10], [11]. In
detail, node representations are iteratively updated by aggregat-
ing neighborhood information, followed by a readout operation
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Fig. 1. An illustration of our problem setting. We are given both labeled graphs
and unlabeled graphs which could contain samples from unknown classes.

to generate graph representations. These graph representations
can implicitly capture the structural topology in an end-to-
end fashion, therefore facilitating downstream classification
effectively.

Despite their exceptional performance, GNNs are heavily
reliant on copious task-specific labels while learning graph rep-
resentation. In various real-world settings, however, large-scale
data annotations could need a significant number of human re-
sources [7]. To address this, semi-supervised graph classification
approaches have been proposed [12], [13], [14], which use a
huge corpus of unlabeled data to enhance the model performance
in an efficient manner. These approaches presume that unlabeled
graphs have the same distribution as labeled graphs, which
would not be true in practice, particularly when labeled graphs
make up a tiny portion of the whole dataset. For example, as
in Fig. 1, samples from classes ’8’ and ’9’ are unavailable in
labeled data. To tackle this, in this research we investigate a
more realistic problem named semi-supervised universal graph
classification, where unlabeled data could belong to unknown
classes. Here, two tasks must be carried out: (1) identifying
graph samples that do not belong to known classes; and (2)
categorizing the remaining samples into their respective classes.
These out-of-distribution (OOD) graph samples (i.e., data from
unknown classes) could be provided to experts, which increases
the efficiency of data annotations.

In reality, this realistic graph classification would face the
following essential difficulties: (1) How can these OOD graph
examples be detected in unlabeled data? The essence of this
topic is to identify various samples that belong to unknown
classes without adequate prior information. Typically, the bulk
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of conventional OOD contexts in computer vision assume that
OOD samples are only engaged during assessment [15], [16],
[17], but our problem focuses on their involvement during train-
ing. Even worse, this problem needs to deal with heterogeneous
information in a large number of networks, i.e., node charac-
teristics and structural topology, which makes discriminating
between in-distribution (ID) and out-of-distribution (OOD) sam-
ples more challenging. (2) How to overcome the label scarcity
in the training data? In reality, labeled data is scarce owing to
the prohibitive expense of data annotation, but unlabeled data is
abundant. Existing semi-supervised approaches often produce
pseudo-labels to help optimize GNNs [13], [14]. Nevertheless,
these pseudo-labels could be biased and imbalanced, particu-
larly when OOD graph samples exist. Note that resolving these
obstacles might be mutually beneficial. On the one hand, the
precise identification of OOD graph samples enables the best use
of unlabeled ID graphs. On the other hand, exploring sufficient
semantics from unlabeled data can assist in the discovery of
OOD graph examples.

In this study, we present a novel framework Universal Graph
Neural Network (UGNN) that overcomes the aforementioned
difficulties from the subgraph perspective. In particular, to
produce graph-level representations, we first warmed up the
message passing neural network with labeled graph samples.
To combat class shift, we adopt a simple yet effective selection
strategy, which samples numerous subgraphs to capture both
prediction confidence and individual output uncertainty based on
the calibration of GNNs. Our strategy computes both the average
and the variance of prediction confidence scores among various
subgraphs, and then sets an adaptive threshold to distinguish
OOD samples from easy to hard. In addition, to make the
most of unlabeled data, we construct graph prototypes in the
embedding space for both known and unknown classes. Then,
a semi-supervised prototype representation learning paradigm
is developed, which utilizes the posterior prototype assign-
ments from one subgraph view to supervise the semantics of
unlabeled data from another view. The Sinkhorn-Knopp al-
gorithm [18], [19], [20] is involved to promise balanced and
soft posterior distributions. Our OOD sample selection tech-
nique and prototype-aware semi-supervised learning paradigm
could mutually strengthen each other, enabling optimal use
of unlabeled data. To demonstrate the efficacy of our UGNN,
we conduct extensive experiments on six benchmark graph
classification datasets. The results demonstrate that UGNN
outperforms a number of state-of-the-art models in a range
of settings. The contributions of our work are summarized as
follows:
� Problem Formalization: We investigate the problem of

semi-supervised universal graph classification, which fa-
cilities data annotation efficiency in real-world applica-
tions.

� Novel Methodologies: We propose a simple yet effective
method named UGNN to solve the problem. On the one
hand, it captures individual output uncertainties by sam-
pling multiple subgraphs to detect OOD graph samples.
On the other hand, a semi-supervised prototype represen-
tation learning paradigm employs the posterior prototype

assignments to supervise the semantics of unlabeled graphs
across two subgraph views.

� Multifaceted Experiments: Extensive experiments on six
graph classification datasets to validate the efficacy of the
proposed UGNN in different settings.

The related works are introduced in Section II. In Sections III
and IV, we describe the prior knowledge and the details of
our UGNN, respectively. Section V offers extensive experimen-
tal results including quantitative comparisons, ablation studies,
parameter sensitivity and visualization. In the end, we give a
conclusion in Section VI.

II. RELATED WORK

A. Graph Neural Networks

Graph neural networks (GNNs) have shown outstanding per-
formance in relational data representation learning [21], which
has been extensively adopted in a number of applications, in-
cluding node classification [22], [23], [24], link prediction [25],
[26], [27], and anomaly detection [28], [29], [30]. Early ef-
forts [31], [32], [33] usually utilize spectral GNNs based on
the spectral graph theory, which begin with transferring graph
signals into the embedding space, followed by spectral filters
deduced from the graph Laplacian. Recent spatial methods
have become the mainstream due to their lower computational
complexity [8], [34], [35]. Typically, they adhere to the message
passing paradigm, in which each node receives data from its
neighbors, followed by an aggregation process that continually
updates the node representations. GNNs have also been used
regularly for graph classification. Typically, these methods use
graph pooling functions to summarize node representations into
graph-level representations [3], [4]. For example, SAG Pool-
ing [36] utilizes the attention technique to preserve important
nodes in a hierarchical fashion. Despite their promising per-
formance, these methods are data-hungry whereas real-world
applications often consist of limited labeled data and massive
unlabeled data containing OOD graph samples. Towards this
end, we investigate the semi-supervised universal graph classi-
fication problem, which not only identifies graph samples that
do not belong to known classes but also classifies the remaining
samples into their respective classes.

