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The recently developed unsupervised graph representation learning approaches apply contrastive learning

into graph-structured data and achieve promising performance. However, these methods mainly focus on

graph augmentation for positive samples, while the negative mining strategies for graph contrastive learning

are less explored, leading to sub-optimal performance. To tackle this issue, we propose a Graph Adversarial

Contrastive Learning (GraphACL) scheme that learns a bank of negative samples for effective self-supervised

whole-graph representation learning. Our GraphACL consists of (i) a graph encoding branch that generates

the representations of positive samples and (ii) an adversarial generation branch that produces a bank of

negative samples. To generate more powerful hard negative samples, our method minimizes the contrastive

loss during encoding updating while maximizing the contrastive loss adversarially over the negative sam-

ples for providing the challenging contrastive task. Moreover, the quality of representations produced by the

adversarial generation branch is enhanced through the regularization of carefully designed bank divergence

loss and bank orthogonality loss. We optimize the parameters of the graph encoding branch and adversarial

generation branch alternately. Extensive experiments on 14 real-world benchmarks on both graph classifica-

tion and transfer learning tasks demonstrate the effectiveness of the proposed approach over existing graph

self-supervised representation learning methods.
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1 INTRODUCTION

Recently, graphs have become an effective tool to depict diverse types of non-Euclidean data includ-
ing traffic networks [42, 43, 80] and social networks [33, 70]. Due to their versatility, graph-like
data structures may capture a great deal of information, which is important in a wide range of
domains. Extensive efforts have been made covering a range of graph machine learning tasks in-
cluding node classification [17, 40], graph classification [35, 47], link prediction [63], and graph
alignment [29, 91]. Inspired by the progress of deep learning, the center of graph machine learn-
ing has become graph representation learning, which can mainly be classified into learning node
representations and graph representations. The former produces dense vector embeddings for indi-
vidual nodes in a network while the latter predicts discriminative representations of whole graphs,
which is under-explored. Such a task can benefit various downstream applications, including social
network analysis [81, 88] and molecule property prediction [27].

In the past few years, graph neural networks (GNNs) have achieved superior performance in
graph-level representation learning [26, 87]. They are capable of embedding graphs with different
sizes into low-dimensional representations via iterative message passing and summarization proce-
dures [19, 25, 87]. In particular, for each node, we aggregate the neighborhood information from its
neighbors to update the node representation in an iterative manner. Eventually, a summarization
function is utilized to produce a graph-level representation integrating all node representations.
Thus, the acquired graph-level representation would convey graph structural semantics to benefit
a range of downstream applications.

In spite of their success, traditional GNN methods fail to optimize well without a large number
of labeled graphs. Unfortunately, it is often prohibitively costly to acquire labeled data in many
fields, such as biochemistry [27]. The labeled graphs could be scarce while the unlabeled graphs
are easy to collect in practice. It is therefore highly promising to learn graph-level representations
in an unsupervised manner. Recently, self-supervised contrastive learning has made significant
progress in computer vision [7, 28] and recommender systems [36, 54, 71]. Inspired by this, many
recent works [8, 60, 82, 83] have brought this technique to unsupervised graph representation
learning. These approaches enforce a graph to get comparable representations to its augmented
view in comparison to other samples, yielding discriminative graph representations to facilitate a
variety of downstream applications.

However, two inherent issues must be carefully explored when applying contrastive learning to
graphs: (i) data augmentations to produce congruent, semantic-preserving samples for each graph
and (ii) negative mining strategies to provide challenging contrastive learning tasks. The success
of contrastive learning on graphs is largely determined by these two elements. The majority of
recent works focus on the first condition and propose various graph augmentation operations,
such as randomly discarding a certain portion of nodes or edges in the whole graph and further
developing automatic augmentation strategies [64, 82, 83]. However, negative mining strategies
have drawn little attention and exploration, where informative and high-quality negative samples
are a critical guarantee for the success of optimization.

In recent graph contrastive learning, there are two types of algorithms to construct negative
instances. Inspired by Momentum Contrast (MoCo) [28], the first type of algorithm (e.g., Cur-

riculum Contrastive learning (CuCo) [8]) maintains an explicit queue of negative samples from
previous mini-batches following a First-In-First-Out scheme. Nevertheless, since only a tiny part
of the graph representations in the queue will be updated, it would be hard to keep up with the
fast change in graph representations over iterations. Additionally, these methods usually adopt the
momentum update scheme to stabilize the queue updating, further hindering the track of the neg-
ative representations in the bank. Hence, the GNN-based encoder would be trained inefficiently,
since a partly updated queue of negative instances may be biased and fail to cover enough pivotal
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Fig. 1. Illustration of conventional methods and our GraphACL. Left: In conventional methods, negative

samples may be biased and uninformative (i.e., far from a positive query). Right: Our GraphACL can generate

both informative and high-quality negative samples for effective contrastive learning.

challenging samples that need to be separated from positive queries as illustrated in Figure 1. The
second type (e.g., GraphCL and JOAO [82, 83]) employs the contrastive learning framework of Sim-
CLR [7], which frees up the need for a separate queue of negative samples. Instead, the framework
contrasts the positive queries against the other samples in the minibatch. Despite their simplicity,
it throws away negative instances from earlier batches, therefore necessitating a high batch size
to provide enough instructive negative examples for contrastive learning. This type of algorithm
requires excessive memory and computational costs, which are typically unaffordable for existing
graph contrastive learning techniques [82, 83]. As such, it is necessary to develop effective nega-
tive mining strategies for graph contrastive learning, which is usually under-explored in existing
methods. However, this issue is non-trivial due to the following major challenges: (i) We need to
produce informative hard negative samples to discriminate against positive queries, and (ii) the
quality of generated negative samples needs to be promised (e.g., globally large diversity to avoid
collapsing into trivial solutions).1

To address the aforementioned crucial challenges, we present a novel framework, Graph Adver-

sarial Contrastive Learning (GraphACL), for unsupervised graph-level representation learn-
ing, which leverages adversarial learning to actively optimize negative samples. In particular, apart
from introducing a graph encoding branch that includes various augmentations for constructing
positive sample pairs, our GraphACL consists of an adversarial generation branch to optimize
representations of a bank of negative samples. Specifically, we overcome the above challenges by
(i) maximizing the contrastive loss in an adversarial fashion and (ii) designing a combination of
bank divergence loss and bank orthogonality loss to avoid trivial solutions and reduce the redun-
dancy of negative samples. The two branches are trained alternately by iterative optimization. On
the one side, the graph encoding branch is updated by reducing the contrastive loss as in classic
graph contrastive learning methods. On the other side, the adversarial generation branch is up-
dated by minimizing two bank losses while simultaneously maximizing the contrastive learning
loss in an adversarial fashion, which encourages the negatives to approach the query graphs in
the batch. We also extend our model into an asymmetric architecture, which can prevent potential
collapsed solutions where all the network outputs are identical. Extensive experiments are con-

1Note that informativeness and large diversity are not contradictory, since we will optimize a batch of different positive

samples during training. In fact, the negatives should be diverse globally, but some of them center locally around each

positive query.
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ducted on 14 well-known benchmark datasets to verify the efficacy of our proposed methods for
both the graph classification task and the transfer learning task. The results show that GraphACL
achieves state-of-the-art performance over competing baselines. The contributions of this work
can be summarized as follows:

— We make the first attempt toward actively training negative samples for effective graph
contrastive learning and propose a novel framework GraphACL for unsupervised graph-
level representation learning.

