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A B S T R A C T

Graph-level classification is a critical problem in social analysis and bioinformatics. Since annotated labels are
typically costly, we intend to study this challenging task in semi-supervised scenarios with limited budgets.
Inspired by the fact that active learning is capable of interactively querying an oracle to annotate a small
number of informative examples in the unlabeled dataset, we develop a novel Semi-supervised active learning
framework termed GraphSpa for graph-level classification. To make the most of labeling budgets, we propose
an effective unlabeled data selection strategy that takes both local similarity and global semantic structure
into account. Specifically, we first construct an adaptive queue with labeled samples and select informative
samples that have a low degree of similarity to the queue using the Min-Max principle from the local view.
Further, we introduce class prototypes and select samples with a large predictive loss discrepancy from the
global view. To harness the full potential of unlabeled data, we develop a semi-supervised active learning
framework on the basis of our fusion selection strategy coupled with graph contrastive learning during active
learning. The effectiveness of our GraphSpa is validated against state-of-the-art methods through experimental
results on diverse real-world benchmark datasets.
1. Introduction

A great many scenarios in the real-world are highly relevant to
graph-structured data [1], such as biological networks, molecules, and
traffic networks. One critical problem in modeling graph-structured
data is graph-level classification, which targets at analyzing the prop-
erties of the whole graphs. This problem has a variety of downstream
applications in biology and chemistry, including property prediction for
molecules [2] and functionality analysis for compounds (e.g., mutagen
or non-mutagen) [3].

More recently, a large number of works have been proposed [4–6] to
tackle this problem. Early methods mostly leverage multiple graph ker-
nels [7] to embed graphs into an embedding space in an unsupervised
manner. Representative kernels include shortest-path kernel, random
walk kernel and Weisfeiler–Lehman kernel. Unfortunately, these meth-
ods usually acquire prior knowledge from experts and thus cannot learn
structural information adaptively from the data. To address this, graph
neural networks (GNNs) [8,9] have been introduced into this topic to
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generate effective graph embeddings for downstream tasks [10–12].
Specifically, in each graph sample, a node receives information from its
neighbors at each step and the neighborhood information is combined
with its original representation to update the node representation.
Afterward, a summarization operation is adopted to aggregate all of the
updated node representations into an effective graph representation for
graph-level classification.

Among the literature [4,13], GNN-based methods are usually data-
hungry which indicates that they require massive labeled data to
promise adequate supervisory signals. Regrettably, graph-level annota-
tion generally requires domain experts, which are extremely expensive
in specific fields [2]. For example, characterizing the properties of
a simple molecule using density functional theory can often require
several hours [14]. To reduce the annotation cost, two aspects may be
naturally leveraged. On the one hand, it will be helpful to judiciously
select the most informative unlabeled graphs for expert labeling. On
the other hand, there exist a good deal of unlabeled graphs and their
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topological structures may benefit graph classification if used appropri-
ately. Motivated by these considerations, this paper studies the problem
of semi-supervised active learning for graph classification, which aims
to selectively annotate the unlabeled data with limited budgets.

However, directly applying active learning techniques to graph
classification is a non-trivial problem due to domain-specific charac-
teristics. While various active learning techniques [15–17] have been
developed to address this issue in other domains such as vision and
natural language processing, they cannot be utilized directly for graph
classification. As such, it is necessary to integrate active learning tech-
niques into graph-level classification in a principled way due to the
following reasons. To begin, learning graph-level representation is
challenging since it involves dealing with a mass of graphs containing
various nodes, and label scarcity would further aggravate the diffi-
culties. Moreover, quantifying an informative graph needs to consider
extra complex topological semantics of samples from both local and
global perspectives. To be more specific: (i) From a local view, an
informative graph itself should be distinct from the labeled graphs, since
similar graphs tend to have analogous properties. This considers the
sample–sample relationships from a local perspective; (ii) From a global
view, the representations of the whole collection of graphs should reflect
the task-oriented semantic structure of the dataset, enabling the graphs
to be classified properly, and instead the graphs with fuzzy semantic
prototypes are more instructive for model training. This considers the
sample–class relationships from a global perspective. Towards this end,
it is highly desirable to have a promising means to select informative
graphs from both local and global views.

Having realized the above challenges with existing methods, in this
paper, we propose a novel semi-supervised active learning framework
GraphSpa for graph-level classification, which develops an effective
fusion selection strategy from both local similarity and global semantic
structure. On the one hand, we first employ a random walk graph
kernel to calculate pairwise graph similarity and then select samples
minimizing the maximum similarity between input graphs and a queue
of labeled graphs following the Min-Max principle from a local view.
On the other hand, we measure the semantic discrepancy of label
distribution by comparing graph representations and class prototypes
at different optimization steps, and then select informative graphs with
larger semantic discrepancy from a global view. To fully leverage a
wealth of available unlabeled graphs, we develop a semi-supervised
active learning framework that augments our hybrid fusion selection
strategy coupled with graph contrastive learning to further enhance the
capability of semantic discrimination. In summary, we highlight our
contributions as follows:

• We develop an effective fusion selection strategy to select infor-
mative unlabeled graphs for active learning, which explores graph
semantics from both local and global views.

• We propose a novel semi-supervised active learning framework
based on our proposed fusion selection strategy, which integrates
contrastive learning and active learning for unlabeled graphs.

• Our approach has been proven superior to various state-of-the-
art methods through experiments conducted across a spectrum of
well-established benchmarks.

2. Related work

2.1. Graph neural networks

Graph Neural Networks (GNNs) have attracted considerable atten-
tion due to their capability of modeling graph-structured data [1,8,
18]. Typically, most existing methods [5,13,19] use a neighborhood
aggregation function to iteratively update the node representation by
aggregating the embeddings of its neighbors, and then condensing them
into a graph-level representation. For example, SUGAR [13] proposes to
2

learn powerful representations of sampled subgraphs and incorporates
self-supervised learning to enhance the performance. They obtain state-
of-the-art performance due to their efficacy in learning sophisticated
graph-level representations. However, these methods typically rely on
supervised training, demanding extensive labeled data for optimization,
a task that can be expensive and resource-intensive to annotate in
real-world scenarios. With GraphSpa, apart from learning graph-level
representations obtained by GNNs, we also benefit from active learning
to selectively annotate informative unlabeled data with limited budgets
in a semi-supervised framework.