B. Semi-Supervised Graph Classification

Semi-supervised learning has received increasing attention
in recent years. Pseudo-labeling is a popular technique which
predicts the label distribution of unlabeled examples and se-
lects confident samples for further guidance. For example,
FlexMatch [37] introduces class-specific adaptive thresholds
to decide confident samples inspired by curriculum learning.
Ada-CM [38] further utilizes contrastive learning to explore
unconfident samples in the unlabeled set. Another line towards
semi-supervised learning is consistency learning. FixMatch [39]
is a simple method which combines semi-supervised learning
and consistency learning, achieving superior performance in
this field. The objective of semi-supervised graph classification

Authorized licensed use limited to: SICHUAN UNIVERSITY. Downloaded on September 24,2024 at 15:09:40 UTC from IEEE Xplore.  Restrictions apply. 



418 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 1, JANUARY 2024

is to predict graph properties using both labeled data and un-
labeled data, which accounts for real-world label scarcity [12],
[13], [14], [40], [41]. Typically, previous approaches incorporate
graph neural networks into semi-supervised learning techniques.
Early attempts often use pseudo-labeling approaches [12], which
annotate unlabeled graphs using the classification model itself,
and then add samples along with highly confident predictions to
the training set. Unfortunately, these approaches may produce
overconfident and skewed pseudo-labels, which could lead to
an accumulation of errors during subsequent optimization. Con-
sidering the complexity of learning graph-level representations,
recent approaches often use the multi-task learning framework
where the teacher model attempts to learn discriminative graph
representations, whereas the student model concentrates on the
classification task [13], [14]. However, these methods do not
consider the realistic problem of potential OOD graph sam-
ples, which brings challenges in the sufficient exploration of
unlabeled data. To tackle this, our UGNN employs a sample
selection strategy, which captures prediction confidence as well
as individual output uncertainty from the subgraph perspective.

C. Out-of-Distribution Detection

Out-of-distribution (OOD) detection has been widely utilized
in a variety of real-world applications [42]. Typically, this
problem is addressed in two contexts, resulting in supervised
methods and unsupervised methods. With access to identified
OOD samples during optimization, supervised algorithms [15],
[16], [17] typically not only reduce the cross-entropy loss for
ID samples, but also enforce the uniformity of the prediction
distributions for OOD samples. In practical applications, it is
difficult to locate OOD samples in advance. To circumvent this
issue, unsupervised approaches do not use OOD samples during
training [43], [44], [45]. They deploy post-hoc detectors based
on distance measurements such as Mahalanobis distance [46]
after training classification models using ID samples. Despite the
impressive performance of OOD detection in computer vision,
its application to graphs remains underexplored. In contrast,
we offer a novel graph neural network named UGNN that
thoroughly both explores subgraphs to find OOD graph samples
and learns from unlabeled graphs.

III. PRELIMINARY KNOWLEDGE

A. Problem Formalization

To begin with, we formally introduce the notations and the
problem definition. Here a graph containing n nodes is denoted
as G = (A,X), where A ∈ R

n×n represents the adjacent ma-
trix, X ∈ R

n×d represents the node attribute matrix and d is the
attribute dimension. In the problem of semi-supervised universal
graph classification, we are given a training datasetD containing
labeled graphs Dl = {Gl

1, G
l
2, . . . , G

l
N l} and unlabeled graphs

Du = {Gu
1 , G

u
2 , . . . , G

u
Nu}, where Gl

i and Gu
j represents the

ith labeled sample and the jth unlabeled sample, respectively.
The label set of the labeled data and the whole training data are
denoted as Cl and C, respectively. yli ∈ Cl denotes the label of
Gl

i. Due to the potential label shifts, we have Cl ⊆ C.

Our aim is to (1) identify graph samples which do not belong to
known classes, i.e., S = {Gu

j |yuj ∈ C/Cl} and (2) classify the
remaining samples, i.e., Du/S into their corresponding classes
in Cl.

B. Message Passing Neural Networks

We briefly introduce message passing neural networks, which
are widely utilized to generate graph-level representations [8],
[34], [35]. They usually utilize the neighborhood aggregation
mechanism to explore topological information in an implicit
fashion. The updating formulation at the kth layer in a given
graph G is written as

v
(k)
N(vi)

= AGGREGATE(k)
({

v
(k−1)
i : j ∈ N (i)

})
v
(k)
i = COMBINE(k)

(
v
(k−1)
i ,v

(k)
N(vi)

)
, (1)

where v
(k)
i is the representation of node vi at the kth layer.

AGGREGATE(k)(·) and COMBINE(k)(·) represent the ag-
gregation and combination operators at the kth layer, respec-
tively. Finally, a global pooling operator is utilized to summarize
all these node representations at the last layer, resulting in a
graph-level representation

z = GP
({

v
(K)
i

}n

i=1

)
, (2)

where GP(·) represents a global pooling function.

IV. METHODOLOGY

This paper proposes a novel graph neural network framework
named UGNN for semi-supervised universal graph classifica-
tion. The core of our UGNN is to utilize subgraphs to sufficiently
explore the semantics in unlabeled graphs. We first warm up
our GNN-based encoder using labeled data to generate graph
representations. To overcome label shift, we employ a sample
selection strategy, which calculates confidence scores from the
distribution viewpoint by sampling multiple subgraphs. To make
the most of unlabeled data, we measure graph prototypes for
both known and unknown classes, which can yield balanced
and reliable prototype assignments by solving an optimization
problem. Then, a semi-supervised graph prototype representa-
tion learning paradigm is presented, which utilizes the posterior
prototype assignments from one subgraph view to supervise the
semantics of unlabeled data from another view. More details can
be illustrated in Fig. 2.

A. Graph Representation Learning

Our model needs to extract topological information from
both labeled and unlabeled graphs for the classification task
with potential label shifts. Therefore, learning effective graph
representations is crucial for our problem. Towards this end, we
leverage a message passing neural network to encode graphs into
low-dimensional embeddings. In addition, a hierarchical graph
pooling structure is adopted to explore local substructures in the
graph.
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Fig. 2. Illustration of the proposed framework UGNN. Our UGNN is first warmed up using labeled data and then identifies OOD samples based on multiple
subgraphs from each graph. Besides, UGNN constructs graph prototypes and compares the posterior prototype assignments with online prediction across different
views.