— We employ adversarial learning and two bank losses to produce informative and high-quality
negative samples to discriminate against positive samples.

— We analyze the benefit of three loss objectives from various views to show how our adver-
sarial updating of negative representations helps our graph contrastive learning.

— Extensive experiments on a variety of popular graph classification and transfer learning
datasets demonstrate the superiority of the proposed approach GraphACL.

2 RELATED WORK

2.1 Graph Representation Learning

GNNs have emerged as an effective approach that aims to extend the deep neural networks to
handle arbitrary graph-structured data [33, 73, 89] and have been widely used for a large number of
applications such as edge classification [17], graph alignment [91], traffic forecasting [42, 43], node
prediction [20], and so on. Existing GNN methods typically adopt an iterative message passing
process [16, 19] to recursively learn structural semantics. Nowadays, it is well recognized that an
effective and informative representation of the whole graph is vital to the learning performance
of graph machine learning models in a variety of domains and tasks. The representation of the
whole graph can be obtained through neighbor propagation via graph neural networks and global
summarizing, for example, by averaging the representation vectors of all nodes in the graph [13,
56, 61, 67]. Despite their effectiveness, these GNN algorithms cannot be optimized without a huge
number of expensive and limited labeled graphs [27]. To release the training cost, our work aims
to handle unsupervised/self-supervised graph-level representation learning task and studies the
challenge of negative sample construction and further proposes a novel graph contrastive learning
framework GraphACL.

2.2 Graph Contrastive Learning

Contrastive learning (CL) explores underlying semantics between contrastive pairs obtained
by random augmentation of the original samples [7]. Hadsell et al. [23] is the pioneering work
to learn representations by contrasting positive pairs against negative pairs. A variety of pretext
works are based on diverse forms of the contrastive loss function, which has a connection with
the exemplar-based task and noise-contrastive estimation [11]. Nowadays, MoCo [28] proposes to
construct a dynamic dictionary and a queue, which enable sufficient information from negative
samples for effective contrastive learning. SimCLR [7] further simplifies the learning paradigm
without using a memory bank. CL has been enhanced with a range of techniques, which can benefit
various tasks such as clustering [14], action recognition [77], and recommender systems [44, 90].
For example, Xu et al. [76] introduce an adaptive augmentation strategy for effective skeleton-
based action recognition. Shu et al. [59] introduce anchor graphs for effective contrastive learning
in fine-grained scenarios. Further works incorporate squeezing techniques [78] and hierarchical
views [75] to improve the representation learning.

Extensive attempts have been made to incorporate CL with graph neural networks [34, 45, 46,
55, 64]. As an early work, InfoGraph [60] attempts to increase the mutual information between
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Table 1. Summary of Notations and Descriptions

Notations Descriptions

Gi Graph sample

Ĝi , Ĝ′i Augmented graph samples

t , t ′ Random augmentation functions

zi , z
′
i Graph-level representations

дθ Graph encoder

дϕ Momentum graph encoder

N Negative sample bank

J The number of negative samples

nj Generated negative sample

τ Temperature parameter

N Negative representation matrix

fl Negative dimension vector

global representations and substructure representations, respectively. Rationale-aware Graph

Contrastive Learning (RGCL) [45] introduces rationales into graph contrastive learning for ef-
fective discrimination learning. Recent efforts have been made toward graph-level representation
learning. These methods [8, 82, 83, 86] mostly follow the scheme of SimCLR and MoCo, which
expect a graph to share similar embeddings to its augmented views in comparison to those from
other graphs. These methods propose various graph augmentation strategies but negative mining
strategies are typically underexplored. Hence, these approaches fail to construct discriminative
negative samples for efficient graph contrastive learning while our work better explores negative
mining strategies through adversarial learning.

2.3 Adversarial Learning

Adversarial learning has been widely used to enhance model generalization with a range of applica-
tions in computer vision [21]. For example, Mardy-AT [48] combines adversarial learning with ro-
bust optimization, which improves the performance with it comes to adversarial attacks. Further, a
sufficient evaluation of different tricks in adversarial training is conducted in Reference [53]. Some
works also integrate adversarial learning into a self-supervised learning framework, producing ro-
bust image representations [30] for visual tasks. Recently, extensive efforts are adopted to extend
this technique into graph machine learning [9, 15]. For example, GraphGAN [66] generates fake
node pairs or triplets to confuse the graph neural networks to enhance the model generalization.
However, these works typically focus on enhancing the model robustness for node-level tasks. By
contrast, we adopt adversarial learning to generate a bank of negative samples, providing the chal-
lenging contrastive task for learning discriminative graph-level representations. Moreover, since
adversarial learning may suffer from instability such as mode collapse [37], we further introduce
two carefully designed regularization losses to improve the quality of generated negatives.

3 PRELIMINARIES AND NOTATIONS

In this part, we begin with an introduction to formal definitions and notations listed in Table 1 for
clarity and then formalize our problem definition.

Definition 1 (Graph). A graph is denoted as G = (V ,E,X), where V and E represent the set of
vertex and edges, respectively. Let xv represent the attribute vector of v ∈ V , and X ∈ R |V |×d0

denotes the node attribute matrix, in which d0 denotes the dimension of the attribute vector.
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Fig. 2. Illustration of our GraphACL scheme. We use a graph encoding branch parameterized by two graph

encoders to generate the representations of positive samples and an adversarial generation branch produces

a bank of negative samples. The first branch is optimized by minimizing graph contrastive learning loss, and

the second branch is optimized by maximizing contrastive learning loss while simultaneously minimizing

two bank regularization losses.

Definition 2 (Unsupervised Graph Representation Learning). We have access to M unlabeled
graphs {G1, . . . ,GM }. The purpose is to learn a graph encoder, which maps each graph Gm into an
embedding vector zm , among which we expect these graph embeddings are suitable for various
downstream tasks including graph classification.

4 OUR APPROACH

4.1 Framework Overview

This article introduces the GraphACL to actively learn a bank of negative samples for unsuper-
vised graph representation learning. Negative mining strategies are underexplored in graph con-
trastive learning techniques. Prior works typically maintain a queue of negative representations or
treat other graphs as negatives from the current minibatch. However, these methods usually suf-
fer from biased and uninformative negative samples, leading to the ineffectiveness of contrastive
learning.