2.2. Active learning

Our work is related to active learning, which attempts to anno-
tate samples progressively to achieve excellent performance at a low
annotation cost [15–17]. Most existing methods can be divided into
three categories: uncertainty-based methods [20–22], diversity-based
methods [23–25], and those that are based on model performance
change [26–28]. Uncertainty-based methods select the most uncertain
samples via using criteria such as maximum entropy or maximum
margin. For example, Wang et al. [20] integrate uncertainty, diver-
sity, and density in sample selection through sparse modeling using
Gaussian kernels for representing the uncertainty of unlabeled data.
Diversity-based methods choose diverse examples which can maximally
span the input space. For instance, Wang et al. [20] introduces two
diversity criteria, clustering-based and fuzzy rough set-based, for MIAL
using an SVM-based MIL classifier. These criteria enhance the selection
of bags by considering both informativeness and diversity. The last
category assesses the future status of the model and chooses exam-
ples which enable optimal model improvement. For example, Freytag
et al. [28] presents a novel active learning strategy that quantifies the
expected change in model outputs, encompassing prior methods relying
on expected model change and embracing the underlying data distri-
bution. Compared with existing approaches, our GraphSpa combines
the advantages of the first two methods from both global and local
perspectives respectively, and focuses on tackling the challenging graph
classification task with a minimal annotation cost.

2.3. Semi-supervised learning

Semi-supervised learning is another related topic to our study. Self-
training has been extensively studied for a long time [29,30]. These
methods mostly utilize the classifier to predict the categorization infor-
mation for unlabeled samples and then utilize the well-classified sam-
ples to supervise the optimization process. For example, Noisy Student
Training [30], an extension of self-training and distillation, employs
larger student models and introduces noise during learning. Consis-
tency learning is also widely used for semi-supervised learning [31,32].
These methods usually enforce the model to output consistent output
after adding the perturbation. For instance, Tarvainen et al. [32] intro-
duces Mean Teacher, a method that improves test accuracy by averag-
ing model weights instead of label predictions and allows training with
fewer labels compared to Temporal Ensembling [31]. In the literature,
several works have proposed to study semi-supervised graph classifi-
cation [33–36]. InfoGraph [33], GraphCL [34], JOAO [35] and Dual-
Graph [36] both extend graph contrastive learning to semi-supervised
scenarios and improve the classification performance. Additionally,
there exist some algorithms combining semi-supervised learning and
active learning [15–17,37,38]. For example, Gao et al. [15] propose a
cost-effective approach by integrating unlabeled sample selection and
model training, leveraging semi-supervised learning to distill informa-
tion from both labeled and unlabeled samples. TOD [16] centers on a
measure, which assesses sample loss through the evaluation of output
discrepancies at various optimization steps, serving as a lower bound
for accumulated sample loss. To step further, our work proposes a novel
fused active selection strategy to harvest maximum gain with minimum

cost while their works fail to enhance GNNs via effective interaction.
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Fig. 1. An illustration of the proposed fused active selection strategy. Our fusion selection strategy actively selects informative graphs from local similarity and global semantic
structure, respectively. Afterward, we combine the advantages of both worlds via a hybrid fusion strategy on unlabeled graphs and then update them to the labeled data pool.
3. Methodology

In this section, we first intuitively describe our GraphSpa and then
formally present our techniques. After that, overall model optimization
is introduced to perform a semi-supervised graph-level classification.

3.1. Problem formulation and preliminary

Let 𝐺 = (𝑉 ,𝐸) represent a graph, in which 𝑉 denotes the node
set and 𝐸 represents the edge set. 𝑥𝑣 ∈ R𝐹 is adopted to represent
the feature vector of 𝑣, in which 𝐹 denotes the feature dimension.
For active learning graph classification task, consider an unlabeled
data pool of graphs 𝑈 , where 𝑈 =

{

𝐺1,… , 𝐺
|𝑈 |

}

, and their labels
{𝑦1,… , 𝑦

|𝑈 |} cannot be observed. In each cycle, we aim to select a
fixed budget of examples from the unlabeled data pool 𝑈 and the
chosen examples will be annotated using an oracle, and then added into
the labeled data pool 𝐿. The budget size  is fixed, which is generally
much smaller than the size of the unlabeled data pool 𝑈 . Our purpose
is to learn a graph-level prediction model  ∶ 𝐺 → 𝑦 by selecting the
most informative unlabeled examples for additional annotation.

3.2. Overview

This paper proposes a semi-supervised active learning framework
GraphSpa as shown in Fig. 1. Previous methods utilize semi-supervised
learning to overcome the scarcity of data annotations in the graph
domain, which could suffer from biased and overconfident pseudo-
labels [2]. To tackle this, we propose to select informative graphs via
active learning, which would facilitate both industry and academic ap-
plications in practice. The core of GraphSpa is to study local similarity
and global semantic structure of the graphs, such that we can actively
select informative graphs. Specifically, GraphSpa explores local similar-
ity by a non-parameterized random walk kernel while the global seman-
tic structure is modeled via multiple prototypes. Further, we integrate
our fusion selection strategy into a unified semi-supervised framework.
Supervised learning and contrastive learning are combined jointly to
enhance the model optimization and improve the performance.

3.3. GNN encoder

Recently, graph neural networks [8] have gained increasing popu-
larity owing to their powerful ability to learn structured data, which
is capable of embedding graph structure into the learned node rep-
resentations via message passing mechanism [39]. Specifically, the
representation vector of a node 𝑣 at layer 𝑘 is represented by 𝐡(𝑘)𝑣 . For
each node 𝑣 ∈ 𝑉 , first the representations from its neighbors at layer
𝑘 − 1 would be aggregated. Then, the representation 𝐡(𝑘)𝑣 would be up-
dated by combining the node representation of 𝑣 in the previous layer
with the aggregated neighbor representation in an iterative manner.
Formally, 𝐡(𝑘)𝑣 is calculated as:

𝐡(𝑘) = (𝑘)
(

𝐡(𝑘−1),(𝑘)
(

{

𝐡(𝑘−1)
}

))

, (1)
3

𝑣 𝜃 𝑣 𝜃 𝑢 𝑢∈ (𝑣)
in which  (𝑣) collects the neighbors of 𝑣. Here (𝑘)
𝜃 and (𝑘)

𝜃 de-
notes the aggregation and combination functions at the 𝑘th layer,
respectively. At last, we derive the graph-level embedding vector by
aggregating all node embeddings at the last layer using a readout
operation as follows:

𝑓𝜃 (𝐺) = READOUT
({

𝐡(𝐾)
𝑣

}

𝑣∈𝑉
)

, (2)

in which 𝑓𝜃 (𝐺) is the graph-level representation, 𝜃 is the parameter
of encoder. The readout operation is taking the sum of all the node
representations in our implementation following recent works [40].