In detail, given a graph sample G = (A,X), we first utilize
the message passing neural network in (1) to extract topological
information, resulting in discriminative node representations,
i.e., {v(K)

i }. Then, we follow the paradigm of TopK-based
pooling by utilizing the attention mechanism to identify crucial
nodes which will be kept. Here, we utilize a different encoder
to produce an importance score vector S ∈ R

n×1 for nodes in
the graph. The top �ρn� nodes will be kept by comparing the
values in S. Let idx denote the index of kept nodes, and we
derive pooled graph with the adjacent matrix Ã and the hidden
embedding matrix H̃ as follows:

Ṽ = V idx,: � Sidx, Ã = Aidx,idx, (3)

where V idx,: denotes stacked node representation matrix and
� represents the broadcasted Hadamard product [36], [47].
Aidx,idx represents the row-wise and column-wise indexed
matrix of A. Then, the pooled graph is fed to the message
passing neural network again, followed by the readout function
as in (2), producing a graph-level representation Φ(G). In this
way, we summarize node semantics embedded in a hierarchical
fashion, maximizing the model capacity for graph representation
learning.

Finally, we add an MLP classifier ψ(·) on top of the represen-
tations, which produces label distribution for each graph sample.
Here the graph classification network is warmed up by merely
labeled graph samples. Given a batch of labeled graphsBl ⊂ Dl,
the cross-entropy loss is employed for graph classification as
follows:

Ll =
1

|Bl|
∑

Gl
i∈Bl
− log(yl

i)
Tψ(Φ(Gl

i)), (4)

where yl
i denotes the one-hot vector of yli.

B. Subgraph-Based OOD Detection

The first aim of our problem is to detect OOD samples in
unlabeled data. Intuitively, graph samples with shaped predicted
label distributions are more likely to be ID samples. However,
the serious label scarcity of labeled graph data could bring in
biased and overconfident predictions. To tackle this, we incor-
porate multiple subgraphs sampled from the graph input into
our OOD detection from the view of both confidence and model
calibration.

In particular, we first introduce two perturbation strategies
to generate subgraphs [40], [48] as: (1) Edge deletion: we
remove part of edges from a graph obeying an i.i.d uniform
distribution. (2) Node deletion: several nodes are removed at
random, along with their connected edges. Then, a subgraph
set S = {G̃1, G̃2, . . . , G̃I} can be generated for each graph G,
where I represents the number of subgraphs. We can derive
the confidence score for each subgraph which is defined as the
largest probability among the prediction distribution

sr = φ(f(G̃r)), (5)

where φ : Rd → N return the index of the maximum value.
Here we measure the distribution of confidence score using a
normal distribution, i.e., N(μ, σ2). The mean and the variance
among the subgraph set are measured, i.e., μ̂ = 1

I

∑I
i=1 si and

σ̂2 = 1
I

∑I
i=1(si − μ)2. In this part, we adopt a hybrid strategy

to determine the OOD samples based on both the mean and
variance of the confidence distributions.
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To begin with, samples with high confidence are more likely to
belong to ID samples. Here we utilize the mean of the confidence
scores to release the sample biases. Intuitively, high variances
for augmented views imply the prediction is not stable. In other
words, their augmented views could be dissimilar to samples
in the predicted class to generate a contradiction. Therefore,
these samples could come from unseen classes, and we cannot
identify them as ID samples. From a different view, compared
with OOD samples, ID samples can be more resistant to the
noise attack since they are correctly classified. Therefore, we
turn to model calibration. In particular, the expected calibration
error is directly related to the variance of the prediction em-
pirically [49]. Therefore, we get more emphasis on the samples
with low-variance confidence, which are resistant to the potential
noise attack. Taking both factors into consideration, the final
score for OOD detection is formulated as

s̃ = μ̂− σ̂. (6)

A higher score indicates a small probability of being OOD
samples. Therefore, the set of ID samples is inferred as follows:

Du,id = {G|s̃(G) > δ}, (7)

where δ is a threshold to decide the portion of ID samples.
Inspired by curriculum learning, we gradually raise the threshold
to identify the OOD samples from easy to hard. For the tth
iteration, we have δt = t

T δ, where T is the total number of
iterations.

C. Prototype-Aware Semi-Supervised Learning

In addition, to overcome the label scarcity in the training
data, we introduce a novel prototype-aware semi-supervised
learning framework, which combines learning discriminative
graph representations with semi-supervised learning.

Prototype Initialization: To begin with, we initialize proto-
types for both ID samples and OOD samples. On the one hand,
we take the average of graph representations from every known
category in the embedding space. On the other hand, we cluster
the graph representations of OOD samples selected before.

In detail, the prototype representation for the cth category is
defined as

hc =

∑N l

i=1 1yl
i=czi∑N l

i=1 1yl
i=c

, (8)

Then, the graph representations of OOD samples are clus-
tered into R parts, and the clustering center is denoted as
hC+1, . . . ,hC+R. These prototypes from ID and OOD sam-
ples jointly enhance semi-supervised learning for discriminative
graph representations.

Semi-Supervised Learning: To learn from unlabeled data, we
first generate their posterior prototype assignments to provide
additional knowledge. To prevent generating overconfident dis-
tributions, prototype assignments are also inferred from the
view of subgraphs, which would guide the semantic learning
for unlabeled data.

In detail, given a batch of unlabeled graphs {Gu
j }B

u

j=1, we
define matrix Q ∈ R

E×Bu
= Eq(y = c | Gu

j ) whereE = C +

R. We first stack the prototype representations and a batch of
subgraph representations into the matricesH ∈ R

D×E and Z̃ ∈
R

D×Bu
. To obtain accurate and balanced posterior prototype

assignments, we maximize the following objective as follows:

E =
〈
HT Z̃,Q

〉
+ εH (Q)+ < f ,Q1Bu − 1

E
1E >

+

〈
g,Q	1E − 1

Bu
1Bu

〉
, (9)

where < HT Z̃,Q > returns the trace of Z̃
T
HQ andH(Q) =

−∑i,j Qi,j logQi,j denotes the entropy of the matrix. f ∈
RBu×1 and g ∈ RE×1 are two adaptive Lagrange multipliers.
In (9), the first term maximizes the similarity between Q and
HT Z̃, which denotes the expected similarity scores between
graph representations are their representations. The second term
is a regularization term to maximize the entropy of Q, which
encourages the diversity of the posterior prototype assignment.
ε is a temperature parameter to control the diversity. The last
two terms are Lagrange constraints, which aim to produce Q
with both row and column normalization to produce balanced
posterior distributions [18], [19].