To tackle the issue, our approach leverages the idea of adversarial learning to actively generate
negative samples. In particular, our proposed GraphACL consists of a graph encoding branch to
produce graph-level representations for positive samples and an adversarial generation branch to
optimize a bank of negative samples for contrastive learning. For effective negative mining, we
not only maximize the contrastive loss in an adversarial fashion for more hard negatives but also
minimize two carefully designed bank regularization losses to reduce the redundancy of negatives.
Finally, we optimize the framework in an alternative manner. On the one hand, following conven-
tional graph contrastive learning techniques, the graph encoding branch is updated by minimizing
the contrastive learning to pull close queries and their positives compared with negatives in the
embedding space. On the other hand, the adversarial generation branch is trained by minimizing
two regularization losses while concurrently maximizing the contrastive learning loss in an ad-
versarial way, allowing negative examples to keep track of query samples in the minibatch. More
details can be found in Figure 2.

The rest of this section is structured as below. We introduce the graph encoding branch with
graph encoder and graph augmentation strategies in Section 4.2. Then, we review the contrastive
learning framework and introduce an adversarial generation branch in detail in Section 4.3. Further,
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we formulate the adversarial learning framework in Section 4.4. Finally, we analyze the strengths
of our proposed GraphACL in Section 4.5.

4.2 Graph Encoding Branch

In the graph encoding branch, each graph first goes through two types of augmentation followed
by two different graph encoders, producing novel rational graph-level representation pairs for
contrastive learning.

GNN-based Encoder. Graph representation learning aims to project graph samples into an em-
bedding space. GNNs have recently shown their superior capability for modeling various graph-
structured data. Hence, we primarily adopt GNNs as graph encoders in our branch. Generally,
GNNs adopt the message passing process to encode the topological semantics into node embed-
dings [19]. In particular, for each node v of given graph G = (V ,E,X), first we aggregate the
embeddings of all its neighbors at the (k − 1)-th layer. Let S (v ) denote the neighborhood of node

v , and the embedding of v at the kth layer h
(k )
v is updated as follows:

h
(k )
v = COM

(k )
θ

(
h

(k−1)
v ,AGG

(k )
θ

({
h

(k−1)
u

}
u ∈S (v )

))
, (1)

where AGG
(k )
θ

and COM
(k )
θ

denote the aggregation and combination functions parameterized by θ
at the kth layer, respectively. Eventually, for graph-level representation learning tasks, we utilize
READOUT(·) to summarize updated node embeddings at the final layer. The final graph-level
representation is written as

дθ (G) = READOUT
({

h
(K )
v

}
v ∈V

)
, (2)

where READOUT is a permutation-invariant approach such as averaging. Here we use the sum
operation for READOUT following Reference [79], because it is capable of providing crucial infor-
mation regarding the graph size.

Graph Augmentations. Data augmentation is essential for contrastive learning, which gener-
ates rational data with semantics unchanged mostly [7]. In our method GraphACL, we adopt four
common strategies to perturb the topology and attributes of a graph as follows [83]. (1) Edge drop-

ping: This randomly drops part of the edges in a graph. The prior of this strategy is that removing
some nodes typically cannot change the property of the graph. (2) Node dropping: This randomly
chooses several nodes and drops them from the graph, together with their connected edges. This
strategy presumes that the semantic of the graph is typically robust to the edge connectivity mode
variances. (3) Attribute masking: This randomly samples some vertices and then masks their par-
tial feature attributes. The underlying prior is that missing some of the node attributes does not
seriously influence the semantics of the graph. (4) Subgraph sampling: This constructs a subgraph
from a graph via a random walk strategy. The rationale behind this strategy is that the semantics of
the graph can be retained in its local compact structure. One potential advantage is that subgraph
may require smaller GPU memory in practice.

For each G, we begin with generating two correlated views Ĝi = t (Gi ), Ĝ′i = t ′(Gi ) by ran-
domly selecting one of the four augmentation strategies for each view, where t and t ′ denote two
stochastic augmentation functions. Inspired by MoCo [28], we use two GNN-based encoders (i.e.,
graph encoder дθ and momentum graph encoder дϕ with the same architecture) to extract novel

rational graph vector pair {zi , z
′
i } for augmented graphs Ĝi and Ĝ′i as follows:

hi = дθ (Ĝi ), h′i = дϕ (Ĝ′i ). (3)

Finally, two projection headsψθ (·) andψθ (·) are utilized to map these graph vectors into another
embedding space for final graph representations, i.e., zi = ψθ (hi ) and z

′
i = ψθ (h′i ).
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4.3 Adversarial Generation Branch

We first review the objective in graph contrastive learning methods [82, 83]. To maximize the
similarity between each positive pair {zi , z

′
i } in comparison to a bank of negative samples N ={

nj | j = 1, . . . , J
}
, the noise-contrastive estimation loss [52] adopted is a softmax form,

LCL = −
1

M

M∑
i=1

log
ezi�z

′
i
/τ

ezi�z′
i
/τ +

∑J
j=1 e

zi�nj /τ
, (4)

where τ is a positive temperature parameter set to 0.5 following References [82, 83] and zi � z
′
i

denotes the cosine similarity of zi and z
′
i . Here J denotes the number of negatives. Following

Reference [8], we use the dot product to replace the cosine similarity metric function in Equation (4)
for calculation simplification.

These negative examples play an important role in graph contrastive learning and require so-
phisticated design. Existing graph contrastive learning methods typically either construct a queue
of negative representations iteratively updated in a queue strategy or treat other graphs in the
batch as negative samples. These negative mining strategies cannot produce challenging nega-
tive samples for graph contrastive learning, hindering the encoder from producing discriminative
graph-level representations. To address this issue, we propose to actively train a bank of negative
samples for the whole dataset instead [30]. Specifically, GraphACL introduces a negative gener-
ation branch that is trained against the graph encoding branch in an adversarial manner. The
adversarial objective is formulated in a minimax form as follows:

θ�,N� = arg min
θ

max
N
LCL (θ ,N ), (5)

where the representations of positive samples are produced by two graph encoders дθ and дϕ .
From Equation (5), we can observe that the graph encoding branch and the adversarial generation
branch are two mutually interacted. On the one hand, the adversarial generation branch is trained
to confuse each positive pair, providing informative negative samples for contrastive learning. On
the other hand, the graph encoding branch is trained to generally enhance the discrimination
capacity by distinguishing the positive queries from the bank of adversarial negative samples.

Inspired by References [30, 51], we seek to introduce “hidden graphs” to parameterize nega-
tive samples. However, parameterized large-size graphs are unaffordable for framework optimiza-
tion. Instead, we parameterize their dense representations of negative samples2 with free variables,
which are all learnable vectors with l2 norm equal to 1 for the convention of contrastive learning.
However, due to the large freedom of negative representations, their quality is hard to promise.
For instance, when the negative samples lack diversity, the positive sample pair may not be pulled
close and the representation collapse may even occur, leading to trivial outputs [69]. The detailed
explanation will be shown in Section 4.5. To tackle this issue, we design two bank losses to regu-
larize trainable negative representations.

