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A B S T R A C T

Graph representation learning aims to effectively encode high-dimensional sparse graph-structured data into
low-dimensional dense vectors, which is a fundamental task that has been widely studied in a range of fields,
including machine learning and data mining. Classic graph embedding methods follow the basic idea that the
embedding vectors of interconnected nodes in the graph can still maintain a relatively close distance, thereby
preserving the structural information between the nodes in the graph. However, this is sub-optimal due to: (i)
traditional methods have limited model capacity which limits the learning performance; (ii) existing techniques
typically rely on unsupervised learning strategies and fail to couple with the latest learning paradigms; (iii)
representation learning and downstream tasks are dependent on each other which should be jointly enhanced.
With the remarkable success of deep learning, deep graph representation learning has shown great potential
and advantages over shallow (traditional) methods, there exist a large number of deep graph representation
learning techniques have been proposed in the past decade, especially graph neural networks. In this survey,
we conduct a comprehensive survey on current deep graph representation learning algorithms by proposing
a new taxonomy of existing state-of-the-art literature. Specifically, we systematically summarize the essential
components of graph representation learning and categorize existing approaches by the ways of graph neural
network architectures and the most recent advanced learning paradigms. Moreover, this survey also provides
the practical and promising applications of deep graph representation learning. Last but not least, we state
new perspectives and suggest challenging directions which deserve further investigations in the future.
1. Introduction

Graphs have recently emerged as a powerful tool for representing a
variety of structured and complex data, including social networks, traf-
fic networks, information systems, knowledge graphs, protein–protein
interaction networks, and physical interaction networks. As a kind of
general form of data organization, graph structures are capable of
naturally expressing the intrinsic relationship of these data, and thus
can characterize plenty of non-Euclidean structures that are crucial in
a variety of disciplines and domains due to their flexible adaptability.
For example, to encode a social network as a graph, nodes on the graph
are used to represent individual users, and edges are used to represent
the relationship between two individuals, such as friends. In the field
of biology, nodes can be used to represent proteins, and edges can be
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used to represent biological interactions between various proteins, such
as the dynamic interactions between proteins. Thus, by analyzing and
mining the graph-structured data, we can understand the deep meaning
hidden behind the data, and further discover valuable knowledge, so as
to benefit society and human beings.

In the last decade years, a wide range of machine learning algo-
rithms have been developed for graph-structured data learning. Among
them, traditional graph kernel methods (Gärtner, Flach, & Wrobel,
2003; Kashima, Tsuda, & Inokuchi, 2003; Shervashidze, Schweitzer,
Van Leeuwen, Mehlhorn, & Borgwardt, 2011a; Shervashidze, Vish-
wanathan, Petri, Mehlhorn, & Borgwardt, 2009) usually break down
graphs into different atomic substructures and then use kernel func-
tions to measure the similarity between all pairs of them. Although
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graph kernels could provide a perspective on modeling graph topology,
these approaches often generate substructures or feature represen-
tations based on given hand-crafted criteria. These rules are rather
heuristic, prone to suffer from high computational complexity, and
therefore have weak scalability and subpar performance.

In the past few years, graph embedding algorithms (Ahmed, Sher-
vashidze, Narayanamurthy, Josifovski, & Smola, 2013; Grover &
Leskovec, 2016; Perozzi, Al-Rfou, & Skiena, 2014; Tang, Qu and Mei,
2015; Tang et al., 2015; Wang, Cui, & Zhu, 2016) have ever-increasing
emerged, which attempt to encode the structural information of the
graph (usually a high-dimensional sparse matrix) and map it into
a low-dimensional dense vector embedding to preserve the topology
information and attribute information in the embedding space as much
as possible, so that the learned graph embeddings can be naturally
integrated into traditional machine learning algorithms. Compared to
previous works which use feature engineering in the pre-processing
phase to extract graph structural features, current graph embedding
algorithms are conducted in a data-driven way leveraging machine
learning algorithms (such as neural networks) to encode the struc-
tural information of the graph. Specifically, existing graph embedding
methods can be categorized into the following main groups: (i) matrix
factorization based methods (Ahmed et al., 2013; Cao, Lu, & Xu, 2015;
Ou, Cui, Pei, Zhang, & Zhu, 2016) that factorize the matrix to learn
node embedding which preserves the graph property; (ii) deep learning
based methods (Grover & Leskovec, 2016; Perozzi et al., 2014; Tang,
Qu, Wang et al., 2015; Wang et al., 2016) that apply deep learning
techniques specifically designed for graph-structured data; (iii) edge
reconstruction based methods (Liu, Cheung, Li, & Liao, 2016; Man,
Shen, Liu, Jin, & Cheng, 2016; Tang, Qu and Mei, 2015) that either
maximizes edge reconstruction probability or minimizes edge recon-
struction loss. Generally, these methods typically depend on shallow
architectures, and fail to exploit the potential and capacity of deep
neural networks, resulting in sub-optimal representation quality and
learning performance.

Inspired by the recent remarkable success of deep neural networks,
a range of deep learning algorithms has been developed for graph-
structured data learning. The core of these methods is to generate
effective node and graph representations using graph neural networks
(GNNs), followed by a goal-oriented learning paradigm. In this way,
the derived representations can be adaptively coupled with a variety
of downstream tasks and applications. Following this line of thought,
in this paper, we propose a new taxonomy to classify the existing
graph representation learning algorithms, i.e., graph neural network
architectures, learning paradigms, and various promising applications,
as shown in Fig. 1. Specifically, for the architectures of GNNs, we inves-
tigate the studies on graph convolutions, graph kernel neural networks,
graph pooling, and graph transformer. For the learning paradigms,
we explore three advanced types namely supervised/semi-supervised
learning on graphs, graph self-supervised learning, and graph struc-
ture learning. To demonstrate the effectiveness of the learned graph
representations, we provide several promising applications to build
tight connections between representation learning and downstream
tasks, such as social analysis, molecular property prediction and gen-
eration, recommender systems, and traffic analysis. Last but not least,
we present some perspectives for thought and suggest challenging
directions that deserve further study in the future.

Differences between this survey and existing ones. Up to now, there
exist some other overview papers focusing on different perspectives of
graph representation learning (Bacciu, Errica, Micheli, & Podda, 2020;
Chami, Abu-El-Haija, Perozzi, Ré, & Murphy, 2022; Chen, Wang, Wang
& Kuo, 2020; Chen et al., 2022; Khoshraftar & An, 2022; Wu et al.,
2020; Xia et al., 2021; Zhang, Cui and Zhu, 2020; Zhou et al., 2020,
2022) that are closely related to ours. However, there are very few
comprehensive reviews have summarized deep graph representation
learning simultaneously from the perspective of diverse GNN archi-
tectures and corresponding up-to-date learning paradigms. Therefore,
2

we here clearly state their distinctions from our survey as follows.
There have been several surveys on classic graph embedding (Cai,
Zheng, & Chang, 2018; Goyal & Ferrara, 2018), these works categorize
graph embedding methods based on different training objectives. Wang
et al. (2022) goes further and provides a comprehensive review of
existing heterogeneous graph embedding approaches. With the rapid
development of deep learning, there are a handful of surveys along this
line. For example, Wu et al. (2020) and Zhang, Cui et al. (2020) mainly
focus on several classical and representative GNN architectures with-
out exploring deep graph representation learning from a view of the
most recent advanced learning paradigms such as graph self-supervised
learning and graph structure learning. Chami et al. (2022) and Xia
et al. (2021) jointly summarize the studies of graph embeddings and
GNNs. Zhou, Cui et al. (2020) explores different types of computational
modules for GNNs. One recent survey under review (Khoshraftar & An,
2022) categorizes the existing works in graph representation learning
from both static and dynamic graphs. However, these taxonomies
emphasize the basic GNN methods but pay insufficient attention to the
learning paradigms, and provide few discussions of the most promis-
ing applications, such as recommender systems as well as molecular
property prediction and generation. To the best of our knowledge, the
most relevant survey published formally is Zhou, Zheng et al. (2022),
which presents a review of GNN architectures and roughly discusses
the corresponding applications. Nevertheless, this survey merely covers
methods up to the year of 2020, missing the latest developments in the
past three years.