To maximize (9), we first calculate its gradient with respect
to every element Qij as follows:

∂E
∂ (Qij)

= 2[HT Z̃]ij − ε log (Q)ij + f i + gj . (10)

Therefore, the closed solution is written as

Q∗ = Diag(u) exp

(
2HT Z̃

ε

)
Diag(v), (11)

where u = diag(exp(fε )) and v = diag(exp(gε )). In practice,
we recall the constraints embedded in (9), i.e.,Q1Bu − 1

E1E =
0 and Q	1E − 1

Bu1Bu = 0 and utilize the iterative Sinkhorn-
Knopp algorithm [18], [19], [20] to solve this, which repeat-
edly conducts row normalization and column normalization
to exp( 2H

T Z̃
ε ). Preliminary studies indicate that using three

iterations would achieve incredible performance with less com-
putational expense, and that soft target assignments have a higher
performance than one-hot ones.

Then, these prototype assignments are viewed as guidance to
learn from unlabeled data. In particular, the cross-entropy loss
objective is written as

Lu = − 1

Bu

Bu∑
j=1

E∑
c=1

q
(
y = c | Gu

j

)
log p

(
y = c | Gu

j

)
, (12)

where online predictions are calculated by

p
(
y = c | Gu

j

)
=

exp (˜̃zu
j

	
hc/τ)∑E

c′=1 exp (
˜̃zu
j

	
hc/τ)

. (13)

Here ˜̃zu
j is the other subgraph representations ofGu

j and τ is the
temperature parameter. In this section, two different perturba-
tions are involved for posterior prototype assignments and online
predictions, which helps to capture the invariant semantics in
unlabeled graphs with less bias.
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Algorithm 1: Training Algorithm of UGNN.

Require: Labeled graphs Dl; Unlabeled graphs Du;
Ensure: Identify OOD graph samples S and generate the

prediction for Du/S;
1: Warm up the network using Dl;
2: for t = 1, 2, . . . , T do
3: Generate Du,id using (7);
4: Initialize graph prototype representations using (8);
5: repeat
6: Construct a mini-batch by sampling graphs from Dl

and Du;
7: Generate the posterior distribution using the

Sinkhorn-Knopp algorithm;
8: Calculate the final loss using (15);
9: Update the network parameters through back

propagation;
10: Update the prototype representations using (14);
11: until convergence
12: end for

Prototype Update: Here, we update the prototype represen-
tations as the training process of semi-supervised learning. In
particular, we aggregate all the graph representations which are
close to each prototype using momentum update. Formally, we
first generate the pseudo-labels for each unlabeled graph, i.e.,
pj = argmaxc{hT

j zc} and the updated prototypes are derived
as

hc ← ηhc + (1− η)
∑Nu

j=1 1pj=cz
u
j∑Nu

j=1 1pj=c

, (14)

where η is a momentum coefficient.

D. Optimization

In a nutshell, the overall training loss of our UGNN is sum-
marized into

L = Ll + Lu. (15)

We optimize the whole framework using mini-batch stochastic
gradient descent. For every cycle, we update the set of ID
unlabeled samples using curriculum learning and the number
of total cycles is T . The detailed algorithm is summarized in
Algorithm 1.

V. EXPERIMENTS

In this section, exhaustive experiments are conducted on
several datasets to demonstrate the effectiveness of the proposed
UGNN. Particularly, we are interested in several research ques-
tions (RQs):
� RQ 1: What is the overall performance of UGNN compared

to baseline methods?
� RQ 2: What is the influence of Subgraph-based OOD

Detection and Prototype-aware Semi-supervised Learning
in the proposed task?

� RQ 3: Do the proposed model sensitive to hyperparam-
eters like the number of clusters, the presumed number
of OOD samples and the temperature in prototype-aware
semi-supervised learning?

� RQ 4: Are there any visualization of classification results
and learned representations to show the effectiveness of
UGNN?

A. Experimental Setup

1) Datasets: In the experiments, we use six public graph
datasets: COIL-DEL, Letter-high, MNIST, CIFAR10, REDDIT-
MULTI-12 K and COLORS-3. The detailed statistics of the
datasets are listed in Table I.

COIL-DEL. COIL-DEL dataset [50] is constructed by ap-
plying Harris corner detection and Delaunay Triangulation on
images. The result of triangulation is converted to a graph, where
nodes and edges represent ending points and lines.

Letter-high. Letter-high dataset [50] involves graph represen-
tations of 15 capital letters (i.e., A, E, F, H, I, K, L, M, N, T, V,
W, X, Y, Z). In the graph, nodes represent the endpoints of the
drawing and (undirected) edges correspond to lines. The letters
are highly distorted, which makes the task challenging.

MNIST. MNIST dataset [51] is constructed by extracting
super-pixels (i.e., small regions of homogeneous intensity in
every image) of the image. After the super-pixel extraction, a
k-nearest-neighbor graph is then constructed to represent the
image.

CIFAR10. CIFAR10 dataset [51] is constructed in the same
way as MNIST. The difference between the two datasets is that
CIFAR10 contains larger graphs with richer semantic meanings,
which makes the classification task more challenging.

REDDIT-MULTI-12 K. REDDIT-MULTI-12 K dataset [33]
contains graphs where nodes denote users and edges denote
comments. The aim is to classify graphs into different com-
munities.

COLORS-3. COLORS-3 dataset [52] contains random graphs
where each node shows one color from red, green and blue and
we aim to capture the number of green nodes in each graph.

2) Evaluation Setting: We split the classes into known
classes and unknown classes, and the number of each is shown
in Table I. In the semi-supervised universal graph classification
task, we only use some of the labels in the known classes.
All instances in the unknown classes are unlabeled. In order
to measure the models’ performance in different application
scenarios, we adopt two settings with different labeling ratios
(i.e., High Ratio and Low Ratio) and high labeling ratio/low
labeling ratio is between 1.6 and 3. For example, on the MNIST
dataset, we use 1% of the labels and 3% of the labels as high
labeling ratio and low labeling ratio, respectively. More details
can be found in Table I.