Bank Divergence Loss. Intuitively, the low diversity in the negative representation bank not only
brings in much redundancy but also impacts the optimization process of contrastive learning.3

Hence, we propose a bank divergence loss objective to penalize the solution when two negative
representations are almost identical,

LBD = −
J∑

j=1

log
��
�

exp
(
n�j nj/τ

)
∑J

j′=1 exp
(
n�j nj′/τ

) ��	 . (6)

2It would be difficult to reconstruct the graph structures considering their high complexity.
3The detailed explanation will be shown in Section 4.5.
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From the above Equation (6), we can observe that minimizing LBD equals to minimizing
n�j nj′ (j � j ′), which enlarges the divergence of the negative representation bank to avoid the re-

dundancy of negative representations. The bank divergence loss has a similar form to contrastive
loss, but all graph representations in loss are from negative samples. In particular, the loss increases
the distance between different representations by encouraging them to approximate a uniform dis-
tribution in the embedding space [68].

Bank Orthogonality Loss. Furthermore, a high correlation of negative representations is also
likely to harm later contrastive learning. Hence, we seek to reduce correlations within the graph
representation bank by introducing constraints that tend to make the representations of nega-
tive samples orthogonal. Specifically, for the negative representation matrix (stacked from N )
N ∈ RJ×d , we define its column vector fl as the lth negative dimension vector, producing d
dimension vectors { fl }dl=1

. Orthogonality is usually a basic concept in dimension reduction ap-
proach including principal components analysis [12], and we also expect that latent features are
independent to make sure that the redundant knowledge is minimized. We first recall the simple

orthogonal constraint for negative representation matrix, i.e., min 

N�N − I

2, where I ∈ Rd×d is
an identity matrix. However, the traditional orthogonal constraint is too strict in our cases. For
example, we usually expect f �

l
fl � f �j fl (j � l ), indicating fewer correlations of the generated

graph representations.
Inspired by contrastive loss, we formulate a novel bank orthogonality loss for negative repre-

sentations as

LBO = −
d∑

l=1

log
��
�

exp
(
f �

l
fl/τ

)
∑d

l ′=1 exp
(
f �

l
fl ′/τ

) ��	 . (7)

From Equation (7), we can observe that minimizingLBO can result in f �
l
fl → 1 and f �j fl → −1,

attempting to decorrelate negative representations.

4.4 Adversarial Learning Framework

Combining maximizing contrastive learning loss and minimizing two bank regularization losses
during negative representation bank updating, we formulate our finally adversarial objective func-
tion as follows:

θ�,N� = arg min
θ

max
N
LCL (θ ,N ) + arg min

N
Lr eд (N )

Lr eд (N ) = λ1LBD (N ) + λ2LBO (N ),
(8)

where λ1 and λ2 are two weights to balance the contributions of two regularization losses.
Unfortunately, we find it challenging to obtain a local minimal solution when the objective

function is directly minimized as in Equation (8). To tackle this issue, motivated by the optimization
technique in adversarial networks [2], we adopt a group of gradient descent and gradient ascent
to optimize the parameters in the GNN-based encoder and negative representations, respectively.
Formally,

nj ←− nj + η

(
∂LCL (θ ,N )

∂nj
−
∂Lr eд (θ ,N )

∂nj

)
,∀j, (9)

θ ←− θ − η ∂LCL (θ ,N )

∂θ
, (10)

where η denotes the learning rate. In our framework, the negative representations are first ran-
domly initialized with graph samples. Then we alternately update the parameters in the graph en-
coding branch and adversarial generation branch. As shown in Section 5.6, empirical convergence
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ALGORITHM 1: Learning Algorithm of GraphACL

Input: Unlabeled data {G1, . . . ,GM }.
Parameter: Graph encoder parameter θ , momentum graph encoder parameter ϕ and negative
sample bank N={n1, . . . ,nJ }.
Output: Momentum graph encoder дϕ .

1: Initialize encoder parameter with a Xavier initialization and {n1, . . . ,nJ } by randomly selected
samples.

2: while not convergence do

3: Sample B graphs from the training set to make up a batch;

4: Produce augmented views Ĝi and Ĝ′i for each graph;
5: Obtain global-view graph representations zi and z

′
i through the graph encoding branch;

6: Calculate loss function by Equation (8);
7: Update N by gradient ascent in Equation (9);
8: Update θ by gradient descent in Equation (10);
9: Updating ϕ by momentum update in Equation (11).

10: end while

could be observed in practice, which is in line with the results of recent adversarial models [62].
Finally, we adopt momentum updating for parameters in the momentum graph encoder as

ϕ ← γϕ + (1 − γ )θ , (11)

where γ is a momentum coefficient set to 0.99 following Reference [28]. Only the parameters θ
are updated by back-propagation, and the parameters ϕ are evolved smoothly through momentum
update. The overall learning algorithm of the GraphACL is illustrated in Algorithm 1.

Computational Complexity. As for the computational complexity, we first analyze the graph
encoding branch. Given a graph, d0 is the dimension of node attributes, | |A| |0 is the number of
nonzero elements in the adjacency matrix, K is the number of GNN layers, and |V | is the number
of nodes. The branch takes O (K | |A| |0d0 + K |V |d2

0 ) computational time for each graph. During
contrastive learning, the objective takes O (d JN ) computational time, where B is the batch size and
M is the number of graph samples while two regularization losses takeO (Jd2+d2 J ). Note that both
the number of negatives J and hidden dimension d are limited in our application. The complexity
of GraphACL mainly depends on the graph encoding branch. Consequently, the complexity of
the proposed GraphACL and the classic graph contrastive learning method GraphCL [83] is both
O (K | |A| |0d0 + K |V |d2

0 ) for each graph, which is linearly dependent on |V | and | |A| |0.

4.5 Model Analysis

In this section, we seek to study how our adversarial updating of negative representations can help
graph contrastive learning. We look into our contrastive loss in Equation (4). First, we calculate
the gradient of LCL for nj :

∂LCL

∂nj
=

1

Mτ

M∑
i=1

ez
�
i

nj /τ · zi

ez�
i

z′
i
/τ +

∑J
j′=1 e

z�
i

nj′/τ
. (12)

Note that the denominator is constant for each negative representation nj , and from the nu-
merator, we can observe that the closer a negative example is to the positive query, the closer the
example will move toward to query during updating each negative representation. In this way, the
negatives gradually track the query graph and the informative negatives can be generated, thus
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benefiting the optimization of the graph encoding branch in contrastive learning [65]. Further, we
calculate the gradient for zi ,

∂LCL

∂zi
= − 1

Mτ
��
�
(
1 − pz′

i

)
· z′i −

J∑
j=1

pnj
· nj

��
	 , (13)

where

ph =
exp

(
z
�
i h/τ

)
exp

(
z�i z′i/τ

)
+

∑J
j=1 exp

(
z�i nj/τ

) . (14)

Without loss of generality, assuming the first Q negative representations are identical, i.e., n1 =

· · · = nQ , not only the diversity of gradient space is limited but also a large accumulated gradient
in the orientation of n1 are expected for every positive sample zi . This bias may make it hard to
push each positive query closer to its augmentation and even result in representation collapse
while the bank divergence loss can well release this issue.