Therefore, it is highly desired to summarize the representative GNN
methods, the most recent advanced learning paradigms, and promising
applications into one unified and comprehensive framework. Moreover,
we strongly believe this survey with a new taxonomy of literature and
more than 500 studies will strengthen future research on deep graph
representation learning.

Contribution of this survey. The goal of this survey is to systemati-
cally review the literature on the advances of deep graph representation
learning and discuss further directions. It aims to help the researchers
and practitioners who are interested in this area, and support them
in understanding the panorama and the latest developments of deep
graph representation learning. The key contributions of this survey are
summarized as follows:

• Systematic Taxonomy. We propose a systematic taxonomy to
organize the existing deep graph representation learning ap-
proaches based on the ways of GNN architectures and the most
recent advanced learning paradigms via providing some represen-
tative branches of methods. Moreover, several promising applica-
tions are presented to illustrate the superiority and potential of
graph representation learning.

• Comprehensive Review. For each branch of this survey, we re-
view the essential components and provide detailed descriptions
of representative algorithms, and systematically summarize the
characteristics to make the overview comparison.

• Future Directions. Based on the properties of existing deep graph
representation learning algorithms, we discuss the limitations and
challenges of current methods and propose the potential as well as
promising research directions deserving of future investigations.

2. Background

In this section, we first briefly introduce some definitions in deep
graph representation learning that need to be clarified, and then we

explain the reasons why we need graph representation learning.
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Fig. 1. The architecture of this paper.
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2.1. Problem definition

Definition: Graph. Given a graph 𝐺 = (𝑉 ,𝐸,𝐗), where 𝑉 = {𝑣1,… ,
𝑣
|𝑉 |

} is the set of nodes, 𝐸 = {𝑒1,… , 𝑒
|𝑉 |

} is the set of edges, and the
edge 𝑒 = (𝑣𝑖, 𝑣𝑗 ) ∈ 𝐸 represent the connection relationship between
nodes 𝑣𝑖 and 𝑣𝑗 in the graph. 𝐗 ∈ R|𝑉 |×𝑀 is the node feature matrix with

being the dimension of each node feature. The adjacency matrix of
graph can be defined as 𝐀 ∈ R|𝑉 |×|𝑉 |, where 𝐀𝑖𝑗 = 1 if (𝑣𝑖, 𝑣𝑗 ) ∈ 𝐸,

therwise 𝐀𝑖𝑗 = 0.
The adjacency matrix can be regarded as the structural representa-

ion of the graph-structured data, in which each row of the adjacency
atrix 𝐀 represents the connection relationship between the corre-

ponding node of the row and all other nodes, which can be regarded
s a discrete representation of the node. However, in real-life circum-
tances, the adjacency matrix 𝐀 corresponding to 𝐺 is a highly sparse
atrix, and if 𝐀 is used directly as node representations, it will be

eriously affected by impractical storage demands and computational
verhead. The storage space of the adjacency matrix 𝐀 is |𝑉 | × |𝑉 |,
hich is usually unacceptable when the total number of nodes grows

o the order of millions. At the same time, the value of most dimensions
n the node representation is 0. The sparsity will make subsequent
achine learning tasks very difficult.

Graph representation learning is a bridge between the original input
ata and the task objectives in the graph. The fundamental idea of the
raph representation learning algorithm is first to learn the embedded
epresentations of nodes or the entire graph from the input graph
tructure data and then apply these embedded representations to down-
tream related tasks, such as node classification, graph classification,
ink prediction, community detection, and visualization, etc. Specifi-
ally, it aims to learn low-dimensional, dense distributed embedding
epresentations for nodes in the graph. Formally, the goal of graph
epresentation learning is to learn its embedding vector representation
𝑣 ∈ R𝑑 for each node 𝑣 ∈ 𝑉 , where the dimension 𝑑 of the vector is

much smaller than the total number of nodes |𝑉 | in the graph.

2.2. Traditional graph embedding

Traditional graph embedding learning methods, as part of dimen-
sionality reduction techniques, aimed to embed graph data into a
lower-dimensional vector space with the idea that connected nodes in
the graph should still be closer to each other in this lower-dimensional
space, thereby preserving the structural information between nodes in
the graph. Influenced by classical dimensionality reduction techniques,
early graph embedding methods are primarily inspired by classic matrix
factorization techniques (Belkin & Niyogi, 2001) and multi-dimensional
scaling (Kruskal, 1964). The following three sections describe these
methods in more detail, distinguishing among matrix factorization-
based methods, random walks-based methods and other non-GNN deep
methods. In Table 1, we summarize different categories of traditional
3

graph embedding methods. w
2.2.1. Matrix factorization-based methods
Matrix factorization-based methods are the early endeavors in graph

embedding learning. These approaches can be outlined in a two-step
process. In the initial step, a proximity-based matrix is constructed for
the graph, where each element of the matrix represents the proximity
measure between two nodes in the graph. Subsequently, a dimension-
ality reduction technique is employed on this matrix in the second step
to generate the node embeddings.

Locally Linear Embedding (LLE) (Roweis & Saul, 2000). LLE assumes
hat node representations are sampled from the same manifold space,
nd any node in the graph and its neighboring nodes are located in a
ocal region of that manifold space. Therefore, node representations can
e obtained by linearly combining them with their neighboring nodes.
LE first constructs a local reconstruction weight matrix, 𝑊𝑖𝑗 , for nodes

in the graph to linearly combine neighboring nodes. By computing
the distance between the linear combination and the central node, the
problem is reduced to solving for matrix eigenvalues to learn low-
dimensional vector representations for nodes. The objective function
is computed as follows:

𝜙(𝑍) = 1
2
∑

𝑖
|𝑧𝑖 −

∑

𝑗∈𝑁𝑖

𝑊𝑖𝑗𝑧𝑗 |
2
, (1)

here 𝑧𝑖 represents the low-dimensional representation of the 𝑖th node,
nd 𝑁𝑖 is the set of neighboring nodes for the central node 𝑖.

Laplacian Eigenmaps (LE) (Anderson & Morley, 1985). LE believes
hat nodes directly connected in graph data should be kept as close
s possible in the embedding space. Specifically, it achieves this by
efining the distance between connected nodes in the embedding space
sing the square of the Euclidean distance. It transforms the final
ptimization objective into the computation of the Laplacian matrix’s
igenvectors. The objective function is computed as follows:

(𝑍) = 1
2
∑

𝑖,𝑗
|𝑧𝑖 − 𝑧𝑗 |

2𝑊𝑖𝑗 = 𝑍𝑇𝐿𝑍, s.t. 𝑍𝑇𝐷𝑍 = 𝐼, (2)

here 𝑊𝑖𝑗 represents the connection weight between nodes 𝑖 and 𝑗 in
he graph. After linear transformation, the optimization of 𝜙(𝑍) can be
eformulated as 𝑍𝑇𝐿𝑍, where 𝐿 = 𝐷 − 𝑊 is the constructed graph
aplacian matrix, and 𝐷 is a symmetric matrix.

Graph Factorization (GF) (Ahmed et al., 2013). The matrix
igenvector-based methods mentioned before consider the similarity
etween nodes throughout the entire graph, which can result in ex-
ellent node feature representations. However, with the ever-growing
cale of real-world graph data, computing matrix eigenvectors for large
raphs can be computationally expensive and memory-intensive. GF
ntroduces a graph embedding method with a time complexity of 𝑂(|𝐸|)
y factorizing the adjacency matrix of the graph. The objective function
s as follows:

(𝑍, 𝜆) = 1
2

∑

𝑖,𝑗∈𝐸
|𝑊𝑖,𝑗 − ⟨𝑧𝑖, 𝑧𝑗⟩|

2 + 𝜆
2
∑

𝑖
|𝑧𝑖|

2, (3)

here 𝜆 is a regularization coefficient, and ⟨𝑧𝑖, 𝑧𝑗⟩ represents the corre-
ponding inner-product operation. Moreover, these inner-product meth-
ds also contain GraRep (Cao et al., 2015) and HOPE (Ou et al., 2016),
hich consider higher-order and general node similarity respectively.
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Table 1
Summary of traditional graph embedding methods.