As for the evaluation metric, we use the classification accuracy
as the default. In the proposed semi-supervised universal graph
classification setting, a graph is classified correctly if and only if
(i) the graph belongs to the source classes and the model predicts
the correct label, or (ii) the graph belongs to the novel classes
and the model detects it as the novel instance.
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TABLE I
STATISTICS OF THE DATASETS USED IN THE EXPERIMENTS

3) Baseline Methods: We compare the proposed UGNN with
a wealth of baselines, ranging from kernel-based approaches to
graph neural networks and semi-supervised graph classification
methods. The detailed baseline methods are described as fol-
lows:

Graph Kernel Methods: In the experiments, we take three
graph kernels for comparison, including:
� Weisfeiler-Lehman (WL) Kernel [53] that utilizes the

Weisfeiler-Lehman algorithm to generate features of nodes
that are compared across graphs.

� Shortest-Path (SP) Kernel [54] that decomposes graph
samples into shortest paths and contrasts pairs of the short-
est paths based on the lengths.

� Graphlet Kernel [55] that counts the graphlets in the input
graphs and generates features according to their occur-
rence.

We use labeled data to fit a Support Vector Machine (SVM)
with graph kernels and then make predictions with this SVM
classifier.

Graph Convolutional Neural Networks: We also adopt a
variety of graph convolutional layers, including Graph Con-
volutional Network (GCN) [56], GraphSAGE [57], Graph Iso-
morphic Network (GIN) [58]. When applying different graph
convolutions, we use TopK Pooling [59] as the default graph
pooling method.

Graph Pooling Methods: As for graph pooling methods, we
select three graph pooling methods as baselines. Specifically, we
use:
� TopK Pooling [59] that is described in Section IV-A.
� Self-Attention Graph Pooling (SAG Pooling) [36] that is on

basis of self-attention to jointly consider both node features
and graph topology.

� Adaptive Structure Aware Pooling (ASAP) [60] that uti-
lizes self-attention and learns soft cluster assignments for
each node to pool the graph.

When comparing different graph pooling methods, we keep
graph convolution method as the default GIN.

Semi-Supervised Graph Classification Methods: Contrastive
learning is widely used in graph classification in semi-supervised
settings. Therefore, we select three graph contrastive learning
methods and one knowledge distillation method as our baselines.
� InfoGraph [61] that incorporates a teacher encoder and a

student encoder trained in supervised and self-supervised
manners, respectively. Their knowledge is transferred by
maximizing the mutual information.

� GraphCL [62] that adopts graph augmentations and nor-
malized temperature-scaled cross entropy loss (NT-xent) to

learn generalizable, transferable and robust representations
using contrastive learning.

� GLA [63] that designs label-invariant augmentations in
the representation space, and achieves promising results
in semi-supervised graph classification task.

� RGCL [64] that utilizes invariant rationale discovery to
separate the graph into two parts. These two part would
be fed into the contrastive learning framework to learn
effective graph representations.

4) Implementation Details: For graph representation learn-
ing, we use GIN convolution [58] as default. In subgraph-based
OOD detection, we obtain the subgraphs by randomly deleting
20% of the nodes and their corresponding edges. We extract a
total of 3 subgraphs from the original graph (i.e., I = 3) to em-
pirically compute the mean and variance. For prototype-aware
semi-supervised learning, the OOD samples are clustered into
3 parts (i.e., R = 3). We set ε in (9) to 0.05 and the softmax
temperature τ in (13) to 0.1 following [18]. The momentum
coefficient η is set to 0.99 as in [65]. During optimization, we
also use an additional supervised contrastive loss function in [66]
to help the training. The proposed UGNN is implemented with
PyTorch and can be trained on an NVIDIA RTX GPU. We
train the model for 100 epochs in which the first 50 epochs
are used to warm-up the model with labeled data. We use Adam
optimizer [67] with a learning rate of 0.001 and the batch size
is set to 256.

B. Main Results (RQ 1)

The classification accuracy and F1 score of UGNN in com-
parison with various baseline methods are shown in Tables II
and III. From the results, we have several observations.

First, the proposed UGNN achieves a consistent improvement
compared to all baseline methods in both low labeling ratio
(Low Ratio columns in the table) and high labeling ratio (High
Ratio columns in the table) scenarios on all four datasets. The
significant improvement shows that the effectiveness of the
proposed Subgraph-based OOD Detection and Prototype-aware
Semi-supervised Learning. More specifically, we attribute the
performance gain to the following aspects: (i) UGNN is better at
detecting OOD samples. While baseline methods use prediction
confidence as the metric for classifying known and unknown
categories, our model tackles this problem from a subgraph
perspective, which yields more robust OOD detection. (ii) The
proposed method provides consistent classification benefiting
from learning both known and unknown prototypes, whereas
baseline methods focus mainly on known categories. (iii) The
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TABLE II
CLASSIFICATION ACCURACY OF DIFFERENT LABELING RATIOS ON SIX DATASETS. OUR UGNN ACHIEVES THE BEST PERFORMANCE SIGNIFICANTLY

TABLE III
F1 SCORE OF OOD DETECTION ON SIX DATASETS. OUR UGNN ACHIEVES THE BEST PERFORMANCE SIGNIFICANTLY

two components benefit each other. Better out-of-distribution de-
tection provides more accurate information for semi-supervised
learning with prototypes. Conversely, more consistent and robust
representations helps with finding OOD samples.

Second, the proposed UGNN experiences more significant
improvements in the low labeling ratio cases (e.g., 8.96% abso-
lute improvement on MNIST with low labeling ratio, compared
to 2.59% absolute improvement with high labeling ratio). This
shows that our UGNN is more helpful in the face of label scarcity,
which is more common in real-world scenarios.