Finally, we analyze the benefit of the bank orthogonality loss. We assume that the rank of N is

r , and the negative representation matrix can be decomposed into two matrices N = AN̂ where

N̂ ∈ Rr×d ,A ∈ RJ×r . Since r is small, we assume that r + 1 < d in some cases. Let n̂j denote

the jth row vector of N̂. From Equation (13), the gradient of LCL is limited in the linear subspace
span({n̂1, . . . , n̂r , z

′
i }) with rank at most r +1, which seriously damages the optimization process of

the graph representation learning with the above hidden constraints. From the analysis, the strong
correlation of negative representations impairs contrastive learning optimization, and instead our
bank orthogonality loss is designed to resolve the problem.
Feasibility Analysis. The aim of introducing negative samples is to generate uniform representa-
tions in the embedding space [68], which can avoid collapsing into trivial solutions when pulling
positive pairs closer [85]. To achieve this, in previous works, negative samples from the mini-batch
should be diverse, and the batch size should be large enough to ensure the uniformity of learned
representations. Compared with the previous strategy, our method leverages a learnable manner
to generate diverse negative samples instead. These negative samples can satisfy the requirement
of divergence in graph contrastive learning. Moreover, our challenging negative samples with
less correlation can benefit the optimization process more. Although our framework initializes the
negatives randomly, we utilize an adversarial learning technique to update these dense representa-
tions, which maximizes the contrastive objective to provide challenging negatives. Since we have
a range of positive samples in the batch, each negative sample would try to approach some of
the queries in the batch, but it is difficult to have the same representation as one positive sample
during adversarial learning. At the same time, by minimizing the contrastive learning objective,
the positive samples would be far away from these negatives. With these alternative procedures,
these negatives would remain challenging but different from these positives mostly.

4.6 Model Extension

Furthermore, we integrate the recent effective contrastive learning method BYOL [22] into our
framework. Note that BYOL aims to maximize the consistency of positive pairs using an asymmet-
ric architecture without using negative samples, which achieves superior performance for visual
representation learning. To adapt it into our framework, we additionally maximize the distance of
negative samples to query examples, which can make the best of challenging negative samples for
enhanced graph representation learning.

In detail, we utilize an asymmetric architecture where the projector head is only added upon
the graph encoder and the output representations in the calculation of contrastive learning loss
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are zi = ψϕ (дϕ (Ĝi )) and h
′
i = дϕ (Ĝ′i ). Formally, we rewrite Equation (4) as

LCL =
1

M

M∑
i=1

��
�
�����
�����

zi

| |zi | |
−

h
′
i

| |h′i | |
�����
����� −

1

J

J∑
j=1

�����
�����

zi

| |zi | |
−

nj

| |nj | |
�����
�����
��
	, (15)

where | | · | | calculates the L2 norm. The asymmetric architecture of contrastive learning can em-
pirically prevent collapsed solutions (i.e., producing similar representations for all inputs), especif-
ically when the batch size is small [22]. We denote our extension using this contrastive loss as
GraphACL∗.

5 EXPERIMENTS

In this part, we conduct extensive experiments on a variety of graph classification as well as trans-
fer learning datasets to verify the effectiveness of the proposed GraphACL. We aim to answer the
following research questions:

• RQ1: How does the model GraphACL perform in comparison to the state-of-the-art baseline
methods for unsupervised graph-level representation learning?
• RQ2: How do different components affect the performance of GraphACL?
• RQ3: What are the effects of the model hyper-parameters on the performance?
• RQ4: What are the effects of different encoder architectures and graph augmentation strate-

gies on the results?
• RQ5: How is the convergence of the proposed model under different datasets?
• RQ6: How does our approach GraphACL perform under the setting of transfer learning

task?

We first introduce the experimental settings, and then answer the above six research questions.

5.1 Experimental Settings

5.1.1 Evaluation Datasets. To demonstrate the advantages of our proposed GraphACL, we con-
duct extensive experiments on six benchmark datasets4 following References [60, 82, 83], which
are well known in the graph classification task. Specifically, we adopt three bioinformatics datasets,
i.e., DD [10], PROTEINS [4], and MUTAG [41], and three social network datasets, i.e., COLLAB [81],
IMDB-B, and IMDB-M. Following References [60, 82], all-ones encoding is used as node attributes
when they are not directly accessible.

For bioinformatics datasets, DD [10] contains graphs of protein structures, where the nodes de-
note amino acids, and an edge would be built when the distance between two nodes is smaller than
6 angstroms. PROTEINS contains graphs [4] in which nodes denote secondary structure elements,
and an edge would be built when two nodes are close in the one-dimensional (1D) or 3D view.
MUTAG [41] is a chemical compound dataset that shows different influences on a bacterium. We
aim to determine whether these protein structures are enzymes or not.

For social network datasets, IMDB-B [81] is a movie-collaboration dataset where nodes stand
for actors/actresses, while an edge would be built when two nodes both show up in one movie.
IMDB-M [81] is an extended version of IMDB-B and composed of ego-networks obtained from the
Romance, Comedy, and Sci-Fi genres. COLLAB [81] is a scientific-collaboration dataset with three
categories, condensed matter physics, high-energy physics, and astrophysics.

4https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets
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5.1.2 Compared Methods. The proposed approach GraphACL is compared with the following
baselines, which can be classified into three categories, i.e., graph kernel approaches, classic unsu-
pervised learning approaches, and graph contrastive learning approaches, as described below.

Graph kernel approaches:

— Graphlet [58]: This compares a pair of graphs by counting or sampling graphlets, which are
often small-scale substructures or limited subgraphs.

— Shortest Path (SP) Kernel [3]: This is a classical graph kernel based on shortest paths, which
quantifies the similarity between two graph samples according to features of the shortest
paths between every node pair from two graph samples, respectively.

— Weisfeiler–Lehman (WL) Kernel [57]: This is a graph kernel based on the well-known
Weisfeiler–Lehman test of isomorphism [72] implemented by identifying subtrees of dif-
ferent depths.

— Deep Graph Kernel (DGK) [81]: This is a holistic framework that learns the hidden repre-
sentations of sub-structures to exploit structural information.

Traditional unsupervised learning approaches:

— Sub2Vec [1]: This provides an unsupervised approach that preserves graph structural infor-
mation by inferring interpretable representations of decomposed subgraphs.

— Graph2Vec [50]: This is a well-known unsupervised method to obtain data-driven graph-level
representations with structured semantics embedded.