Type Method Similarity measure Loss function (𝐿)

Matrix factorization

LLE (Roweis & Saul, 2000) General |𝑧𝑖 −
∑

𝑗∈𝑁𝑖
𝑊𝑖𝑗𝑧𝑗 |

2

LE (Anderson & Morley, 1985) General 𝑍𝑇𝐿𝑍, s.t.𝑍𝑇𝐷𝑍 = 𝐼
GF (Ahmed et al., 2013) 𝐴𝑖,𝑗 |𝑊𝑖,𝑗 − ⟨𝑧𝑖 , 𝑧𝑗 ⟩|

2

GraRep (Cao et al., 2015) 𝐴𝑖,𝑗 , 𝐴2
𝑖,𝑗 ,… , 𝐴𝑘𝑖,𝑗 |𝑊𝑖,𝑗 − ⟨𝑧𝑖 , 𝑧𝑗 ⟩|

2

HOPE (Ou et al., 2016) General |𝑊𝑖,𝑗 − ⟨𝑧𝑖 , 𝑧𝑗 ⟩|
2

Random walk

DeepWalk (Perozzi et al., 2014) 𝑝(𝑣𝑖|𝑣𝑖) −𝐴𝑖𝑗 log⟨𝑧𝑖 , 𝑧𝑗 ⟩
Node2vec (Grover & Leskovec, 2016) 𝑝(𝑣𝑖|𝑣𝑖) (biased) −𝐴𝑖𝑗 log⟨𝑧𝑖 , 𝑧𝑗 ⟩
HARP (Chen, Perozzi, Hu, & Skiena, 2018) 𝑝(𝑣𝑖|𝑣𝑖) (biased) −𝐴𝑖𝑗 log⟨𝑧𝑖 , 𝑧𝑗 ⟩
LINE (Tang, Qu, Wang et al., 2015) Two-order similarities Corresponding loss

Non-GNN deep SDNE (Wang et al., 2016) Two-order proximities Corresponding loss
DNGR (Cao, Lu, & Xu, 2016) Two-order proximities Corresponding loss
t
n

𝑝
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2.2.2. Random walk-based methods
Random walk-based methods have also attracted a lot of attention

in graph embedding learning. The basic idea of these methods is to
create random walks among nodes in the graph to capture its structural
characteristics. Thus, nodes tend to have similar embedding if they co-
occur on short random walks. Compared to fixed proximity measures
in traditional matrix factorization-based methods, these approaches use
co-occurrence in a random walk as a measure of node similarity, which
is more flexible and has demonstrated promising performance across
various applications.

DeepWalk (Perozzi et al., 2014). DeepWalk analogizes nodes in a
graph to words in text. It uses random walks on the graph to generate
numerous node sequences 𝑆 = {𝑣1,… , 𝑣

|𝑠|}, treating these sequences as
sentences, and then inputting them into the Word2vec (Mikolov, Chen,
Corrado and Dean, 2013), which aims to maximize the probability of
node context given the target node 𝑣𝑖. It can be written as:

1
|𝑆|

|𝑆|
∑

𝑖=1

∑

−𝑡≤𝑗≤𝑡,𝑗≠0
log 𝑝(𝑣𝑖+𝑗 |𝑣𝑖), (4)

where 𝑡 is the context window size. Compared to matrix factorization-
based methods, DeepWalk exhibits extremely low time complexity
and is suitable for large-scale graph representation learning. How-
ever, DeepWalk only considers local information between nodes in the
graph, making it challenging to find the optimal random walk sampling
sequences.

Node2vec (Grover & Leskovec, 2016). Based on DeepWalk,
Node2vec utilizes parameters 𝑝 and 𝑞 to guide the random walk.
Parameter 𝑝 allows the algorithm to revisit previously traversed nodes
𝑡, with smaller values of 𝑝 increasing the likelihood of returning to
. Parameter 𝑞 facilitates both inward and outward exploration; when
> 1, the algorithm tends to visit nodes closer to 𝑡; while for 𝑞 < 1,

t leans toward nodes farther away from 𝑡. Thus, it approximates a
alance between two sampling strategies, Depth-First Search (DFS)
nd Breadth-First Search (BFS), which can better capture topological
nformation in the graph. Moreover, there are also some approaches
hat leverage graph preprocessing, i.e., HARP (Chen et al., 2018) or
ifferent random walk strategies (Perozzi, Kulkarni, Chen, & Skiena,
017) to extend random walk approaches.

Large-Scale Information Network Embeddings (LINE) (Tang, Qu, Wang
t al., 2015). LINE is not based on random walks but is often compared
ith DeepWalk and Node2vec. The method models first-order and

econd-order similarity between nodes in a graph. First-order similarity
haracterizes the similarity between two directly connected nodes in
he graph and is represented through the joint probability distribution
f the two nodes.

(𝑣𝑖, 𝑣𝑗 ) =
1

1 + exp(−𝑧𝑖⊤𝑧𝑗 )
, (5)

here 𝑧𝑖 represents the low-dimensional representation of node 𝑣𝑖.
econd-order similarity, on the other hand, describes the number of
4

ommon neighboring nodes between nodes in the graph, measuring r
he similarity of the local neighborhood structures (context) between
odes, which can be expressed as:

(𝑣𝑗 |𝑣𝑖) =
exp(𝑧′𝑗

⊤𝑧𝑖)
∑

|𝑉 |

𝑘=1 exp(𝑧
′
𝑘
⊤ ⋅ 𝑧𝑖)

, (6)

where |𝑉 | represents the number of nodes in the graph, and 𝑧′𝑗 rep-
resents the representation of node 𝑣𝑗 when it serves as a specific
ontext.

.2.3. Non-GNN deep methods
In contrast to the above shallow graph embedding methods, non-

NN deep methods directly integrate the graph’s structural information
nto the encoder algorithm through deep neural networks. The fun-
amental concept underlying these methods involves employing the
utoencoder approach (Hinton & Salakhutdinov, 2006) to compress
nformation related to a node’s local neighborhood.

Structural Deep Network Embeddings (SDNE) (Wang et al., 2016).
DNE jointly preserves the first-order and second-order proximities
etween the nodes in the graph. The second-order proximity of the
odes can be defined as:

1 =
∑

𝑣𝑖∈𝑉
|(𝑥𝑖 − 𝑥′𝑖)⊙ 𝑏𝑖|, (7)

here 𝑥𝑖 is the row corresponding to node 𝑣𝑖 in the adjacency matrix
, ⊙ means the Hadamard product. 𝑏𝑖 = {𝑏𝑖𝑗}

|𝑉 |

𝑗=1, if 𝐴𝑖𝑗 = 0, 𝑏𝑖𝑗 = 1;
therwise, 𝑏𝑖𝑗 = 𝛽 > 1. And the first-order similarity can be defined as:

2 =
∑

(𝑣𝑖 ,𝑣𝑗 )∈𝐸
𝐴𝑖𝑗 |𝑧𝑖 − 𝑧𝑗 |, (8)

here 𝑧𝑖 is the learned representation of node 𝑣𝑖.
Deep Neural Graph Representations (DNGR) (Cao et al., 2016). Similar

o SDNE, DNGR utilizes pointwise mutual information between two
odes co-occurring in random walks instead of the adjacency matrix
alues.

.3. Why study deep graph representation learning

With the rapid development of deep learning techniques, deep
eural networks such as convolutional neural networks and recurrent
eural networks have made breakthroughs in the fields of computer
ision, natural language processing, and speech recognition. They can
ell abstract the semantic information of images, natural languages,
nd speeches. However, current deep learning techniques fail to han-
le more complex and irregular graph-structured data. To effectively
nalyze and model this kind of non-Euclidean structure data, many
raph representation learning algorithms have emerged in recent years,
ncluding graph embedding and graph neural networks. At present,
ompared with Euclidean-style data such as images, natural language,
nd speech, graph-structured data is high-dimensional, complex, and
rregular. Therefore, the graph representation learning algorithm is a

ather powerful tool for studying graph-structured data. To encode



Neural Networks 173 (2024) 106207W. Ju et al.
Table 2
Summary of graph convolution methods.