Third, traditional graph kernel based methods [53], [54], [55]
generally perform worse than graph neural network methods.
One exception can be found in the Letter-high dataset, in
which Weisfeiler-Lehman kernel achieves comparable accuracy
with GNN-based methods. A possible explanation is that the
Letter-high dataset contains smaller graphs (4.67 nodes in a
graph on average) and relatively simple structures. Graph Neural
Networks (GNNs) [36], [56], [57], [58], [59], [60] boost the
performance in graph classification via learning deep represen-
tations of graphs as well as utilizing node attributes. Despite
their performance gain, they lack the ability to utilize unlabeled
data and fall short in detecting OOD samples. Semi-supervised
graph classification methods [13], [62], [63], [64] make use of
unlabeled data and thus improve the accuracy. However, they are
still weak when dealing with graphs in unknown classes. In con-
trast, our model detects OOD samples based on subgraphs and
learns the prototypes for both known and unknown classes in the
semi-supervised setting, which further boosts the performance.

Finally, the overall performance, as well as the model’s
improvement, of MNIST is higher than CIFAR10, given that
we use less data in MNIST than in CIFAR10. The reason is
two-fold. First, even for their counterparts in the computer vision
domain, CIFAR10 is harder than MNIST. More importantly, the
two graph datasets are constructed using super-pixels, which

inevitably causes information loss with regard to the detail in
the original image. Since the recognition of hand-written digits
relies more on the global shape (which is less affected), it is
reasonable that graph neural networks perform better on the
MNIST dataset.

C. Ablation Studies (RQ 2)

In this subsection, we perform ablation studies to verify the
effectiveness of Subgraph-based OOD Detection and Prototype-
aware Semi-supervised Learning in UGNN. The ablated results
are listed in Table IV, where we compare the prediction accuracy
of our model and several variants in both low labeling ratio
(Low Ratio) and high labeling ratio (High Ratio) scenarios on
all the datasets. Moreover, in order to understand the effects of
these components in the face of OOD samples, we also report
the classification accuracy of unknown classes. Specifically,
we compare UGNN to the model (i) without Subgraph-based
OOD Detection (w/o S), (ii) without Prototype-aware Semi-
supervised Learning (w/o P), (iii) without prototypes of known
classes (w/o KP), and (iv) without prototypes of unknown classes
(w/o UP).

As can be seen from the results, removing each component
results in performance drop in both low labeling ratio and high
labeling ratio cases for both overall performance and OOD de-
tection. This demonstrates the effectiveness of Subgraph-based
OOD Detection and Prototype-aware Semi-supervised Learn-
ing. Concretely, we have several observations listed as follows:
� Without effective OOD detection, the model fails to achieve

satisfactory accuracy. As we can see from the second
line of Table IV, removing subgraph-based OOD detec-
tion causes catastrophic deterioration in classification ac-
curacy of unknown classes (i.e., 48.47%→38.13% and
58.53%→49.97% on MNIST).
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TABLE IV
ABLATION STUDIES ON ALL THE DATASETS. OUR FULL MODEL ACHIEVES THE BEST PERFORMANCE CONSISTENTLY

Fig. 3. The parameter sensitivity experiments of UGNN in both low labeling ratio and high labeling ratio cases on two datasets (i.e., COIL-DEL and Letter-high).
The first column studies the number of novel clusters in Prototype-aware Semi-supervised Learning (i.e., the number of prototypes of unknown classes R). The
middle column shows the influence of the presumed number of OOD samples. The last column focuses on the temperature in (13).

� Without prototype-aware semi-supervised learning (w/o P,
third line), the prediction accuracy falls. Furthermore, it is
worth noting that this component is more important when
the label is scarce, which is demonstrated by a more sig-
nificant decline in the low labeling ratio case (e.g., 9.68%
overall accuracy decline in the low ratio case compared
to 3.64% in high ratio case on MNIST). This result is
reasonable in that semi-supervised learning aims to utilize
unlabeled data, which plays a more important role when
labels are scarce.

� Removing either prototypes of known classes (w/o KP,
fourth line) or prototypes of unknown classes (w/o UP,
fifth line) also hinders the performance, but to a less extent
compared to removing all the components (w/o P, third
line). This is especially true when the model is provided
with more labels. The mitigated performance drop suggests
that the prototypes under the semi-supervised learning
framework have enough representation power to partially
supplant each other.

D. Parameter Sensitivity (RQ 3)

In this subsection, we explore the model’s sensitivity to hy-
perparameters. Specifically, we focus on three hyperparameters:

(i) the number of clusters (prototypes of unknown classes R)
in Prototype-aware Semi-supervised Learning, (ii) the number
of presumed OOD samples, and (iii) the temperature in (13).
Note that in the previous experiments, we use the ground truth
number of OOD samples and the goal of the experiment (ii)
is to show that our UGNN is not sensitive to the presumed
number of OOD samples. For mathematical convenience, we
introduce a coefficient α called OOD sample multiplier, and
instead of choosing top K samples, we select top αK samples.
The experimental results are shown in Fig. 3.

As can be seen from the results, although the performance
fluctuates around R ∈ [4, 5] in some cases, fixing the number
of clusters R to 3 achieves the best performance. In particular,
too few clusters (R < 3) would weaken the benefit of prototype
learning on OOD samples while too many clusters (R > 3)
would make the model overfitting after saturation. Moreover,
while the actual number of unknown classes varies (i.e., 20
unknown classes for the COIL-DEL dataset and 5 unknown
classes for the Letter-High dataset), assuming a moderate num-
ber of unknown prototypes (clusters) is generally beneficial for
the model. One explanation is that the model uses K-means
algorithm to initialize the unknown prototypes, which often yield
balanced results with three clusters. Another possible reason
for this phenomenon relates to the nature of OOD discovery.
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Fig. 4. Visualization of classification results. We visualize several graphs in the MNIST dataset with their corresponding ground truth classes, our prediction
results and the prediction results of the baseline model using GIN and TopK pooling. The results show that in many cases, the proposed UGNN correctly detects
OOD samples.

The model has little knowledge of out-of-distribution samples
(since they are all unlabeled) and can only resort to the internal
structures and attributes of the graphs to calculate the feature
of each sample. This leads to coarse representations of OOD
samples, and clustering them into too many prototypes becomes
very challenging.

As for the number of OOD samples, the experiments demon-
strate that an accurate estimation is not required to achieve com-
petitive results. As can be seen from the middle column of Fig. 3,
perturbing the presumed number of OOD samples in the range
of 80% to 140% has little influence on the results. An interesting
finding from the experiments is that the overestimation of the
number has less influence compared to underestimation. One
possible reason for this is that in the semi-supervised setting,
there could be some samples belonging to the known classes
but very different from labeled data. For example, there could
be several sub-classes for a known class, but one sub-class does
not appear in the labeled data. To some extent, this sub-class
plays the role of an unknown class, and it is beneficial for the
model to identify this fact.