3.4. Local selection strategy

Intuitively, graphs with similar local structures should have similar
properties. On the contrary, a graph rich in information should be
dissimilar to existing labeled graphs to seek the maximum gain for
performance. For this purpose, we attempt to select informative graphs
based on local similarity. Specifically, we first construct an adaptive
queue 𝑞 that is randomly selected from the labeled data as anchor
graphs, and then updated following a first-in, first-out principle. In-
spired by the Min-Max principle [41], we select the unlabeled graphs
minimizing the maximum similarity between the input graphs and
the queue of labeled graphs, such that the selected graphs can better
represent the data distribution, providing more richness and diversity
with the same budget. Formally, we define a measurement indicating
the similarity from each input 𝐺 to the queue:

𝜙𝑙(𝐺) = max
𝐺′∈𝑞

Sim(𝐺,𝐺′), (3)

where Sim(⋅, ⋅) measures the similarity of two graphs and 𝐺′ ∈ 𝑞
is the graph in the queue. The graphs in the unlabeled pool with
lower local similarity will be selected for annotation and added to the
labeled pool. In other words, we choose a subset 𝑙 in the unlabeled
pool such that ∑

𝐺∈𝑙
𝜙𝑙(𝐺) is minimized according to the Min-Max

principle [41]. Specifically, we arrange the graph samples from the
unlabeled data pool into an ordered set using the aforementioned
local selection strategy. For different datasets, we apply appropriate
thresholds to select a subset that meets the criteria, forming the final 𝑙.
As limited annotation information is available, we measure the pairwise
similarity in a non-parameterized manner. Moreover, to capture the
local structure more effectively, we propose to employ the random walk
kernel, which is widely used in graph matching [7], to explore graph
topology information for similarity measurement.

Specifically, we first review the definition of graph direct product.
Considering two graph samples 𝐺 = (𝑉 ,𝐸) and 𝐺′ = (𝑉 ′, 𝐸′), their
direct product 𝐺× = (𝑉×, 𝐸×) is still a graph in which 𝑉× = {

(

𝑣, 𝑣′
)

∶
𝑣 ∈ 𝑉 ∧ 𝑣′ ∈ 𝑉 ′} and 𝐸× = {

{(

𝑣, 𝑣′
)

,
(

𝑢, 𝑢′
)}

∶ {𝑣, 𝑢} ∈ 𝐸 ∧
{

𝑣′, 𝑢′
}

∈ 𝐸′}. It has been proven that conducting a random walk on direct
product 𝐺× of 𝐺 and 𝐺′ is equivalent to running a concurrent random
walk on two original graphs [42]. Note that traditional random walk
kernels can count all pairs of matching walks on 𝐺 and 𝐺′. On this
basis, the number of matching random walks could be derived from
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the adjacency matrix 𝐀× when the starting and stopping probabilities
over nodes in original graphs are from uniform distributions. Then, the
𝑃 -step random walk kernel between 𝐺 and 𝐺′ can be written as:

𝑘
(

𝐺,𝐺′) =
|𝑉×|
∑

𝑖=1

|𝑉×|
∑

𝑗=1

[ 𝑃
∑

𝑝=0
𝜆𝑝𝐀

𝑝
×

]

𝑖𝑗

, (4)

in which 𝜆0,… , 𝜆𝑃 are positive, real-valued weights. Eq. (4) indicates
that the random walk kernel 𝑘

(

𝐺,𝐺′) considers the sum of kernel
values for the number of common walks of length from 1 to P. However,
considering all lengths simultaneously can incur a certain computa-
tional cost. To improve computational efficiency, we exactly calculate
the number of common walks with length 𝑝 between two graphs, where
we set 𝜆𝑃 = 1 in this case:

Sim(𝐺,𝐺′) = 𝑘(𝑝)
(

𝐺,𝐺′) =
|𝑉×|
∑

𝑖=1

|𝑉×|
∑

𝑗=1

[

𝐀𝑝
×
]

𝑖𝑗 . (5)

n this manner, we are capable of efficiently selecting informative
raphs by capturing topology information with a non-parameterized
andom walk kernel from the perspective of the local structure sim-
larity. For example, structural information indicates the property of
olecules and proteins, which is very crucial for effective graph classi-

ication. Our local selection strategy aims to select informative graphs
way from labeled graphs from the topological view.

.5. Global selection strategy

For the entire set of graphs, effective graph representations in
he embedding space should be able to reflect the global semantic
tructure of the data, so that the graph samples with similar semantic
roperties such as the same class label are compactly embedded. To this
nd, we introduce an additional set of model parameters to represent
he class prototypes of different labels in the latent space. They are
ormally defined as 𝐶 = {𝐜𝑙}𝐿𝑙=1 where 𝐿 denotes the class number.
he goal of global-semantic learning is to encourage the graphs to be
mbedded close to each other around corresponding class prototypes.
fter obtaining embedding 𝐳 of each graph 𝐺 based on the GNN-based
ncoder, the assignment probability for each graph is formalized as:

(𝑦 = 𝑙|𝐺) =
exp(𝐳⊤𝐜𝑙)

∑𝐿
𝑙′=1 exp(𝐳⊤𝐜

′
𝑙)
. (6)

here the prototypes {𝐜𝑙}𝐿𝑙=1 in our global selection strategy is used
o represent the centroids of different classes in the latent space. In
ur implementation, we randomly initialize these prototypes and then
pdate them using Adam optimizer by minimizing the cross-entropy
oss using Eq. (6) on labeled graphs.

Following [15], we believe that labeling examples with highly
nconsistency should of great value since these examples are different
o be optimized without supervised loss. Instead, querying an oracle to
nnotate these challenging samples can ensure the correctness of labels,
nd enable them to be beneficial for model training at the next cycle.
otivated by this, we introduce a simple measurement to calculate the

nconsistency of global predictions:

𝑔(𝐺) = ‖𝑝(𝑦|𝐺;𝛷𝑡) − 𝑝(𝑦|𝐺;𝛷𝑡−1)‖, (7)

where 𝛷 = {𝜃, 𝐶} denotes the set of the whole parameters and 𝛷𝑡
implies the parameters at the end of 𝑡th cycle. 𝑝(𝑦|𝐺;𝛷𝑡) = [𝑝(𝑦 =
1|𝐺;𝛷𝑡),… , 𝑝(𝑦 = 𝐿|𝐺;𝛷𝑡)] is the label distribution. The measurement
calculates the difference between assignment probabilities between two
cycles, which implies the stability of the assignment probability for
each graph. For this reason, the graphs in the unlabeled pool with
higher inconsistency will be regarded as rich in information. In other
words, we aim to choose a subset 𝑔 such that ∑

𝐺∈𝑔
𝜙𝑔(𝐺) is maxi-

mized. Specifically, we arrange the graph samples from the unlabeled
4

data pool into an ordered set using the aforementioned global selection m
strategy. For different datasets, we apply appropriate thresholds to
select a subset that meets the criteria, forming the final 𝑔 . In this
way, we are capable of selecting informative graphs by exploring the
graph’s semantic properties via multiple class prototypes from a global
perspective. Our global selection strategy is close to graph classification
since it focus on the assignment probability of each graph directly.
Take an example, when we cannot get consistent knowledge for some
molecules during our learning, we would consider them informative.

3.6. Hybrid fusion strategy

Either of the two selection strategies proposed above has its inherent
interest preference. Intuitively, we expect to sample unlabeled graphs
under the collaboration between both selection strategies to overcome
instability and bias. In particular, we develop three different hybrid
fusion strategies to combine the advantages of both worlds and couple
the information from both local and global perspectives for effective
active learning.