Method Category Aggregation Time complexity

Spectral CNN (Bruna, Zaremba, Szlam, & LeCun, 2013) Spectral graph convolution – 𝑂(𝑛3)
Henaff, Bruna, and LeCun (2015) Spectral graph convolution – 𝑂(𝑛3)
ChebNet (Defferrard, Bresson, & Vandergheynst, 2016) Spectral graph convolution – 𝑂(𝑚)
GCN (Kipf & Welling, 2016a) Spectral/Spatial Weighted average 𝑂(𝑚)
CayleyNet (Levie, Monti, Bresson, & Bronstein, 2018) Spectral graph convolution – 𝑂(𝑚)
GraphSAGE (Hamilton, Ying, & Leskovec, 2017) Spatial graph convolution General 𝑂(𝑚)
GAT (Veličković et al., 2017) Spatial graph convolution Attentive 𝑂(𝑚)
DGCNN (Wang et al., 2019) Spatial graph convolution General 𝑂(𝑚)
LanzcosNet (Liao, Zhao, Urtasun, & Zemel, 2019) Spectral graph convolution – 𝑂(𝑛2)
SGC (Wu et al., 2019) Spatial graph convolution Weighted average 𝑂(𝑚)
GWNN (Xu, Shen, Cao, Qiu and Cheng, 2019) Spectral graph convolution – 𝑂(𝑚)
GIN (Xu, Hu, Leskovec and Jegelka, 2018) Spatial graph convolution Sum 𝑂(𝑚)
GraphAIR (Hu et al., 2020) Spatial graph convolution Sum 𝑂(𝑚)
PNA (Corso, Cavalleri, Beaini, Liò, & Veličković, 2020) Spatial graph convolution Multiple 𝑂(𝑚)
S2GC (Zhu & Koniusz, 2021) Spectral graph convolution – 𝑂(𝑚)
GNNML3 (Balcilar et al., 2021) Spatial/Spectral – 𝑂(𝑚)
MSGNN (He, Permultter, Reinert, & Cucuringu, 2022) Spectral graph convolution – 𝑂(𝑚)
EGC (Tailor, Opolka, Lio, & Lane, 2022) Spatial graph convolution General 𝑂(𝑚)
APPNP (Gasteiger, Bojchevski, & Günnemann, 2018) Spatial graph convolution (Approximate) Personalized pagerank 𝑂(𝑚)
GCNII (Chen, Wei, Huang, Ding and Li, 2020) Spatial graph convolution – 𝑂(𝑚)
GATv2 (Brody, Alon, & Yahav, 2021) Spatial graph convolution Attentive 𝑂(𝑚)
complex graph-structured data, deep graph representation learning
needs to meet several characteristics: (1) topological properties: Graph
representations need to capture the complex topological information of
the graph, such as the relationship between nodes and nodes, and other
substructure information, such as subgraphs, motif, etc; (2) feature
attributes: It is necessary for graph representations to describe high-
dimensional attribute features in the graph, including the attributes of
nodes and edges themselves; (3) scalability : Because different real graph
data have different characteristics, graph representation learning algo-
rithms should be able to efficiently learn its embedding representation
on different graph structure data, making it universal and transferable.

3. Graph convolutions

Graph convolutions have become the basic building blocks in many
deep graph representation learning algorithms and graph neural net-
works developed recently. In this section, we provide a comprehensive
review of graph convolutions, which generally fall into two categories:
spectral graph convolutions and spatial graph convolutions. Based on
the solid mathematical foundations of Graph Signal Processing (GSP)
(Hammond, Vandergheynst, & Gribonval, 2011; Sandryhaila & Moura,
2013; Shuman, Narang, Frossard, Ortega, & Vandergheynst, 2013),
spectral graph convolutions seek to capture the patterns of the graph in
the frequency domain. On the other hand, spatial graph convolutions
inherit the idea of message passing from Recurrent Graph Neural
Networks (RecGNNs), and they compute node features by aggregating
the features of their neighbors. Thus, the computation graph of a node
is derived from the local graph structure around it, and the graph topol-
ogy is naturally incorporated into the way node features are computed.
In this section, we first introduce spectral graph convolutions and then
spatial graph convolutions, followed by a brief summary. In Table 2, we
summarize a number of graph convolutions proposed in recent years.

3.1. Spectral graph convolutions

With the success of Convolutional Neural Networks (CNNs) in com-
puter vision (Krizhevsky, Sutskever, & Hinton, 2017), efforts have
been made to transfer the idea of convolution to the graph domain.
However, this is not an easy task because of the non-Euclidean nature of
graphical data. Graph signal processing (GSP) (Hammond et al., 2011;
Sandryhaila & Moura, 2013; Shuman et al., 2013) defines the Fourier
Transform on graphs and thus provides a solid theoretical foundation
of spectral graph convolutions.

In graph signal processing, a graph signal refers to a set of scalars
5

associated with every node in the graph, i.e. 𝑓 (𝑣), ∀𝑣 ∈ 𝑉 , and it can be
written in the 𝑛-dimensional vector form 𝐱 ∈ R𝑛, where 𝑛 is the number
of nodes in the graph. Another core concept of graph signal processing
is the symmetric normalized graph Laplacian matrix (or simply, the
graph Laplacian), defined as 𝐋 = 𝐈−𝐃−1∕2𝐀𝐃−1∕2, where 𝐈 is the identity
matrix, 𝐃 is the degree matrix (i.e. a diagonal matrix 𝐃𝑖𝑖 =

∑

𝑗 𝐀𝑖𝑗),
and 𝐀 is the adjacency matrix. In the typical setting of graph signal
processing, the graph 𝐺 is undirected. Therefore, 𝐋 is real symmetric
and positive semi-definite. This guarantees the eigen decomposition
of the graph Laplacian: 𝐋 = 𝐔𝚲𝐔𝑇 , where 𝐔 = [𝐮0,𝐮1,… ,𝐮𝑛−1] is
the eigenvectors of the graph Laplacian and the diagonal elements of
𝚲 = diag(𝜆0, 𝜆1,… , 𝜆𝑛−1) are the eigenvalues. With this, the Graph
Fourier Transform (GFT) of a graph signal 𝐱 is defined as �̃� = 𝐔𝑇 𝐱,
where �̃� is the graph frequencies of 𝐱. Correspondingly, the Inverse
Graph Fourier Transform can be written as 𝐱 = 𝐔�̃�.

With GFT and the Convolution Theorem, the graph convolution of a
graph signal 𝐱 and a filter 𝐠 can be defined as 𝐠 ∗𝐺 𝐱 = 𝐔(𝐔𝑇 𝐠⊙𝐔𝑇 𝐱). To
simplify this, let 𝐠𝜃 = diag(𝐔𝑇 𝑔), the graph convolution can be written
as:

𝐠 ∗𝐺 𝐱 = 𝐔𝐠𝜃𝐔𝑇 𝐱, (9)

which is the general form of most spectral graph convolutions. The key
of spectral graph convolutions is to parameterize and learn the filter
𝐠𝜃 .

Spectral Convolutional Neural Network (Spectral CNN) (Bruna et al.,
2013) sets graph filter as a learnable diagonal matrix 𝐖. The convo-
lution operation can be written as 𝐲 = 𝐔𝐖𝐔𝑇 𝐱. In practice, multi-
channel signals and activation functions are common, and the graph
convolution can be written as

𝐘∶,𝑗 = 𝜎

(

𝐔
𝑐𝑖𝑛
∑

𝑖=1
𝐖𝑖,𝑗𝐔𝑇𝐗∶,𝑖

)

, 𝑗 = 1, 2,… , 𝑐𝑜𝑢𝑡, (10)

where 𝑐𝑖𝑛 is the number of input channel, 𝑐𝑜𝑢𝑡 is the number of output
channel, 𝐗 is a 𝑛 × 𝑐𝑖𝑛 matrix representing the input signal, 𝐘 is a
𝑛 × 𝑐𝑜𝑢𝑡 matrix denoting the output signal, 𝐖𝑖,𝑗 is a parameterized
diagonal matrix, and 𝜎(⋅) is the activation function. For mathematical
convenience we sometimes use single-channel versions of graph con-
volutions omitting activation functions, and the multi-channel versions
are similar to Eq. (10).