For the temperature parameter, we can observe that our
UGNN achieves the best accuracy when the temperature is
set to 0.1, providing the correct “softness” for the softmax
function in (13). An interesting phenomenon is that in the low
labeling ratio case, the model is more sensitive to changes in
the temperature parameter. The possible reason is that with
less labels as supervision, the model relies relatively more on

semi-supervised learning, and the influences of hyperparameters
in Prototype-aware Semi-supervised Learning get amplified.

E. Visualization (RQ 4)

1) Visualization of Classification Results: In this subsection,
we visualize eight graphs and our predictions in comparison
with the prediction of the baseline model. Specifically, the
experiments are conducted on the MNIST dataset, and we use
GIN convolution [58] with TopK pooling [59] as the baseline.
The result is shown in Fig. 4, and from the results, we have
several observations:
� The task is generally more challenging than hand-written

digits recognition in images, and GNN can perform rela-
tively well. For example, in case (A), although the structure
of the digit ‘5’ is not very clear, both baseline model and
the proposed UGNN classify this graph correctly.

� The baseline model is weak in detecting OOD samples,
while the proposed UGNN is better at finding OOD sam-
ples. For example, in case (B), (C), (D), (F) and (G), the
graphs belong to the unknown classes and the models are
not provided with corresponding labels during training. In
these more challenging cases, the proposed UGNN detects
OOD samples correctly, whereas the baseline model yields
seemingly reasonable but incorrect predictions.

� The proposed model is also better at classifying known
classes. For example, in case (E), the graph belongs to the
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Fig. 5. Visualization of learned graph features using t-SNE. The experiments
are performed on the MNIST dataset with high labeling ratio, comparing the
learned representations of our model (left) and a baseline model using GIN
convolution and TopK pooling (right). Our model achieves the overall accuracy
of 73.04%, while the baseline model reaches 62.55% overall accuracy. The
results show that UGNN yields better representations.

known class and while the baseline model fails to classify it
correctly, our UGNN yields the right answer. This suggests
that the proposed Subgraph-based OOD Detection and
Prototype-aware Semi-supervised Learning not only help
with finding out-of-distribution samples but also improve
the representations of in-distribution samples.

� There are some very hard cases where both the proposed
UGNN and the baseline model fail. For example, in case
(H), the ground truth is ‘9’, but the models do not see graphs
with label ‘9’ during training. To make things worse, it
resembles the digit ‘4’, which is often seen during training
with labels. To some extent, it is reasonable for the model
to make such mistakes.

2) Visualization of Learned Representations: We use t-
SNE [68] to visualize the results of learned representations,
which is shown in Fig. 5. More specifically, the experiments are
conducted in the high labeling ratio case of the MNIST dataset,
and we compare the results of UGNN in comparison with a GNN
baseline that uses GIN convolution [58] and TopK pooling [59].
As can be seen from the results, our learned representations are
more condensed. For example, for the class of digit 3 (red dots),
our model yields more condensed features that are less confused
with class Unk (unknown classes, gray dots). Another example
is the class of digit 5 (brown dots), which is cut into two clusters
(one cluster in the middle of the graph close to the red dots, the
other lower in the graph between the purple dots and the orange
dots) in the results of the baseline model. In comparison, our
learned representations are better in that most brown dots are
clustered into one group.

For the unknown classes, we find it challenging to distin-
guish their features with other learned representations of known
classes clearly. However, our results are better than the base-
line’s. As can be seen in Fig. 5, the proposed UGNN not only
provides a more condensed representation distribution of OOD
samples, but also sets clearer boundaries. For example, our
model better separates the OOD samples with the class of digit
2 (green dots).

We attribute the more condensed representations and clearer
boundaries among classes to the Subgraph-based OOD detec-
tion and the following Prototype-aware Graph Semi-supervised

Learning. Compared to the baseline model that uses only cross
entropy loss, our method can better capture the internal structure
of the graphs that tend to distinguish themselves from other
samples.

VI. CONCLUSION

This research studies the topic of semi-supervised universal
graph classification, which attempts not only to detect graph
samples that do not correspond to known classes but also to
classify the remaining samples into their respective classes.
From a subgraph prospective, we offer a novel approach dubbed
UGNN that overcomes both class shifts and label scarcity in
this problem. On the one hand, to achieve reliable OOD sample
detection, UGNN samples several subgraphs for each sample
and then measures both prediction confidence and individual
output uncertainty comprehensively. On the other hand, UGNN
builds graph prototype representations and then use the poste-
rior prototype assignments inferred from one subgraph view to
monitor the semantics of unlabeled input from another view.
Extensive experiments on four benchmark graph classification
datasets demonstrates the efficacy of our UGNN. In future
work, we will apply our UGNN to more realistic graph clas-
sification scenarios, including domain adaptation and domain
generalization.

ACKNOWLEDGMENTS

The authors are grateful to the anonymous reviewers for crit-
ically reading this article and for giving important suggestions
to improve this article.

REFERENCES

[1] K. Hansen et al., “Machine learning predictions of molecular properties:
Accurate many-body potentials and nonlocality in chemical space,” J.
Phys. Chem. Lett., vol. 6, no. 12, pp. 2326–2331, 2015.

[2] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and
J. Leskovec, “Graph convolutional neural networks for web-scale recom-
mender systems,” in Proc. 24th ACM SIGKDD Int. Conf. Knowl. Discov.
Data Mining, 2018, pp. 974–983.

[3] J. Lee, I. Lee, and J. Kang, “Self-attention graph pooling,” in Proc. 36th
Int. Conf. Mach. Learn., 2019, pp. 3734–3743.

[4] Z. Ying, J. You, C. Morris, X. Ren, W. Hamilton, and J. Leskovec,
“Hierarchical graph representation learning with differentiable pooling,”
in Proc. 32nd Int. Conf. Neural Inf. Process. Syst., 2018, pp. 4805–4815.

[5] C. Lu, Q. Liu, C. Wang, Z. Huang, P. Lin, and L. He, “Molecular property
prediction: A multilevel quantum interactions modeling perspective,” in
Proc. 33rd AAAI Conf. Artif. Intell., 2019, Art. no. 130.