Intersection. A straightforward fusion way is to select the informative
graph only if it is considered reliable by both strategies. Specifically,
we first choose subset 𝑙 and 𝑔 following 𝜙𝑙 and 𝜙𝑔 according to Sec-
tions 3.4 and 3.5. Here, taking 𝑙 as an example, we arrange the
graph samples from the unlabeled data pool into an ordered set using
the aforementioned local selection strategy. For different datasets, we
apply appropriate thresholds to select a subset that meets the criteria,
forming the final 𝑙. On the other hand, 𝑔 is obtained using the
aforementioned global selection strategy, and then select the subset
ℎ = 𝑙 ∩ 𝑔 as the final informative graphs to be annotated by the
oracle, here the size of ℎ is equal to the number of graph samples
equired in each cycle of the active learning strategy. Note that when
wo sets have no interaction, we will attempt to loose the condition to
nlarge both two sets.

nion. It seems that directly using the intersection set of global and
ocal graph sets may ignore some good informative samples, leading
o some information loss and suboptimal performance. To this end,
n alternative fusion way is to select the informative graphs by both
trategies and choose the subset ℎ = 𝑙 ∪ 𝑔 as the final informative
raphs, where the acquisition of 𝑙 and 𝑔 is obtained is same as
he way in Intersection, except for selecting appropriate threshold
onditions, such that the size of ℎ is equal to the number of graph
amples required in each cycle of the active learning strategy.

ttention. It is often not appropriate to select the informative graphs
hrough the fixed strategies, so we further introduce some weights on
he two strategies as additional model parameters which are updated
uring model training. Formally, we introduce a learnable weight
ector 𝐰 = [𝑤1, 𝑤2]. As the weights are tailored for two different
trategies and shared across different graphs, this hybrid fusion strategy
nsures both flexibility and effectiveness. Specifically, our attention
trategy outputs the final score:

𝑎(𝐺) = 𝜎(𝑤1𝜙𝑙(𝐺) +𝑤2𝜙𝑔(𝐺)), (8)

here 𝜎 denotes the sigmoid function. The ground truth of 𝜙𝑎(𝐺) is
efined as the 1 − 𝑃 (𝑦 = 𝑦𝐺|𝐺) where 𝑦𝐺 is the label of 𝐺 since harder
amples with lower predictive accuracy indicate high values for active
earning. In practice, we make use of validation data with regression
oss for optimization of the weight vector and then similarly choose a
ubset ℎ which maximizes ∑𝐺∈ℎ

𝜙𝑎(𝐺), where the size of ℎ is equal
o the number of graph samples required in each cycle of the active
earning strategy.

Based on these three different fusion strategies, the selected graphs
an enhance the performance more effectively and efficiently. Be-
ides, note that our hybrid fusion strategy combines the diversity-based
ethod (i.e., the local strategy) and the uncertainty-based method

i.e., the global strategy), which can provide a comprehensive criterion
o select more valuable informative graphs to benefit the process of
odel training.
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Fig. 2. An illustration of a semi-supervised active learning framework. The framework coupled with our fusion selection strategy in the active learning module is optimized by
supervised loss as well as contrastive loss based on graph representations in the embedding space via graph augmentations.
3.7. Semi-supervised active learning framework

In this section, we integrate the above hybrid fusion strategy into a
unified semi-supervised active learning framework in an effective way,
as shown in Fig. 2. There are always a wealth of available unlabeled
graphs that usually exist in many domains. Although their labels are
unknown, the structures of these unlabeled graphs can usually be
adopted to help learn effective graph-level representations. Towards
this end, we seek to leverage this information to further overcome the
severe label scarcity.

Contrastive Learning. Inspired by recent graph contrastive learn-
ing [34,35], we attempt to fully leverage the unlabeled data with
contrastive learning to enhance the model training. Specifically, our
model involves graph augmentations to build generalized graph-level
representation pairs. Typically, there are four basic data augmentation
strategies: (1) Edge deletion eliminates several edges from the graph at
random. (2) Node deletion samples several nodes and eliminates them
and their connected edges from the graph. (3) Attribute masking masks
partial attributes of selected vertices at random. (4) Subgraph selects a
subgraph using random walk. In practice, we build augmented graphs
by choosing one of these operations at random.

To begin, we conduct the above stochastic graph augmentations for
each graph, producing a positive pair, i.e., �̂�𝑖 and �̂�𝑗 . After then, the
GNN-based encoder 𝑓𝜃(⋅) is used to extract graph-level representations
𝐳𝑖 and 𝐳𝑗 for augmented graphs �̂�𝑖 and �̂�𝑗 . We adopt the noise-
contrastive estimation loss [43], which encourages us to enlarge the
similarity between positive pairs, i.e., {𝐳𝑖, 𝐳𝑗} with the comparison to
negative pairs. To generate negative pairs, we first construct a mini-
batch containing 𝑀 graphs, which results in 2𝑀 augmented samples,
i.e., {�̂�𝑚,𝑖, �̂�𝑚,𝑗}𝑀𝑚=1. Then for each positive pair �̂�𝑚,𝑖 and �̂�𝑚,𝑗 , the other
𝑀 −1 augmented graphs in the minibatch are considered as negatives.
Let 𝐳𝑚,𝑖 ⋆ 𝐳𝑚,𝑗 compute the similarity between 𝐳𝑚,𝑖 and 𝐳𝑚,𝑗 . If 𝐳𝑖 and
𝐳𝑗 are re-annotated as 𝐳𝑚,𝑖 and 𝐳𝑚,𝑗 for the 𝑚th graph, respectively, we
compare two graph representations for the 𝑚th graph:

𝓁𝑐𝑜𝑛 = − log 𝑒𝐳𝑚,𝑖⋆𝐳𝑚,𝑗∕𝜏
∑𝑀

𝑚′=1 𝑒
𝐳𝑚,𝑖⋆𝐳𝑚′ ,𝑗∕𝜏

, (9)

where 𝜏 is a temperature parameter set to 0.5 following [34,35].

Supervised Learning. At each cycle, we minimize the supervised
objective given the labeled set 𝐿 as follows:

𝓁𝑠𝑢𝑝 =
1

|

|

𝐿|
|

∑

𝐺𝑗∈𝐿

[

− log 𝑝
(

𝑦𝑗 ∣ 𝐺𝑗
)]

, (10)

where in the first cycle, the model is trained by annotating a random
subset of the unlabeled data.