Spectral CNN has several limitations. Firstly, the filters are basis-
dependent, which means that they cannot be generalized across graphs.
Secondly, the algorithm requires eigen decomposition, which is compu-
tationally expensive. Thirdly, it has no guarantee of spatial localization

of filters. To make filters spatially localized, Henaff et al. (2015)
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propose to use a smooth spectral transfer function 𝛩(𝚲) to parameterize
the filter, and the convolution operation can be written as:

𝐲 = 𝐔𝐹 (𝚲)𝐔𝑇 𝐱. (11)

Chebyshev Spectral Convolutional Neural Network (ChebNet) (Deffer-
ard et al., 2016) extends this idea by using truncated Chebyshev
olynomials to approximate the spectral transfer function. The Cheby-
hev polynomial is defined as 𝑇0(𝑥) = 1, 𝑇1(𝑥) = 𝑥, 𝑇𝑘(𝑥) = 2𝑥𝑇𝑘−1(𝑥) −
𝑇𝑘−2(𝑥), and the spectral transfer function 𝐹 (𝚲) is approximated to the
order of 𝐾 − 1 as

𝐹 (𝚲) =
𝐾−1
∑

𝑘=0
𝜃𝑘𝑇𝑘(�̃�), (12)

where the model parameters 𝜃𝑘, 𝑘 ∈ {0, 1,… , 𝐾 −1} are the Chebyshev
coefficients, and �̃� = 2𝚲∕𝜆𝑚𝑎𝑥 − 𝐈 is a diagonal matrix of scaled
eigenvalues. Thus, the graph convolution can be written as:

𝐠 ∗𝐺 𝐱 = 𝐔𝐹 (𝚲)𝐔𝑇 𝐱 = 𝐔
𝐾−1
∑

𝑘=0
𝜃𝑘𝑇𝑘(�̃�)𝐔𝑇 𝐱 =

𝐾−1
∑

𝑘=0
𝜃𝑘𝑇𝑘(�̃�)𝐱, (13)

where �̃� = 2𝐋∕𝜆𝑚𝑎𝑥 − 𝐈.
Graph Convolutional Network (GCN) (Kipf & Welling, 2016a) is pro-

posed as the localized first-order approximation of ChebNet. Assuming
𝐾 = 2 and 𝜆𝑚𝑎𝑥 = 2, Eq. (13) can be simplified as:

𝐠 ∗𝐺 𝐱 = 𝜃0𝐱 + 𝜃1(𝐋 − 𝐈)𝐱 = 𝜃0𝐱 − 𝜃1𝐃−1∕2𝐀𝐃−1∕2𝐱. (14)

To further constraint the number of parameters, we assume 𝜃 = 𝜃0 =
−𝜃1, which gives a simpler form of graph convolution:

𝐠 ∗ 𝐱 = 𝜃(𝐈 + 𝐃−1∕2𝐀𝐃−1∕2)𝐱. (15)

As 𝐈+𝐃−1∕2𝐀𝐃−1∕2 now has the eigenvalues in the range of [0, 2] and
repeatedly multiplying this matrix can lead to numerical instabilities,
GCN empirically proposes a renormalization trick to solve this problem
by using �̃�−1∕2�̃��̃�−1∕2 instead, where �̃� = 𝐀 + 𝐈 and �̃�𝑖𝑖 =

∑

𝑖 �̃�𝑖𝑗 .
Allowing multi-channel signals and adding activation functions, the

more common formula in literature is:

𝐘 = 𝜎((�̃�−1∕2�̃��̃�−1∕2)𝐗𝚯), (16)

where 𝐗, 𝐘 have the same shape as in Eq. (10) and 𝚯 is a 𝑐𝑖𝑛 × 𝑐𝑜𝑢𝑡
matrix as model’s parameters.

Apart from the aforementioned methods, other spectral graph con-
volutions have been proposed. Levie et al. (2018) propose CayleyNets
that utilize Cayley Polynomials to equip the filters with the ability to
detect narrow frequency bands. Liao et al. (2019) propose LanczosNets
that employ the Lanczos algorithm to construct a low-rank approxi-
mation of graph Laplacian to improve the computation efficiency of
graph convolutions. The proposed model is able to efficiently utilize
the multi-scale information in the graph data. Instead of using Graph
Fourier Transform, Xu, Shen et al. (2019) propose a Graph Wavelet
Neural Network (GWNN) that uses graph wavelet transform to avoid
matrix eigendecomposition. Moreover, graph wavelets are sparse and
localized, which provides good interpretations for the convolution
operation. Zhu and Koniusz (2021) derive a Simple Spectral Graph
Convolution (S2GC) from a modified Markov Diffusion Kernel, which
achieves a trade-off between low-pass and high-pass filter bands.

3.2. Spatial graph convolutions

Inspired by the convolution on Euclidean data (e.g. images and
texts), which applies data transformation on a small region, spatial
graph convolutions compute the central node’s feature via transforming
and aggregating its neighbors’ features. In this way, the graph structure
is naturally embedded in the computation graph of node features. More-
over, the idea of sending one node’s feature to another node is similar
to the message passing used in recurrent graph neural networks. In the
6

following, we will introduce several seminal spatial graph convolutions
as well as some recently proposed promising methods.

Spatial graph convolutions generally follow a three-step paradigm:
message generation, feature aggregation and feature update. This can
be mathematically written as:

𝐲𝑖 = UPDATE
(

𝐱𝑖,AGGREGATE
(

{MESSAGE
(

𝐱𝑖, 𝐱𝑗 , 𝐞𝑖𝑗
)

, 𝑗 ∈  (𝑖)}
))

,

(17)

where 𝐱𝑖 and 𝐲𝑖 is the input and output feature vector of node 𝑖, 𝐞𝑖𝑗
is the feature vector of the edge (or more generally, the relationship)
between node 𝑖 and its neighbor node 𝑗, and  (𝑖) denote the neighbor
of node 𝑖, which could be more generally defined.

In the previous subsection, we show the spectral interpretation of
GCN (Kipf & Welling, 2016a). The model also has its spatial interpre-
tation, which can be mathematically written as:

𝐲𝑖 = 𝚯𝑇
∑

𝑗∈ (𝑖)∪𝑖

1
√

𝑑𝑖𝑑𝑗
𝐱𝑗 , (18)

where 𝑑𝑖 and 𝑑𝑗 is the 𝑖th and 𝑗th row sums of �̂� in Eq. (16). For
ach node, the model takes a weighted sum of its neighbors’ features
s well as its own features and applies a linear transformation to obtain
he result. In practice, multiple GCN layers are often stacked together
ith non-linear functions after convolution to encode complex and
ierarchical features. Nonetheless, Wu, Souza et al. (2019) show that
he model still achieves competitive results without non-linearity.

Although GCN as well as other spectral graph convolutions achieve
ompetitive results on a number of benchmarks, these methods assume
he presence of all nodes in the graph and fall in the category of
ransductive learning. Hamilton et al. (2017) propose GraphSAGE that
erforms graph convolutions in inductive settings, when there are new
odes during inference (e.g. newcomers in the social network). For
ach node, the model samples its 𝐾-hop neighbors and uses 𝐾 graph

convolutions to aggregate their features hierarchically. Furthermore,
the use of sampling also reduces the computation when a node has too
many neighbors.