[6] K. Schütt, P.-J. Kindermans, H. E. S. Felix, S. Chmiela, A. Tkatchenko, and
K.-R. Müller, “SchNet: A continuous-filter convolutional neural network
for modeling quantum interactions,” in Proc. 31st Int. Conf. Neural Inf.
Process. Syst., 2017, pp. 992–1002.

[7] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, “Neural
message passing for quantum chemistry,” in Proc. 34th Int. Conf. Mach.
Learn., 2017, pp. 1263–1272.

[8] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in Proc. Int. Conf. Learn. Representations, 2017.

[9] G. Zhong and C.-M. Pun, “Latent low-rank graph learning for multimodal
clustering,” in Proc. IEEE 37th Int. Conf. Data Eng., 2021, pp. 492–503.

[10] D. Shimin, Y. Quanming, Y. Zhang, and C. Lei, “Efficient relation-aware
scoring function search for knowledge graph embedding,” in Proc. IEEE
37th Int. Conf. Data Eng., 2021, pp. 1104–1115.

[11] Z. Wang et al., “Forecasting ambulance demand with profiled human
mobility via heterogeneous multi-graph neural networks,” in Proc. IEEE
37th Int. Conf. Data Eng., 2021, pp. 1751–1762.

Authorized licensed use limited to: SICHUAN UNIVERSITY. Downloaded on September 24,2024 at 15:09:40 UTC from IEEE Xplore.  Restrictions apply. 



LUO et al.: TOWARDS SEMI-SUPERVISED UNIVERSAL GRAPH CLASSIFICATION 427

[12] J. Li, Y. Rong, H. Cheng, H. Meng, W. Huang, and J. Huang, “Semi-
supervised graph classification: A hierarchical graph perspective,” in Proc.
World Wide Web Conf., 2019, pp. 972–982.

[13] F.-Y. Sun, J. Hoffmann, V. Verma, and J. Tang, “InfoGraph: Unsupervised
and semi-supervised graph-level representation learning via mutual infor-
mation maximization,” in Proc. Int. Conf. Learn. Representations, 2020.

[14] Z. Hao et al., “ASGN: An active semi-supervised graph neural network
for molecular property prediction,” in Proc. 26th ACM SIGKDD Int. Conf.
Knowl. Discov. Data Mining, 2020, pp. 731–752.

[15] M. Hein, M. Andriushchenko, and J. Bitterwolf, “Why ReLU networks
yield high-confidence predictions far away from the training data and how
to mitigate the problem,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., 2019, pp. 41–50.

[16] D. Hendrycks, M. Mazeika, and T. Dietterich, “Deep anomaly detection
with outlier exposure,” 2018, arXiv:1812.04606.

[17] K. Lee, H. Lee, K. Lee, and J. Shin, “Training confidence-calibrated
classifiers for detecting out-of-distribution samples,” in Proc. Int. Conf.
Learn. Representations, 2018.

[18] M. Caron, I. Misra, J. Mairal, P. Goyal, P. Bojanowski, and A. Joulin, “Un-
supervised learning of visual features by contrasting cluster assignments,”
in Proc. 34th Int. Conf. Neural Inf. Process. Syst., 2020, Art. no. 831.

[19] Y. M. Asano, C. Rupprecht, and A. Vedaldi, “Self-labelling via simulta-
neous clustering and representation learning,” in Proc. Int. Conf. Learn.
Representations, 2020.

[20] K. Zheng, W. Liu, L. He, T. Mei, J. Luo, and Z.-J. Zha, “Group-aware label
transfer for domain adaptive person re-identification,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit., 2021, pp. 5310–5319.

[21] Z. Zhang, P. Cui, and W. Zhu, “Deep learning on graphs: A survey,” IEEE
Trans. Knowl. Data Eng., vol. 34, no. 1, pp. 249–270, Jan. 2022.

[22] G. Guo et al., “Learning adaptive node embeddings across graphs,” IEEE
Trans. Knowl. Data Eng., vol. 35, no. 6, pp. 6028–6042, Jun. 2023.

[23] T. Zhao, X. Zhang, and S. Wang, “GraphSMOTE: Imbalanced node
classification on graphs with graph neural networks,” in Proc. Int. ACM
Conf. Web Search Data Mining, 2021, pp. 833–841.

[24] Z. Liu, Y. Fang, C. Liu, and S. C. Hoi, “Relative and absolute location
embedding for few-shot node classification on graph,” in Proc. AAAI Conf.
Artif. Intell., 2021, pp. 4267–4275.

[25] M. Zhang and Y. Chen, “Link prediction based on graph neural networks,”
in Proc. 32nd Int. Conf. Neural Inf. Process. Syst., 2018, pp. 5171–5181.

[26] L. Cai, J. Li, J. Wang, and S. Ji, “Line graph neural networks for link
prediction,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 9,
pp. 5103–5113, Sep. 2022.

[27] Z. Zhu, Z. Zhang, L.-P. Xhonneux, and J. Tang, “Neural Bellman-Ford
networks: A general graph neural network framework for link prediction,”
in Proc. Conf. Neural Inf. Process. Syst., 2021, pp. 29476–29490.

[28] X. Ma et al., “A comprehensive survey on graph anomaly detection with
deep learning,” IEEE Trans. Knowl. Data Eng., early access, Oct. 08, 2021,
doi: 10.1109/TKDE.2021.3118815.

[29] C.-L. Li, K. Sohn, J. Yoon, and T. Pfister, “CutPaste: Self-supervised
learning for anomaly detection and localization,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., 2021, pp. 9664–9674.

[30] A. Deng and B. Hooi, “Graph neural network-based anomaly detection
in multivariate time series,” in Proc. AAAI Conf. Artif. Intell., 2021,
pp. 4027–4035.

[31] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural
networks on graphs with fast localized spectral filtering,” in Proc. 30th Int.
Conf. Neural Inf. Process. Syst., 2016, pp. 3844–3852.

[32] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks and
locally connected networks on graphs,” 2013, arXiv:1312.6203.

[33] M. Henaff, J. Bruna, and Y. LeCun, “Deep convolutional networks on
graph-structured data,” 2015, arXiv:1506.05163.
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