Joint Optimization Loss. By integrating the supervised learning loss
and self-supervised contrastive learning loss, we minimize an overall
learning objective at each cycle as follows:

𝓁 = 𝓁 + 𝓁 . (11)
5

𝑠𝑢𝑝 𝑐𝑜𝑛
Algorithm 1 Learning Algorithm of GraphSpa
Input: Unlabeled pool 𝑈 . The total number of cycles 𝑅.
Parameter: GNN module parameter 𝜃. Class prototype parameter 𝐶.
Output: Jointly learned 𝑝 (𝑦|𝐺)
1: Initialize model parameter.
2: Sample samples from 𝑈 and add to labeled pool 𝐿.
3: for 𝑟 = 1, 2,⋯ , 𝑅 do
4: while not convergence do
5: Forward propagation through graph augmentation and GNN-

based encoder.
/* Eq.(11) */

6: Calculate loss function in Eq. (11).
7: Update parameters through back-propagation.
8: end while

/* Eq.(3), Eq.(7) */
9: Choose subset 𝑙 and 𝑔 following 𝜙𝑙 and 𝜙𝑔 . /* Eq.(8) */

10: Select subset ℎ through hybrid fusion strategy.
11: Update queue with ℎ following a first-in, first-out manner.
12: end for

Table 1
Statistics of the datasets.

Datasets Graph Num. Avg. nodes Avg. edges Classes

PROTEINS 1113 39.06 72.82 2
DD 1178 284.32 715.66 2
IMDB-B 1000 19.77 96.53 2
IMDB-M 1500 13.00 65.94 3
REDDIT-B 2000 429.63 497.75 2
REDDIT-M-5k 4999 508.52 594.87 5

In this way, we are able to fully leverage the unlabeled data com-
bined with our effective fused active selection strategy in our semi-
supervised active learning framework. The training procedure of our
GraphSpa is shown in Algorithm 1.

4. Experiment

4.1. Experimental settings

Datasets. To evaluate the effectiveness of our GraphSpa, we conduct
experiments on six benchmark datasets [44], including two bioinfor-
matics datasets (i.e., PROTEINS and DD), four social network datasets
(i.e., IMDB-B, IMDB-M, REDDIT-B, and REDDIT-M-5k). The statis-
tics of these datasets are summarized in Table 1. Following previous
works [33], we use all-ones embeddings as initial node features if their
attributes are not accessible. For each dataset, we randomly select 70%
and 20% of the whole data to constitute the train set and test set,
and treat the remaining as validation set to tune hyper-parameters. We
allocate 1/7 of the train set (i.e., 10% of the whole dataset) as a budget
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Table 2
Performance comparison on six benchmark datasets over five runs (in %).
Method PROTEINS DD IMDB-B IMDB-M REDDIT-B REDDIT-M-5k

GK [45] 64.8 ± 2.3 53.2 ± 1.4 54.5 ± 1.7 32.3 ± 2.4 57.8 ± 2.7 34.3 ± 0.8
SP [46] 65.2 ± 2.6 55.3 ± 2.1 52.0 ± 1.6 37.7 ± 1.9 68.3 ± 3.7 30.4 ± 1.3
WL [47] 63.5 ± 1.6 57.3 ± 1.2 58.1 ± 2.3 33.3 ± 1.4 61.8 ± 1.3 37.0 ± 0.9
DGK [48] 64.4 ± 1.7 60.5 ± 0.8 55.6 ± 2.2 34.6 ± 1.3 66.2 ± 2.4 36.5 ± 2.4
Sub2Vec [49] 52.7 ± 4.5 46.4 ± 3.2 44.9 ± 3.5 31.8 ± 2.7 63.5 ± 2.3 35.1 ± 1.5
Graph2Vec [50] 63.1 ± 1.8 53.7 ± 1.6 61.2 ± 2.6 38.1 ± 2.2 67.7 ± 2.3 38.1 ± 1.4

EntMin [29] 62.7 ± 2.7 59.8 ± 1.3 67.1 ± 3.7 37.4 ± 1.2 66.9 ± 3.5 38.7 ± 2.8
𝛱-Model [32] 63.2 ± 1.2 61.8 ± 1.8 67.0 ± 3.4 39.0 ± 3.5 67.1 ± 2.9 39.0 ± 1.1
Mean-Teacher [32] 64.3 ± 2.1 60.6 ± 1.8 66.4 ± 2.7 38.8 ± 3.6 68.7 ± 1.3 39.2 ± 2.1
VAT [51] 64.1 ± 1.2 59.9 ± 2.6 67.2 ± 2.9 39.6 ± 1.4 70.8 ± 4.1 38.9 ± 3.2

InfoGraph [33] 68.2 ± 0.7 67.5 ± 1.4 71.8 ± 2.3 42.3 ± 1.8 75.2 ± 2.4 41.5 ± 1.7
GraphCL [34] 69.4 ± 0.8 68.7 ± 1.2 71.2 ± 2.5 43.7 ± 1.3 75.2 ± 1.7 42.3 ± 0.9
JOAO [35] 68.7 ± 0.9 67.9 ± 1.3 71.0 ± 1.9 42.6 ± 1.5 74.8 ± 1.6 42.1 ± 1.2
DualGraph [36] 70.1 ± 1.2 69.8 ± 0.8 72.1 ± 0.7 𝟒𝟒.𝟖 ± 𝟎.𝟒 75.4 ± 1.4 42.9 ± 1.4
GHNN [52] 71.1 ± 0.3 70.6 ± 0.4 72.3 ± 0.6 42.8 ± 0.4 76.3 ± 0.7 𝟒𝟒.𝟏 ± 𝟎.𝟓

ASGN [2] 67.7 ± 1.2 68.5 ± 0.6 70.6 ± 1.4 41.2 ± 1.4 73.1 ± 2.3 42.2 ± 0.8
MCDAL [22] 70.7 ± 1.0 69.8 ± 0.8 72.0 ± 1.3 42.3 ± 0.9 75.2 ± 0.9 42.9 ± 0.8
GALAXY [53] 70.2 ± 0.5 70.3 ± 0.7 70.8 ± 0.8 43.5 ± 1.3 75.3 ± 0.6 43.4 ± 0.4
ASGNN [54] 71.0 ± 0.7 71.1 ± 0.9 71.0 ± 1.0 44.1 ± 0.7 73.5 ± 0.7 43.2 ± 0.5

GraphSpa 𝟕𝟏.𝟐 ± 𝟎.𝟕 𝟕𝟏.𝟒 ± 𝟎.𝟖 𝟕𝟐.𝟑 ± 𝟏.𝟏 44.5 ± 0.6 𝟕𝟔.𝟓 ± 𝟎.𝟒 44.0 ± 0.6
p-value 0.08 0.03 0.18 0.42 0.04 0.21
let

,

available for label annotation, while the remaining data in the train set
is considered as the unlabeled set.

Baselines. To show the superiority of our approach, we compare our
GraphSpa with competitive baselines which can be boiled down to
four categories, i.e., traditional graph approaches, traditional semi-
supervised approaches, graph-specific semi-supervised approaches and
active learning approaches. Traditional graph approaches include Graph
Kernel (GK) [45], Shortest Path Kernel (SP) [46], Weisfeiler–Lehman
(WL) Kernel [47], DGK [48], Sub2Vec [49], and Graph2Vec [50]. Tra-
ditional semi-supervised approaches include EntMin [29], 𝛱-Model [32]
Mean-Teacher [32] and VAT [51]. Graph-specific semi-supervised ap-
proaches include InfoGraph [33], GraphCL [34], JOAO [35], Dual-
Graph [36], and GHNN [52]. Active learning approaches include ASGN
[2], MCDAL [22], GALAXY [53] and ASGNN [54].