The attention mechanism has been successfully used in natural
language processing (Vaswani et al., 2017), computer vision (Liu et al.,
2021) and multi-modal tasks (Chen, Guhur, Schmid and Laptev, 2021;
He et al., 2021; Yu, Yu, Cui, Tao, & Tian, 2019; Zhao et al., 2022).
Graph Attention Networks (GAT) (Veličković et al., 2017) introduces
the idea of attention to graphs. The attention mechanism uses an adap-
tive, feature-dependent weight (i.e. attention coefficient) to aggregate
a set of features, which can be mathematically written as:

𝛼𝑖,𝑗 =
exp

(

LeakyReLU
(

𝐚𝑇 [𝚯𝐱𝑖 ∥ 𝚯𝐱𝑗 ]
))

∑

𝑘∈ (𝑖)∪{𝑖} exp
(

LeakyReLU
(

𝐚𝑇 [𝚯𝐱𝑖 ∥ 𝚯𝐱𝑗 ]
)) , (19)

where 𝛼𝑖,𝑗 is the attention coefficient, 𝐚 and 𝚯 are model parameters,
and [⋅ ∥ ⋅] means concatenation. After the 𝛼s are obtained, the new
features are computed as a weighted sum of input node features, which
is:

𝐲𝑖 = 𝛼𝑖,𝑖𝚯𝐱𝑖 +
∑

𝑗∈ (𝑖)
𝛼𝑖,𝑗𝚯𝐱𝑗 . (20)

Xu, Hu et al. (2018) explore the representational limitations of
graph neural networks. What they discover is that message passing
networks like GCN (Kipf & Welling, 2016a) and GraphSAGE (Hamilton
et al., 2017) are incapable of distinguishing certain graph structures.
To improve the representational power of graph neural networks, they
propose the Graph Isomorphism Network (GIN) that gives an adjustable
weight to the central node feature, which can be mathematically writ-
ten as:

𝐲𝑖 = MLP
⎛

⎜

⎜

(1 + 𝜖)𝐱𝑖 +
∑

𝐱𝑗
⎞

⎟

⎟

, (21)

⎝

𝑗∈ (𝑖)
⎠



Neural Networks 173 (2024) 106207W. Ju et al.

t

𝐾

w
g
t
a

𝐾

t
d
k

r
g

∀

w

b

w

𝐾

where 𝜖 is a learnable parameter.
More recently, efforts have been made to improve the representa-

tional power of graph neural networks. For example, Hu, Zhu et al.
(2020) propose GraphAIR that explicitly models the neighborhood
interaction to better capture complex non-linear features. Specifically,
they use the Hadamard product between pairs of nodes in the neigh-
borhood to model the quadratic terms of neighborhood interaction.
Balcilar et al. (2021) propose GNNML3 that breaks the limits of the
first-order Weisfeiler–Lehman test (1-WL) and reaches the third-order
WL test (3-WL) experimentally. They also show that the Hadamard
product is required for the model to have more representational power
than the first-order Weisfeiler–Lehman test. Other elements in spa-
tial graph convolutions are widely studied. For example, Corso et al.
(2020) explore the aggregation operation in GNN and proposes Prin-
cipal Neighborhood Aggregation (PNA) that uses multiple aggregators
with degree-scalers. Tailor et al. (2022) explore the anisotropism and
isotropism in the message passing process of graph neural networks,
and proposes Efficient Graph Convolution (EGC) that achieves promis-
ing results with reduced memory consumption due to isotropism. In
order to increase the size of the neighborhood of a node, Gasteiger et al.
(2018) propose personalized propagation of neural predictions (PPNP)
and its approximation using power iteration (APPNP). To increase
the depth of graph neural networks, Chen, Wei et al. (2020) propose
GCNII that uses initial residual and identity mapping to mitigate the
over-smoothing problem. Brody et al. (2021) propose GATv2 that
uses dynamic attention and improves the expressive power of GAT
(Veličković et al., 2017).

3.3. Summary

This section introduces graph convolutions. We provide the sum-
mary as follows:

• Techniques. Graph convolutions mainly fall into two types, i.e.
spectral graph convolutions and spatial graph convolutions. Spec-
tral graph convolutions have solid mathematical foundations of
Graph Signal Processing and therefore their operations have the-
oretical interpretations. Spatial graph convolutions are inspired
by Recurrent Graph Neural Networks and their computation is
simple and straightforward, as their computation graph is de-
rived from the local graph structure. Generally, spatial graph
convolutions are more common in applications.

• Challenges and Limitations. Despite the great success of graph
convolutions, their performance is unsatisfactory in more compli-
cated applications. On the one hand, the performance of graph
convolutions relies heavily on the construction of the graph.
Different constructions of the graph might result in different
performances of graph convolutions. On the other hand, graph
convolutions are prone to over-smoothing when constructing very
deep neural networks.

• Future Works. In the future, we expect that more powerful
graph convolutions will be developed to mitigate the problem of
over-smoothing and we also hope that techniques and method-
ologies in Graph Structure Learning (GSL) can help learn more
meaningful graph structure to benefit the performance of graph
convolutions.

4. Graph kernel neural networks

Graph kernels (GKs) are historically the most widely used technique
on graph analyzing and representation tasks (Gärtner et al., 2003;
Krishnagopal & Ruiz, 2023; Shawe-Taylor, Cristianini, et al., 2004;
Zhou, Cui et al., 2020). However, traditional graph kernels rely on
hand-crafted patterns or domain knowledge on specific tasks (Kriege,
7

Johansson, & Morris, 2020; Shervashidze et al., 2009). Over the years,
an amount of research has been conducted on graph kernel neural net-
works (GKNNs), which has yielded promising results. Researchers have
explored various aspects of GKNNs, including their theoretical founda-
tions, algorithmic design, and practical applications. These efforts have
led to the development of a wide range of GKNN-based models and
methods that can be used for graph analysis and representation tasks,
such as node classification (Fang, Xu, Song, Long and Zhang, 2022; Ju
et al., 2023; Yang et al., 2023), link prediction (Chen, Jacob and Mairal,
2020; Long et al., 2019; Wu, Shi, He, & Jin, 2023), and graph clustering
(Ju et al., 2022; Krishnagopal & Ruiz, 2023; Long, Jin, Wu and Song,
2021).

The success of GKNNs can be attributed to their ability to leverage
the strengths of both graph kernels and neural networks (Ju et al.,
2022; Long, Jin et al., 2021; Wu et al., 2023). By using kernel functions
to measure similarity between graphs, GKNNs can capture the struc-
tural properties of graphs, while the use of neural networks enables
them to learn more complex and abstract representations of graphs
(Chen, O’Bray and Borgwardt, 2022; Zang, Zhao, & Tang, 2023). This
combination of techniques allows GKNNs to achieve state-of-the-art
performance on a wide range of graph-related tasks (Krishnagopal &
Ruiz, 2023; Wang, Zhao, Shah and Derr, 2022).

In this section, we begin with introducing the most representative
traditional graph kernels. Then we summarize the basic framework for
combining GNNs and graph kernels. Finally, we categorize the popular
graph kernel Neural networks into several categories and compare their
differences.

4.1. Graph kernels

Graph kernels generally evaluate pairwise similarity between nodes
or graphs by decomposing them into basic structural units. Random
walks (Kang, Tong, & Sun, 2012), subtrees (Shervashidze, Schweitzer,
Van Leeuwen, Mehlhorn, & Borgwardt, 2011b), shortest paths (Borg-
wardt & Kriegel, 2005) and graphlets (Shervashidze et al., 2009) are
representative categories.

Given two graphs 𝐺1 = (𝑉1, 𝐸1, 𝑋1) and 𝐺2 = (𝑉2, 𝐸2, 𝑋2), a graph
kernel function 𝐾(𝐺1, 𝐺2) measures the similarity between 𝐺1 and 𝐺2
hrough the following formula:

(𝐺1, 𝐺2) =
∑

𝑢1∈𝑉1

∑

𝑢2∈𝑉2

𝜅𝑏𝑎𝑠𝑒
(

𝑙𝐺1
(𝑢1), 𝑙𝐺2

(𝑢2)
)

, (22)

here 𝑙𝐺(𝑢) denotes a set of local substructures centered at node 𝑢 in
raph 𝐺, and 𝜅𝑏𝑎𝑠𝑒 is a base kernel measuring the similarity between
he two sets of substructures. For simplicity, we may rewrite Eq. (22)
s:

(𝐺1, 𝐺2) =
∑

𝑢1∈𝑉1

∑

𝑢2∈𝑉2

𝜅𝑏𝑎𝑠𝑒(𝑢1, 𝑢2), (23)

he uppercase letter 𝐾(𝐺1, 𝐺2) is denoted as graph kernels, 𝜅(𝑢1, 𝑢2) is
enoted as node kernels, and lowercase 𝑘(𝑥, 𝑦) is denoted as general
ernel functions.