Graph contrastive learning approaches:

— InfoGraph [60]: It generates discriminative graph-level representations via mutual informa-
tion maximization between the graph-level representations and patch-level representations
of different scales.

— GraphCL [83]: It introduces some basic graph augmentation techniques that accommodate
different priors and then performance contrastive learning over graphs using the classic
framework [7].

— CuCo [8]: It combines the concepts of curriculum learning and contrastive learning, which
automatically choose the negative samples during optimization for unsupervised graph-level
representation learning.

— JOAO [82]: It proposes a bi-level optimization framework to adaptively determine proper
augmentation strategies for various datasets, which tackles the issue that GraphCL [83]
needs prior knowledge.

— AD-GCL [62]: This utilizes an adversarial learning scheme to generate effective augmented
views for graph samples, which allows GNNs to capture significant information during the
optimization process.

— RGCL [45]: This incorporates invariant rationale discovery into graph contrastive learning,
which utilizes a rationale generator to provide rationale-aware augmented views.

5.1.3 Parameter Settings. For our model GraphACL, we adopt GIN [79] as our GNN-based en-
coder following previous methods [79], which is composed of two layers of graph convolution and
a sum-pooling layer. The embedding dimensions in the hidden layers are set to 512 for all datasets.
The number of negative samples in the bank is set to 512, which is the same as the queue length
or the number of negative samples in graph contrastive learning methods [8, 82, 83]. The two in-
troduced weights λ1 and λ2 are both set to 1 as default. The model is trained via Adam optimizer
[38] in which the initial learning rate is set to 0.0001.
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Table 2. Compared Performance on Six Graph Classification Datasets

Methods DD PROTEINS MUTAG COLLAB IMDB-B IMDB-M

Graphlet (2009) 72.54 ± 3.83 71.67 ± 0.55 81.66 ± 2.11 56.30 ± 0.60 65.87 ± 0.98 43.89 ± 0.38
SP (2005) 75.47 ± 3.46 75.07 ± 0.54 85.22 ± 2.43 49.80 ± 1.20 55.60 ± 0.22 37.99 ± 0.30
WL (2011) 74.02 ± 2.28 72.92 ± 0.56 80.72 ± 3.00 69.30 ± 3.44 72.30 ± 3.44 46.95 ± 0.46
DGK (2015) 74.85 ± 0.74 73.30 ± 0.82 87.44 ± 2.72 64.66 ± 0.50 66.96 ± 0.56 44.55 ± 0.52

Sub2Vec (2018) 54.33 ± 2.44 53.03 ± 5.55 61.05 ± 15.80 55.26 ± 1.54 55.26 ± 1.54 36.67 ± 0.83
Graph2vec (2017) 70.32 ± 2.32 73.30 ± 2.05 83.15 ± 9.25 71.10 ± 0.54 71.10 ± 0.54 46.32 ± 1.44

InfoGraph (2020) 72.85 ± 1.78 74.44 ± 0.53 89.01 ± 1.13 70.65 ± 1.13 71.11 ± 0.88 49.69 ± 0.53
GraphCL (2020) 78.62 ± 0.40 74.39 ± 0.45 86.80 ± 1.34 71.36 ± 1.15 71.14 ± 0.44 48.49 ± 0.63
CuCo (2021) 76.93 ± 0.83 74.32 ± 0.31 88.74 ± 1.18 69.43 ± 0.26 70.47 ± 0.31 47.97 ± 0.12
JOAO (2021) 77.32 ± 0.54 74.55 ± 0.41 87.35 ± 1.02 69.50 ± 0.36 70.21 ± 3.08 47.22 ± 0.41
AD-GCL (2021) 74.49 ± 0.52 73.59 ± 0.65 89.25 ± 1.45 73.32 ± 0.61 71.57 ± 1.01 49.04 ± 0.53
RGCL (2022) 78.86 ± 0.48 75.03 ± 0.43 87.66 ± 1.01 70.92 ± 0.65 71.85 ± 0.84 −
GraphACL (Ours) 79.05 ± 0.51 75.29 ± 0.46 89.88 ± 1.07 74.26 ± 0.48 74.53 ± 0.39 51.65 ± 0.34

GraphACL∗(Ours) 79.34 ± 0.42 75.47 ± 0.38 90.21 ± 0.94 74.72 ± 0.55 74.29 ± 0.67 51.33 ± 0.56

We report the mean and the standard deviation of prediction accuracy over five runs (in %) with different random

seeds. The best results are displayed in bold.

5.1.4 Protocol. We evaluate our method using the standard evaluation protocols in References
[8, 60]. In detail, the classification accuracy over 10 folds of cross-validation using LIBSVM [5] are
reported. We also execute five runs with various random seeds and return both the mean accuracy
(in %) and the standard deviation.

5.2 Experimental Results (RQ1)

We thoroughly compare our proposed approach GraphACL with state-of-the-art baselines and
organize all the compared results in Table 2. From the results, we have the following observations:

— By comparing four graph kernel approaches, we observe that their performance has a huge
variance on different datasets. For example, DGK performs best on bioinformatics datasets
but performs much worse than WL on social network datasets. Perhaps the reason is that
hand-crafted embeddings is different to connect with underlying graph semantics, since they
cannot be learned automatically.

— Graph contrastive learning approaches typically outperform kernel methods and classic un-
supervised learning approaches (i.e., Sub2vec and Graph2vec). We conclude the reason is
that graph contrastive learning approaches are capable of capturing more discriminative in-
formation from graph-structured data using prior information, demonstrating the potential
capability for learning effective graph-level representations.

— Our framework GraphACL obtains the best performance consistently against baselines on all
datasets, which validates the effectiveness of the proposed GraphACL. In comparison to the
state-of-the-art method RGCL, the improvement of performance on MUTAG and COLLAB
is 2.53% and 4.71%, respectively. Considering that the graph dataset has a very huge variance
for different types, our improvement is very significant.

— Our extension GraphACL∗ obtains a slight performance gain compared with GraphACL on
most datasets. This observation may result from that the asymmetric architecture empiri-
cally benefits the optimization of contrastive learning [22]. Therefore, we utilize GraphACL∗

as the default in the following analysis.