Parameter Settings. All the experiments are implemented using Py-
Torch. Following previous works [33], GIN [40] is adopted as the GNN
encoder 𝑓𝜃 . We search for the optimal parameters on the validation
set and evaluate the model on the test set. The total number of active
learning cycles 𝑅 is set to 9, while the number of data samples queried
in each cycle is set to ∕(𝑅 + 1). The random walk length 𝑝 is set to 3.

o promise a fair comparison, the batch size is set to 64 and the total
umber of epochs is set to 100 for all datasets. The dimension of hidden
mbeddings is set to 64 for all datasets. We use the ‘‘Intersection’’ as
ur default hybrid strategy in our experiment. The parameters for all
aseline approaches are carefully tuned following their corresponding
apers to achieve optimal performance.

.2. Performance comparison

In Table 2, we summarize the quantitative findings of
emi-supervised graph classification. Here we compare our method
raphSpa with all baseline methods in a fair setting. For example,
hen we have 10% of the total dataset as labeling budgets, GraphSpa,
SGN, MCDAL, GALAXY and ASGNN start the training with a randomly
elected 1% labeling budgets and conduct active learning selection until
0% labeling budgets are utilized, while InfoGraph, GraphCL, JOAO,
ualGraph and GHNN are directly trained with 10% labeling budgets.
ote that the training of the latter does not involve active learning, but
ll methods are conducted with the same budgets for a fair comparison.
6

rom the comprehensive views, we have the following observations:
• The majority of traditional graph methods are inferior to other
approaches, which indicates that these graph methods may be in-
effective in capturing effective information via GNNs. Moreover,
features in these methods are typically heuristic, which results in
worse generalization ability.

• A general observation is that graph-specific semi-supervised learn-
ing approaches perform better than traditional semi-supervised
learning techniques by a significant margin, which verifies that
models specifically designed for graph-structured data have
strong representation capability in capturing effective informa-
tion of the graph topology and node attributes.

• By incorporating contrastive learning into GNNs, the recent state-
of-the-art method GHNN has obtained high enough performance,
which pushes away the other graph-specific semi-supervised
learning baselines (InfoGraph, GraphCL, JOAO and DualGraph),
sufficiently showing the effectiveness of the instance discrim-
ination principle for contrastive learning and complementary
two-branch learning framework.

• For four active learning baselines, the latest ASGNN achieves the
best results on most datasets. Similar to our framework, it also
simultaneously considers the uncertainty of sample predictions
and selects representative samples with diversity, maximizing
the effectiveness of the active learning strategy. The other three
baselines (ASGN, MCDAL and GALAXY) only take into account
partial factors, leading to sub-optimal results.

• Overall, from the results, it can be observed that our framework
GraphSpa outperforms the baselines on most datasets, showing
the superiority and efficacy of our approach. We attribute the
performance gain to two factors: (i) The effective sample selection
strategy. Our selection strategy explores both local similarity
and global semantic structure, sampling informative graphs for
annotation. (ii) The semi-supervised active learning framework.
We integrate both self-supervised learning and active learning in
a principled manner which can be beneficial for classification.

• We have conducted statistical analysis of Wilcoxon tests to justify
that the gains with the best baseline are statistically significant
with 𝑝-value < 0.1. From the Table 2, We observed statistically
significant improvements in the performance of our model on
three out of six datasets. The lack of significance on the remaining
datasets may be attributed to the limited gains achieved solely
through active learning, as our base model is relatively basic.
Introducing more sophisticated self-supervised techniques to fully
harness unlabeled graphs might further enhance performance.



Pattern Recognition 153 (2024) 110567W. Ju et al.
Table 3
Performance comparison under different dataset split settings over five runs (in %).

Methods PROTEINS DD IMDB-B IMDB-M REDDIT-B REDDIT-M-5k

MCDAL 70.4 ± 1.1 70.8 ± 2.1 70.0 ± 2.7 44.1 ± 2.1 75.6 ± 1.0 43.2 ± 1.4
ASGNN 71.2 ± 1.6 71.0 ± 1.6 69.1 ± 3.0 43.9 ± 1.4 75.3 ± 0.9 43.6 ± 1.0
GraphSpa 𝟕𝟏.𝟖 ± 𝟎.𝟗 𝟕𝟏.𝟗 ± 𝟏.𝟐 𝟕𝟎.𝟔 ± 𝟐.𝟕 𝟒𝟒.𝟔 ± 𝟏.𝟏 𝟕𝟔.𝟏 ± 𝟎.𝟗 𝟒𝟒.𝟐 ± 𝟎.𝟖
Fig. 3. Performance on datasets w.r.t. the amounts of annotation budget (i.e., 5%, 10%, 20%, 30%) and all the unlabeled data.
• Finally, we analyze the impact of different data splits in Table 3.
We conduct five random splits, recording the mean and standard
deviation. Here, we compare our GraphSpa model with the two
latest methods (MCDAL and ASGNN), and the results consistently
demonstrate our model’s superiority across all datasets. This fur-
ther showcases the robustness and excellence of our framework
and the proposed active learning strategy.

Influence of different labeling budget rates. In this section, we show the
model performance with different rates of labeling budgets (i.e., labeled
data). As illustrated in Figure Fig. 3, the following observations can be
inferred from the results:

• Overall, the findings indicate that the performance of all methods
improves with the increase of the number of accessible label-
ing budgets. The reason is that graph classification methods are
inherently data-driven, and labeling budgets contain the most dis-
criminative signals for category analysis, showing that increasing
the number of labeling budgets is an effective way for training.

• Among all the methods, our GraphSpa consistently achieves the
best results with the increase of labeling budgets, which indicates
that actively selecting informative graphs via our proposed strat-
egy further improves ability by selecting the most representative
samples with minimal labeling costs, thereby outperforming the
baselines with an even greater margin.

Effectiveness analysis of the proposed active learning methods. To better il-
lustrate the effectiveness and superiority of the active learning strategy
proposed in our framework, we combine some representative baseline
methods (InfoGraph and GraphCL) with our proposed active learning
strategy. In other words, we train these baseline methods along with
the graph samples selected through active learning in our GraphSpa
for fair comparison. As shown in Table 4, we observe consistent perfor-
mance improvements when both GraphCL and InfoGraph are equipped
7

Table 4
Effectiveness analysis of the proposed active learning module (in %).