The kernel mapping of a kernel 𝜓 maps a data point into its cor-
esponding Reproducing Kernel Hilbert Space (RKHS) . Specifically,
iven a kernel 𝑘∗(⋅, ⋅), its kernel mapping 𝜓∗ can be formalized as,

𝑥1, 𝑥2, 𝑘∗(𝑥1, 𝑥2) = ⟨𝜓∗(𝑥1), 𝜓∗(𝑥2)⟩∗
, (24)

here ∗ is the RKHS of 𝑘∗(⋅, ⋅).
We introduce several representative and popular graph kernels

elow.
Walk and Path Kernels. A 𝑙-walk kernel 𝐾 (𝑙)

𝑤𝑎𝑙𝑘 compares all length 𝑙
alks starting from each node in two graphs 𝐺1, 𝐺2,

𝜅(𝑙)𝑤𝑎𝑙𝑘(𝑢1, 𝑢2) =
∑

𝑤1∈ 𝑙 (𝐺1 ,𝑢1)

∑

𝑤2∈ 𝑙 (𝐺2 ,𝑢2)

𝛿(𝑋1(𝑤1), 𝑋2(𝑤2)),

(𝑙)
𝑤𝑎𝑙𝑘(𝐺1, 𝐺2) =

∑ ∑

𝜅(𝑙)𝑤𝑎𝑙𝑘(𝑢1, 𝑢2).
(25)
𝑢1∈𝑉1 𝑢2∈𝑉2
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Substituting  with  is able to get the 𝑙-path kernel.
Subtree Kernels. The WL subtree kernel is the most popular one in

ubtree kernels. It is a finite-depth kernel variant of the 1-WL test. The
L subtree kernel with depth 𝑙, 𝐾 (𝑙)

𝑊𝐿 compares all subtrees with depth
𝑙 rooted at each node.

𝜅(𝑖)𝑠𝑢𝑏𝑡𝑟𝑒𝑒(𝑢1, 𝑢2) =
∑

𝑡1∈ 𝑖(𝐺1 ,𝑢2)

∑

𝑡2∈ 𝑖(𝐺2 ,𝑢2)
𝛿(𝑡1, 𝑡2),

𝐾 (𝑖)
𝑠𝑢𝑏𝑡𝑟𝑒𝑒(𝐺1, 𝐺2) =

∑

𝑢1∈𝑉1

∑

𝑢2∈𝑉2

𝜅(𝑖)𝑠𝑢𝑏𝑡𝑟𝑒𝑒(𝑢1, 𝑢2),

𝐾 (𝑙)
𝑊𝐿(𝐺1, 𝐺2) =

𝑙
∑

𝑖=0
𝐾 (𝑖)
𝑠𝑢𝑏𝑡𝑟𝑒𝑒(𝐺1, 𝐺2),

(26)

where 𝑡 ∈  (𝑖)(𝐺, 𝑢) denotes a subtree of depth 𝑖 rooted at 𝑢 in 𝐺.

4.2. General framework of GKNNs

In this section, we summarize the general framework of GKNNs.
For the first step, a kernel that measures similarities of heterogeneous
features from heterogeneous nodes and edges (𝑢1, 𝑒⋅,𝑢2 ) and (𝑢2, 𝑒⋅,𝑢2 )
should be defined. Take the inner product of neighbor tensors as an
example, its neighbor kernel is defined as follows,

𝜅((𝑢1, 𝑒⋅,𝑢1 ), (𝑢2, 𝑒⋅,𝑢2 )) = ⟨𝑓 (𝑢1), 𝑓 (𝑢2)⟩ ⋅ ⟨𝑓 (𝑒⋅,𝑢1 ), 𝑓 (𝑒⋅,𝑢2 )⟩.

Based on the neighbor kernel, a kernel with two 𝑙-hop neighbor-
hoods for central node 𝑢1 and 𝑢2 can be defined as 𝐾 (𝑙)(𝑢1, 𝑢2) =

⎧

⎪

⎨

⎪

⎩

⟨𝑓 (𝑢1), 𝑓 (𝑢2)⟩ 𝑙 = 0

⟨𝑓 (𝑢1), 𝑓 (𝑢2)⟩ ⋅
∑

𝑣1∈𝑁(𝑢1)

∑

𝑣2∈𝑁(𝑢2)
𝐾 (𝑙−1)(𝑣1, 𝑣2) ⋅ ⟨𝑓 (𝑒⋅,𝑣1 ), 𝑓 (𝑒⋅,𝑣2 )⟩ 𝑙 > 0 , (27)

By regarding the lower-hop kernel 𝜅(𝑙−1)(𝑢1, 𝑢2), as the inner product
of the (𝑙 − 1)th hidden representations of 𝑢1 and 𝑢2. Furthermore, by
recursively applying the neighborhood kernel, the 𝑙-hop graph kernel
can be derived as

𝐾 𝑙(𝐺1, 𝐺2) =
∑

𝒘1∈ 𝑙 (𝐺1)

∑

𝒘2∈ 𝑙 (𝐺2)

×

( 𝑙−1
∏

𝑖=0
⟨𝑓 (𝒘(𝑖)

1 ), 𝑓 (𝒘(𝑖)
2 )⟩ ×

𝑙−2
∏

𝑖=0
⟨𝑓 (𝑒𝒘(𝑖)

1 ,𝒘
(𝑖+1)
1

), 𝑓 (𝑒𝒘(𝑖)
2 ,𝒘

(𝑖+1)
2

)⟩

)

, (28)

where  𝑙(𝐺) denotes the set of all walk sequences with length 𝑙 in
graph 𝐺, and 𝒘(𝑖)

1 denotes the 𝑖th node in sequence 𝒘1.
As shown in Eq. (24), kernel methods implicitly perform projections

from original data spaces to their RKHS . Hence, as GNNs also project
nodes or graphs into vector spaces, connections have been established
between GKs and GNNs through the kernel mappings. And several
works conducted research on the connections (Lei, Jin, Barzilay, &
Jaakkola, 2017; Williams & Seeger, 2001), and found some foundation
conclusions. Take the basic rule introduced in Lei et al. (2017) as an
example, the proposed graph kernel in Eq. (22) can be derived as the
general formulas,

ℎ(0)(𝑣) =𝑾 (0)
𝑡𝑉 (𝑣)

𝑓 (𝑣),

ℎ(𝑙)(𝑣) =𝑾 (𝑙)
𝑡𝑉 (𝑣)

𝑓 (𝑣)⊙
∑

𝑢∈𝑁(𝑣)
(𝑼 (𝑙)

𝑡𝑉 (𝑣)
ℎ(𝑙−1)(𝑢)

⊙ 𝑼 (𝑙)
𝑡𝐸 (𝑒𝑢,𝑣)

𝑓 (𝑒𝑢,𝑣)), 1 < 𝑙 ≤ 𝐿,

(29)

where ⊙ is the element-wise product and ℎ(𝑙)(𝑣) is the cell state vector
of node v. The parameter matrices 𝑾 (𝑙)

𝑡𝑉 (𝑣)
, 𝑼 (𝑙)

𝑡𝑉 (𝑣)
and 𝑼 (𝑙)

𝑡𝐸 (𝑒𝑢,𝑣)
are

learnable parameters related to types of nodes and edges.
Then mean embeddings of all nodes are usually used to represent

the graph-level embedding, let |𝐺𝑖| denote the number of nodes in the
𝑖th graph, then the graph-level embeddings are generated as,

𝛷(𝐺𝑖) =
∑ 1

|𝐺 |

ℎ(𝐿)(𝑣). (30)
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For semi-supervised multiclass classification, the cross entropy is
used as the objective function over all training examples (Cao et al.,
2015, 2016),

 = −
∑

𝑙∈𝐿

𝐹
∑

𝑓=1
𝑌𝑙𝑓 ln𝑍𝑙𝑓 , (31)

where 𝐿 is the set of node indices that have labels in node classifica-
ion tasks, or the set of graph indices in graph classification tasks. 𝑍𝑙𝑓

denotes the prediction of labels, which are outputs of a linear layer with
an activation function, inputting ℎ(𝑙)(𝑣) in the node classification task,
and 𝛷(𝐺𝑖) in the graph classification task.