Discussion on the Remarkable Improvement. Although graph contrastive learning has been
widely explored in previous works, negative mining strategies are under-explored for learning
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Table 3. Ablation Study of Different Model Variants (in %) on Six Datasets

Methods DD PROTEINS MUTAG COLLAB IMDB-B IMDB-M

Variant-1 77.84 ± 0.71 73.85 ± 0.54 88.86 ± 1.23 72.69 ± 0.61 72.35 ± 0.82 50.23 ± 0.45
Variant-2 78.63 ± 0.68 74.26 ± 0.36 89.65 ± 0.98 74.13 ± 0.42 73.42 ± 0.93 50.79 ± 0.51
Variant-3 78.38 ± 0.63 74.94 ± 0.43 89.39 ± 1.04 73.61 ± 0.68 73.57 ± 0.78 51.08 ± 0.37
Variant-4 77.26 ± 0.89 73.51 ± 0.62 88.30 ± 1.15 71.56 ± 0.84 71.40 ± 0.64 49.81 ± 0.69
GraphACL+ 78.94 ± 0.58 75.13 ± 0.33 90.08 ± 0.89 74.58 ± 0.65 74.22 ± 0.59 51.42 ± 0.52

GraphACL* (Full Model) 79.34 ± 0.42 75.47 ± 0.38 90.21 ± 0.94 74.72 ± 0.55 74.29 ± 0.67 51.33 ± 0.56

discriminative graph-level representations. Obviously, uninformative and low-quality negatives
will hugely misguide the optimization of contrastive objective, while our GraphACL introduces
two key components to tackle this issue: (i) the introduction of an adversarial generation branch
(the adversarial generation branch is trained in an adversarial manner, which is capable of pro-
ducing informative negative samples to enhance contrastive learning) and (ii) the introduction
of two bank regularization losses. The two losses aim to increase the diversity and decrease the
correlation of learned representations, alleviating the ill-conditioned issue that may occur in the
optimization process.

5.3 Ablation Study (RQ2)

To figure out the key role of each component in our model, we perform ablation studies to study
their contribution. Particularly, we design the following model variants:

— Variant-1: We do not produce both bank divergence loss and bank orthogonality loss (i.e.,
λ1 = λ2 = 0), and the model is trained only through adversarial learning.

— Variant-2: The bank divergence loss is removed (i.e., λ1 = 0).
— Variant-3: The bank orthogonality loss is removed (i.e., λ2 = 0).
— Variant-4: The gradient ascent of graph contrastive loss in Equation (9) is removed and the

adversarial generation branch is trained with only two bank regularization losses.
— GraphACL+: The generated negative samples are combined with other negative samples in

the current minibatch to serve as negatives.

The experimental results are recorded in Table 3, and we can observe that different datasets
have a similar observation. We summarize the following findings:

— First, from the comparison between the full model with the first three model variants, we can
see significant performance increasement after these corresponding modules are combined,
which illustrates the significance of every module in the model. They contribute greatly to
the final performance of the model.

— Second, when we remove either (i.e., Variant-2 and Variant-3) or both (i.e., Variant-1) bank
regularization losses, the performance of the model deteriorates significantly, where Variant-
1 has the worst results. This fully demonstrates that both the bank divergence loss and the
bank orthogonality loss are beneficial to model performance, because they promise the high
divergence and low correlation of the negative samples, respectively.

— Third, Variant-4 shows much worse performance compared with our full model, which hence
illustrates the importance and benefit of adversarial learning in our adversarial generation
branch. The reason is that our negative samples can quickly adaptively track the change of
the positive sample through gradient updating in the process of adversarial learning, and
instead adversarial learning can assist the framework in generating informative negative
samples for more rigorously training the graph-level representations.

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 2, Article 34. Publication date: November 2023.



34:16 X. Luo et al.

Fig. 3. Performance w.r.t. balance weights λ1 (a), λ2 (b), hidden dimension (c), and negative bank size (d).

— Last, from the comparison between GraphACL+ and our full model, we can observe that
adding more samples cannot improve the performance evidently, indicating that the gen-
erated negative samples have enough capacity for graph contrastive learning. Therefore, to
improve the efficiency, we would not utilize other negative samples in the current minibatch.

5.4 Parameter Sensitivity (RQ3)

In this subsection, we study the parameter sensitivity of the proposed GraphACL. In particular, we
report the influence of different balance weights and embedding dimensions in the hidden layer
on two datasets DD and IMDB-B.

Effect of Different Balance Weights. We analyze the effect of λ1 and λ2 while fixing all other
parameters. As shown in Figures 3(a) and 3(b), we first fix λ2 to 1 and evaluate the performance by
varying λ1 from 0 to 2 and varying λ2 with λ1 fixed to 1. For both balance weights, the accuracy
first increases and then keeps at a relatively high level. The result is not sensitive to both balance
weights in the range of [0.5, 1.5]. For our GraphACL, λ1 and λ2 are both set to 1 as a default.

Effect of Different Hidden Dimensions. Additionally, we analyze the influence of different
embedding dimensions in the hidden layersd . We varyd in {32, 64, 128, 256, 512, 1024}while fixing
all other parameters to the ones yielding the best performance. We show the results in Figure 3(c).
It can be observed that when the hidden dimension is small, the performance gradually improves
as the hidden dimension increases. When the hidden dimension reaches 256 or 512, the model
achieves the best results. However, too-large dimensions will rapidly expand our parameter space,
which could lead to over-fitting and poor generalization, resulting in sub-optimal performance.

Effect of Different Bank Sizes. Last, we study the impact of different bank sizes by varying the
size in {32, 64, 128, 256, 512, 1024}. The results are shown in Figure 3(d). The results demonstrate
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Fig. 4. Performance with different encoder architectures.

that model performance is enhanced as bank size increases but only up to a certain point. This
improvement is primarily due to the fact that contrastive learning requires a sufficient quantity
of negative samples. However, once the bank size exceeds 512, the enhancement in model perfor-
mance starts to plateau. Balancing performance improvement with computational efficiency, we
set the default bank size to 512.

5.5 Impact of Different Encoder (RQ4)

In this part, we investigate the impact of different GNN-based encoder architectures. In particular,
we select three popular types of GNNs (i.e., GCN [40], GraphSAGE [24], and GIN [79]) and evaluate
their performance in our GraphACL on three datasets, i.e., DD, PROTEINS, and IMDB-B. The result
is shown in Figure 4. It can be found that GIN slightly performs better than the other two encoders
on three datasets, demonstrating the high model capacity of GIN. This also explains the reason for
choosing GIN as the basic model for all graph contrastive learning methods. Moreover, we can
observe that GraphSAGE achieves much worse performance on IMDB-B compared with the other
two encoders, which validates the importance of choosing a proper GNN-based encoder in the
first branch.

5.6 Empirical Convergence (RQ5)

As shown in Figure 5, we illustrate the training loss curves of our GraphACL on six datasets, which
can be divided into two categories: bioinformatics datasets and social network datasets. We can ob-
serve that iterative gradient updates to the graph encoding branch and the adversarial generation
branch on all datasets work well and achieve convergence empirically, which is a common case in
a range of adversarial approaches [9, 21, 66]. This phenomenon further validates the feasibility of
alternative optimization for adversarial learning.

Additionally, we can see that most datasets can converge within 20 epochs, which also validates
the accelerated convergence speed when optimizing our GraphACL. The reason is that our neg-
ative samples can quickly adaptively track the change of the positive sample through gradient
updating, so that the learned graph-level representations can always maintain a high level of dis-
crimination ability. Moreover, the two regularized losses proposed in our framework can better
guide the representations of negative samples to be better dispersed around the distribution of
positive sample data and provide a piece of good gradient information for rapid updating of the
model.
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Fig. 5. The training curves of the GraphACL on two groups of datasets.