Methods PROTEINS DD IMDB-B IMDB-M REDDIT-B REDDIT-M-5k

InfoGraph 68.2 ± 0.7 67.5 ± 1.4 71.8 ± 2.3 42.3 ± 1.8 75.2 ± 2.4 41.5 ± 1.7
InfoGraph w A 70.3 ± 0.8 69.1 ± 1.5 72.0 ± 1.8 43.2 ± 1.6 76.3 ± 1.9 42.9 ± 1.5
GraphCL 69.4 ± 0.8 68.7 ± 1.2 71.2 ± 2.5 43.7 ± 1.3 75.2 ± 1.7 42.3 ± 0.9
GraphCL w A 𝟕𝟏.𝟕 ± 𝟏.𝟎 71.0 ± 1.1 72.2 ± 1.9 44.0 ± 1.0 𝟕𝟕.𝟏 ± 𝟏.𝟕 𝟒𝟒.𝟏 ± 𝟎.𝟗

GraphSpa 71.2 ± 0.7 𝟕𝟏.𝟒 ± 𝟎.𝟖 𝟕𝟐.𝟑 ± 𝟏.𝟏 𝟒𝟒.𝟓 ± 𝟎.𝟔 76.5 ± 0.4 44.0 ± 0.6

with our active learning strategy, emphasizing the effectiveness of our
proposed active learning strategy. However, we find that GraphCL
with A outperforms our GraphSpa on certain datasets, which is natural
as our framework employs a basic model combined with an active
learning strategy for training, while other baselines incorporate their
respective more complex techniques. Nevertheless, our method still
achieves optimality on many datasets, further affirming the superiority
of our active learning strategy.

4.3. Ablation study

In this section, we investigate a few variants to demonstrate how
every part of our model affects the performance:

• GNN-Sup. Our base model, which trains a GNN solely on initial
random labeled data in a fully supervised way.

• GraphSpa w/o A. We do not use an active learning strategy to
select data for annotation.

• GraphSpa w/o L.We remove the local selection strategy and only
adopt the global selection strategy.

• GraphSpa w/o G. We remove the global selection strategy and
only adopt the local selection strategy.

• GraphSpa w/o C. We remove the contrastive learning loss and
only adopt a hybrid active learning strategy.
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Table 5
Ablation study of several model variants (in %).
Methods PROTEINS DD IMDB-B IMDB-M REDDIT-B REDDIT-M-5k

GNN-Sup 63.3 ± 1.4 62.5 ± 1.5 63.4 ± 2.1 39.2 ± 1.6 69.8 ± 1.1 38.6 ± 2.5
GraphSpa w/o A 66.7 ± 1.6 65.4 ± 1.7 64.5 ± 1.3 41.2 ± 1.1 71.3 ± 0.8 36.7 ± 1.3
GraphSpa w/o L 70.1 ± 1.3 69.8 ± 1.2 70.2 ± 1.0 40.6 ± 1.7 74.5 ± 1.4 39.9 ± 1.0
GraphSpa w/o G 69.6 ± 1.2 69.3 ± 1.1 71.1 ± 0.7 42.0 ± 1.8 72.3 ± 1.6 36.4 ± 1.8
GraphSpa w/o C 70.7 ± 1.3 70.2 ± 1.2 71.7 ± 1.0 43.5 ± 2.8 75.8 ± 2.2 42.1 ± 1.5

Full model (Ours) 𝟕𝟏.𝟐 ± 𝟎.𝟕 𝟕𝟏.𝟒 ± 𝟎.𝟖 𝟕𝟐.𝟑 ± 𝟏.𝟏 𝟒𝟒.𝟓 ± 𝟎.𝟔 𝟕𝟔.𝟓 ± 𝟎.𝟒 𝟒𝟒.𝟎 ± 𝟎.𝟔
Table 6
Performance w.r.t. the embedding dimensions on all datasets (in %).

Embedding
dimensions

8 16 32 64 128 256

PROTEINS 66.8 ± 1.7 68.8 ± 0.9 70.3 ± 1.4 71.2 ± 0.7 71.0 ± 1.2 70.2 ± 1.3
DD 70.6 ± 1.2 71.3 ± 0.8 70.8 ± 1.1 71.4 ± 0.8 71.1 ± 0.7 71.7 ± 0.9
IMDB-B 68.2 ± 1.4 70.3 ± 1.2 72.2 ± 0.9 72.3 ± 1.1 72.5 ± 1.0 72.3 ± 0.8
IMDB-M 39.3 ± 0.6 41.4 ± 0.9 43.8 ± 0.5 44.5 ± 0.6 44.1 ± 0.8 44.3 ± 0.5
REDDIT-B 73.7 ± 1.1 74.5 ± 0.8 75.7 ± 0.5 76.5 ± 0.4 76.3 ± 0.7 76.4 ± 0.6
REDDIT-M-5k 37.3 ± 1.2 40.2 ± 0.7 43.5 ± 0.7 44.0 ± 0.6 44.3 ± 0.4 44.2 ± 0.5

Table 7
Performance w.r.t. the random walk length on all datasets (in %).

Random walk
length

1 2 3 4 5 6

PROTEINS 70.5 ± 0.8 71.1 ± 1.2 71.2 ± 0.7 71.0 ± 1.0 71.0 ± 1.5 70.0 ± 0.9
DD 69.4 ± 1.3 71.2 ± 0.7 71.4 ± 0.8 71.6 ± 0.7 71.2 ± 0.6 71.0 ± 0.8
IMDB-B 69.5 ± 0.9 71.3 ± 1.0 72.3 ± 1.1 72.0 ± 1.2 71.5 ± 1.3 71.7 ± 1.1
IMDB-M 43.3 ± 0.6 44.4 ± 0.5 44.5 ± 0.6 44.2 ± 0.5 43.8 ± 0.7 44.0 ± 0.5
REDDIT-B 75.7 ± 0.8 76.6 ± 0.8 76.5 ± 0.4 76.6 ± 0.7 76.2 ± 0.8 75.6 ± 1.2
REDDIT-M-5k 41.8 ± 1.0 43.1 ± 0.7 44.0 ± 0.6 43.4 ± 0.8 43.6 ± 0.7 43.1 ± 0.9

The results of the model variants are summarized in Table 5. First,
e can observe that our full model outperforms GraphSpa w/o A

onsistently, which indicates that the active learning strategy plays a
ital role in our semi-supervised graph classification, thus implying the
ffectiveness of our hybrid selection strategy. Second, the full model
lso outperforms both GraphSpa w/o L and GraphSpa w/o G, showing
hat both the local selection strategy and global selection strategy
re indispensable for improving the performance. Moreover, GraphSpa
/o L performs better than GraphSpa w/o G, which demonstrates the

uperiority of the uncertainty in the global selection strategy. Third,
ith contrastive loss, GraphSpa w/o A outperforms GNN-Sup and the

ull model outperforms GraphSpa w/o C, both of these comparisons
upport our assumption that contrastive loss may be beneficial in
emi-supervised scenarios, which aligns with our expectations.

.4. Parameter analysis

Here we study how the performance of GraphSpa varies with dif-
erent parameter settings. Specifically, we investigate the impact of the
mbedding dimensions of hidden layers 𝑑 in Table 6, the random walk

length 𝑝 in Table 7 and different hybrid strategies in Table 8.