5.7 Transfer Learning (RQ6)

Here we perform transfer learning on molecular chemical property prediction tasks following
Reference [32], which pre-trains and finetunes different approaches on different large-scale Open

Graph Benchmark (OGB) [31] datasets under the different pre-training schemes for transferabil-
ity evaluation.

Experiments Setting. In this experiment, we evaluate the effectiveness of our model on eight
OGB [31] molecule property prediction datasets. When pre-training, following Reference [79],
we leverage the same GNN-based encoder (GIN) with 300-dimensional hidden units and a mean-
pooling summarization operation for performance comparisons. As for fine-tuning on a down-
stream task, a classifier head is fully optimized on top of the pre-trained GNN. We perform 10-fold
cross-validation and report the mean together with the standard deviation of ROC-AUC scores
over five runs. For baseline methods, GraphACL is compared with non-pretrain (direct supervised
learning) and various pre-training strategies. Besides four graph contrastive learning methods,
GraphCL [83], JOAO [82], AD-GCL [62], and RGCL [45], we further include five extra pre-training
techniques, i.e., EdgePred [39], Infomax [64], AttrMasking [32], ContextPred [32], and GraphPar-
tition [84].

Pre-training dataset. We leverage a part of the ZINC15 database [18, 49] with 200,000,000 un-
labeled molecules for self-supervised graph pre-training. The dataset is the same datasets as in
Reference [32] for a fair comparison.

Downstream task datasets. Eight larger binary graph classification datasets contained in
Moleculenet [74] serving as downstream tasks are used to evaluate model performance, where
the scaffold split scheme [6] is used for dataset split.

Performance Analysis. The compared performance of different approaches is recorded in Table 4.
Among all competing baselines, our method (GraphACL and GraphACL∗) achieves state-of-the-
art performance results on six of eight datasets. It is worth noting that our GraphACL∗ gains
a 11.3% performance enhancement on average compared with the non-pretrain baseline, which
well indicates the superiority of GraphACL on transfer learning. In this task, the best results on
each dataset are achieved by different baseline methods. Because the characteristics of different
downstream tasks vary greatly, it is difficult to have a unified framework that can comprehensively
capture the common knowledge of different datasets. However, our approach achieves optimal
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Table 4. Results on Downstream Molecular Property Prediction Benchmarks

Methods BBBP BACE ClinTox HIV MUV SIDER Tox21 ToxCast AVG.

No Pre-Train 65.8 ± 4.5 70.1 ± 5.4 58.0 ± 4.4 75.3 ± 1.9 71.8 ± 2.5 57.3 ± 1.6 74.0 ± 0.8 63.4 ± 0.6 67.0
EdgePred (2016) 67.3 ± 2.4 79.9 ± 0.9 64.1 ± 3.7 76.3 ± 1.0 74.1 ± 2.1 60.4 ± 0.7 76.0 ± 0.6 64.1 ± 0.6 70.3
Infomax (2019) 68.8 ± 0.8 75.9 ± 1.6 69.9 ± 3.0 76.0 ± 0.7 75.3 ± 2.5 58.4 ± 0.8 75.3 ± 0.5 62.7 ± 0.4 70.3
AttrMasking (2020) 64.3 ± 2.8 79.3 ± 1.6 71.8 ± 4.1 77.2 ± 1.1 74.7 ± 1.4 61.0 ± 0.7 76.7 ± 0.4 64.2 ± 0.5 71.7
ContextPred (2020) 68.0 ± 2.0 79.6 ± 1.2 65.9 ± 3.8 77.3 ± 1.0 75.8 ± 1.7 60.9 ± 0.6 75.7 ± 0.7 63.9 ± 0.6 70.9
GraphPartition (2020) 70.3 ± 0.7 79.6 ± 1.8 64.2 ± 0.5 77.1 ± 0.7 75.4 ± 1.7 61.0 ± 0.8 75.2 ± 0.4 63.2 ± 0.3 70.7
GraphCL (2020) 69.7 ± 0.7 75.4 ± 1.4 76.0 ± 2.7 78.5 ± 1.2 69.8 ± 2.7 60.5 ± 0.9 73.9 ± 0.7 62.4 ± 0.6 70.8
JOAO (2021) 70.2 ± 1.0 77.3 ± 0.5 81.3 ± 2.5 76.7 ± 1.2 71.7 ± 1.4 60.0 ± 0.8 75.0 ± 0.3 63.0 ± 0.5 71.9
AD-GCL (2021) 70.0 ± 1.1 78.5 ± 0.8 79.8 ± 3.5 78.3 ± 1.0 72.3 ± 1.6 63.3 ± 0.8 76.5 ± 0.8 63.1 ± 0.7 72.7
RGCL (2022) 71.4 ± 0.7 76.0 ± 0.8 83.4 ± 0.9 77.9 ± 0.8 76.7 ± 1.0 61.4 ± 0.6 75.2 ± 0.3 63.3 ± 0.2 73.2

GraphACL (Ours) 72.5 ± 0.9 80.4 ± 0.7 83.7 ± 1.0 78.4 ± 0.9 76.1 ± 1.5 62.3 ± 0.8 76.8 ± 0.3 63.8 ± 0.5 74.3
GraphACL∗(Ours) 73.3 ± 0.5 80.1 ± 1.2 85.0 ± 1.6 78.9 ± 0.7 76.9 ± 1.2 62.6 ± 0.6 76.2 ± 0.6 64.1 ± 0.4 74.6

We show the mean along with the standard deviation of ROC-AUC scores over five runs using 10-fold cross-validation.

The transferability of the proposed method GraphACL is better than all the baseline methods in most cases.

performance over most datasets in a consistent way. Further, compared to our state-of-the-art
baseline RGCL [45] in terms of average ROC-AUC, our method yielded better consistent results
on all datasets, and this comparison strongly demonstrates the effectiveness of the introduced
framework GraphACL.

6 CONCLUSION

In this article, we study unsupervised graph-level representation learning, which is a long-standing
problem of learning the representations of a whole graph without human supervision, and a new
approach named GraphACL is proposed. GraphACL is a principled framework that consists of a
graph encoding branch that generates the representations of positive samples and an adversar-
ial generation branch that produces a bank of negative samples. The two branches are trained
alternately by minimizing the contrastive loss during encoding updating while maximizing the
contrastive loss over the negative samples in an adversarial manner. Moreover, two regularization
losses named bank divergence loss and bank orthogonality loss have been proposed to guide the
training of negative samples, which can further improve the discriminability of derived graph-level
representations.

Comprehensive experiments on various publicly available graph classification datasets demon-
strate the effectiveness of the proposed framework over existing state-of-the-art baselines. In fu-
ture works, we would extend GraphACL to a broader range of applications, including materials
science and recommender systems, and further explore more effective graph representation learn-
ing without resorting to negative samples, alleviating the cost in terms of time and memory.
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