Impact of the embedding dimensions. We begin by examining the effect
of the embedding dimensions of hidden layers 𝑑. We hypothesize
that increasing the embedding dimensions would enhance the model’s
capacity and, thus, its performance. We fix all other parameters to
their optimal values and vary 𝑑 in the range of {8, 16, 32, 64, 128}.
Our observations indicate that enlarging the embedding size generally
results in performance improvements until a point of saturation is
reached. The model exhibits a certain level of fluctuation, or even
a decline, when using particularly large embedding dimensions. The
possible reason is that the model has reached saturation, and further
increasing the dimension may lead to underfitting.
8

Table 8
Impact of three hybrid fusion strategies on three datasets (in %).

Strategies PROTEINS DD IMDB-B IMDB-M REDDIT-B REDDIT-M-5k

Intersection 71.2 ± 0.7 71.4 ± 0.8 72.3 ± 1.1 44.5 ± 0.6 76.5 ± 0.4 44.0 ± 0.6
Union 71.6 ± 1.1 71.0 ± 0.9 72.0 ± 0.8 43.8 ± 0.8 75.9 ± 0.5 43.7 ± 0.7
Attention 70.7 ± 1.6 71.5 ± 0.8 72.6 ± 1.2 44.2 ± 1.3 76.1 ± 0.5 43.9 ± 0.6

Table 9
Comparisons of run time (second) needed per active learning cycle.

Methods PROTEINS DD IMDB-B IMDB-M REDDIT-B REDDIT-M-5k

MCDAL 44.4 62.0 44.3 56.4 34.3 180.6
ASGNN 56.3 78.1 36.0 63.8 72.6 312.3
GraphSpa 27.1 51.0 26.4 46.9 32.6 206.3

Impact of the random walk length. We conduct further investigation
on the impact of the random walk length 𝑝 in the local selection
strategy. By varying 𝑝 in the range of {1, 2, 3, 4, 5, 6} while keeping the
other parameters constant, we observe that increasing 𝑝 improves the
model’s performance, particularly when 𝑝 is small. This suggests that
our random walk kernel can effectively detect more valid substructures
with larger lengths, thereby enhancing the learning of graph topology.
However, if 𝑝 is too large, it may lead to a decrease in performance.
This may be due to the fact that excessively long random walks are
less stable in distinguishing graph similarities.

Impact of different hybrid fusion strategies. We finally investigate the
impact of different hybrid fusion strategies for our approach. As il-
lustrated in Table 8, our results indicate that the performance of
our approach is not significantly affected by different hybrid fusion
strategies, suggesting the robustness of our fusion selection strategy.
Interestingly, the results of the ‘‘Union’’ strategy were lower than those
of the other two strategies. This may be due to the selected samples not
comprehensively considering the agreement of both strategies, leading
to biased sample selection.

4.5. Runtime analysis

Here, we compare our proposed GraphSpa method with the two
latest active learning methods. We test the runtime of the selection
strategy for each cycle of active learning to further demonstrate the
efficiency of our proposed strategy. As shown in Table 9, we can
observe that the runtime of our active learning selection strategy is
the shortest on almost all datasets, fully illustrating the robustness and
efficiency of our selection strategy. This makes it more suitable for
many practical applications, especially in fields prioritizing efficiency.

4.6. Case study

We analyze the learning curves and convergence depicted in Fig. 4.
We take the DD as an example, and compare our proposed GraphSpa
with the representative baseline Entropy, which is widely considered
as an uncertainty-based baseline. It chooses uncertain samples with
the greatest entropy in terms of predicted class probabilities. As can
be seen, both methods achieved a significant reduction in train and
test losses within only a few iterations and eventually converged well.
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Fig. 4. Loss w.r.t. two selection strategies on DD.
This suggests that selecting samples via active learning can indeed pro-
vide abundant supervision signals to guide the gradient optimization
effectively. Additionally, the losses of GraphSpa decrease more steadily
than those of the baseline for each cycle, indicating that GraphSpa may
choose more relevant graphs beneficial to model training in each cycle.
This case further demonstrates the superiority of our hybrid fusion
selection strategy, which considers both local similarity and global
semantic structure.

5. Discussion

5.1. Potential applicability

Our proposed active learning strategy can be highly applicable
in real-life use cases for graph-level classification, offering several
advantages in various domains as follows:

• Resource Allocation: In resource-constrained environments, our
framework helps optimize the allocation of labeling resources. It
ensures that limited resources are spent on the most critical and
informative graphs, making it a valuable tool for organizations
with budget constraints.

• Medicine and Biology: Our framework is instrumental in ad-
vancing bioinformatics and medical research, offering invaluable
contributions to fields such as protein-protein interaction pre-
diction and drug discovery. It assists in prioritizing experiments
or data collection for the most promising candidates, reducing
experimental costs.

• Natural Language Processing (NLP): In NLP tasks that involve
graph representations, our proposed framework aids in docu-
ment classification, entity recognition, or relation extraction by
prioritizing the labeling of documents or entities that are most
informative for the task.

• Environmental Monitoring: Our framework can be applied to en-
vironmental data analysis, such as ecosystem modeling or climate
forecasting, by selecting the most critical data points or sensor
readings for labeling to improve predictive accuracy.

5.2. Potential limitation

On the one hand, our active learning strategy involves using graph
kernel techniques to compute the similarity between graphs. However,
this may pose certain limitations when dealing with extremely large-
scale graph data in practical deployments. In the future, we can explore
the use of learnable graph kernel techniques to flexibly model the
similarity computation between graphs, effectively increasing the scal-
ability of our strategy. On the other hand, our active learning strategy
requires calculating the probability prediction differences of graph
samples between adjacent cycles, which could potentially increase
the computational cost of the model. Additionally, besides the active
learning strategy, we currently employ relatively common contrastive
9

learning techniques to make the most of the abundant unlabeled graph
data present in real-world applications. However, this approach may
not fully and effectively extract the inherent semantics of the data. In
future work, we can explore more sophisticated techniques to uncover
more comprehensive semantic information from graph data, such as
large-scale pretraining.

6. Conclusion

This paper tackles the task of semi-supervised graph-level classifi-
cation under limited labeling budgets, which is a practical yet under-
explored problem. To address this challenge, we propose GraphSpa, an
effective approach that actively selects informative graphs for subse-
quent training using our hybrid fusion selection strategy that combines
local similarity and global semantic structure. Furthermore, we intro-
duce a novel semi-supervised active learning framework that incor-
porates graph contrastive learning into active learning. Our extensive
experiments on a range of well-known benchmark datasets demonstrate
the effectiveness of our proposed GraphSpa.

Going forward, we plan to extend our method to real-world appli-
cations such as molecular conformation generation and protein func-
tion prediction. We also aim to enhance our approach by incorporat-
ing graph similarity learning and advanced bootstrapping theories to
improve sample selection.
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