4.3. Popular variants of GKNNs

We summarize the popular variants of GKNNs and compare their
differences in Table 3. Specifically, we conclude their basic graph
kernels, whether designed for heterogeneous graphs, experimental
datasets, etc. As the originally designed graph-kernel based GNNs
have high complexity, they usually by acceleration strategies, such
as sampling strategies, simplification and approximation, etc. In this
section, We select four typical and popular GKNNs to introduce their
well-designed graph kernels and corresponding GNN frameworks.

𝑘-dimensional Graph Neural Networks (𝑘-GNN) (Morris et al., 2019)
is the pioneer of GKNNs, it incorporates the WL-subtree graph kernel
and graph neural networks. For better scalability, the paper considers
a set-based version of the 𝑘-WL. Let ℎ(𝑙)𝑘 (𝑠) and ℎ(𝑙)𝑘,𝐿(𝑠) denote the global
and local hidden representation for node 𝑠 in the 𝑙th layer respectively.
𝑘-GNN defined the end-to-end hierarchical trainable framework as,

ℎ(0)𝑘 (𝑠) =𝜎

([

ℎ𝑖𝑠𝑜(𝑠),
∑

𝑢∈𝑠
ℎ(𝑇𝑘−1)(𝑢)

]

⋅𝑾 (0)
𝑘−1

)

,

ℎ(𝑙)𝑘 (𝑠) =𝜎

(

ℎ(𝑙−1)𝑘 ⋅𝑾 (𝑙)
1 +

∑

𝑢∈𝑁𝐿(𝑠)∪𝑁𝐺 (𝑠)
ℎ(𝑙−1)𝑘 (𝑢) ⋅𝑾 (𝑙)

2

)

, 1 < 𝑙 ≤ 𝐿,

(𝑙)
𝑘,𝐿(𝑠) =𝜎

(

ℎ(𝑙−1)𝑘,𝐿 (𝑠) ⋅𝑾 (𝑙)
1 +

∑

𝑢∈𝑁𝐿(𝑠)
ℎ(𝑙−1)𝑘,𝐿 (𝑢) ⋅𝑾 (𝑙)

2

)

, 1 < 𝑙 ≤ 𝐿.

(32)

here ℎ𝑖𝑠𝑜(𝑠) is the one-hot encoding of the isomorphism type of 𝐺[𝑠],
𝐿(𝑠) is the local neighborhood, 𝑁𝐺(𝑠) is the global neighborhood,
(𝑙)
𝑘,𝐿(𝑠) is designed for better scalability and running speed, and ℎ(𝑙)𝑘 (𝑠)
as better performance due to its larger neighbor sets.

Graph Convolutional Kernel Networks (GCKN) (Chen, Jacob et al.,
020). GCKN is a representative random walk and path-based GKNN.
he Gaussian kernel 𝑘 can be written as,

(𝑧1, 𝑧2) = 𝑒−
𝛼1
2 ‖𝑧1−𝑧2‖2 = 𝑒𝛼(𝑧

𝑇
1 𝑧2−𝑘−1) = 𝜎(𝑧𝑇1 𝑧2), (33)

then the GNN architecture can be written as

ℎ(𝑙)(𝑢) =
∑

𝑧∈
𝐾(𝑧1, 𝑧2) ⋅ 𝜎

(

𝑍𝑇 ℎ(𝑙−1)(𝑝)
)

=𝜎
(

𝑍𝑍𝑇 )−
1
2 ⋅

∑

𝑝∈𝑘(𝐺,𝑢)
𝜎
(

𝑍𝑇 ℎ(𝑙−1)(𝑝)
)

,
(34)

here 𝑍 is the matrix of prototype path attributes.
Furthermore, the paper analyzes the relationship between GCKN

nd the WL-subtree based 𝑘-GNN. Theorem 1 in paper (Chen, Jacob
t al., 2020) shows that WL-subtree based GKNNs can be seen as a
pecial case in GCKN.

Graph Neural Tangent Kernel (GNTK) (Du et al., 2019). Different
rom the above two works, GNTK proposed a new class of graph
ernels. GNTK is a general recipe which translates a GNN architecture

o its corresponding GNTK.
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[

Table 3
Summary of popular GKNNs.

Method Type Related GK Adaptive Datasets

𝑘-GNN (Morris et al., 2019) Isomorphic WL subtree ✓ Biochemical network

RetGK (Zhang, Wang, Xiang, Huang and Nehorai, 2018) Isomorphic Random walk ✓ Biochemical network,
Social network

GNTK (Du et al., 2019) Isomorphic Neural tangent kernel Biochemical network,
Social network

DDGK (Al-Rfou, Perozzi, & Zelle, 2019) Isomorphic Random walk Biochemical network

GCKN (Chen, Jacob et al., 2020) Isomorphic Random walk ✓ Biochemical network,
Social network

GSKN (Long, Jin et al., 2021) Isomorphic Random walk,
Anonymous walk

✓ Biochemical network,
Social network

KerGNNs (Feng, You, Wang, & Tassiulas, 2022) Isomorphic Random walk ✓ Biochemical network,
Academic network

TurboMGNN (Wu et al., 2023) Isomorphic Random walk ✓ Social network

GCN-LASE (Li, Zhang and Song, 2019) Heterogeneous Random walk Social network
Academic network

HGK-GNN (Long, Xu, Fang and Song, 2021) Heterogeneous Random walk ✓ Social network
Academic network
The neighborhood aggregation operation in GNTK is defined as,
(𝑙)
∑

(0)
(𝐺,𝐺′)

]

𝑢𝑢′
=𝑐𝑢𝑐𝑢′

∑

𝑢∈𝑁(𝑣)∪{𝑢}

∑

𝑣′∈𝑁(𝑢′)∪{𝑢′}

[(𝑙−1)
∑

𝑅
(𝐺,𝐺′)

]

𝑣𝑣′
,

[

𝛩(𝑙)
(0)(𝐺,𝐺

′)
]

𝑢𝑢′
=𝑐𝑢𝑐𝑢′

∑

𝑢∈𝑁(𝑣)∪{𝑢}

∑

𝑣′∈𝑁(𝑢′)∪{𝑢′}

[

𝛩(𝑙−1)
𝑅 (𝐺,𝐺′)

]

𝑣𝑣′
,

(35)

where ∑(0)
𝑅 (𝐺,𝐺′) and 𝛩(0)

𝑅 (𝐺,𝐺′) are defined as ∑(0)(𝐺,𝐺′). Then GNTK
performed 𝑅 transformations to capture high-order structural informa-
tion.

[

𝐴(𝑙)
(𝑟)(𝐺,𝐺

′)
]

𝑢𝑢′
=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

[ (𝑙)
∑

(𝑟−1)
(𝐺,𝐺)

]

𝑢𝑢′
,

[ (𝑙)
∑

(𝑟−1)
(𝐺,𝐺′)

]

𝑢𝑢′
[ (𝑙)
∑

(𝑟−1)
(𝐺′, 𝐺)

]

𝑢𝑢′
,

[ (𝑙)
∑

(𝑟−1)
(𝐺′, 𝐺′)

]

𝑢𝑢′

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (36)

[ (𝑙)
∑

(𝑟)
(𝐺,𝐺′)

]

𝑢𝑢′
=E(𝑎,𝑏)∼ (0,[𝐴(𝑙)

(𝑟)(𝐺,𝐺
′)]𝑢𝑢′ )

[𝜎(𝑎) ⋅ 𝜎(𝑏)],

[ (𝑙)
∑

(𝑟)
(𝐺,𝐺′)

]

𝑢𝑢′
=E(𝑎,𝑏)∼ (0,[𝐴(𝑙)

(𝑟)(𝐺,𝐺
′)]𝑢𝑢′ )

[𝜎(𝑎) ⋅ 𝜎(𝑏)],

(37)

then the 𝑟 order can be calculated as,
[

𝛩(𝑙)
(𝑟)(𝐺,𝐺

′)
]

𝑢𝑢′
=
[

𝛩(𝑙)
(𝑟−1)(𝐺,𝐺

′)
]

𝑢𝑢′

[

∑

(𝑟)(𝑙)(𝐺,𝐺′)
]

𝑢𝑢′

+
[

∑

(𝑟)(𝑙)(𝐺,𝐺′)
]

𝑢𝑢′
. (38)

Finally, GNTK calculates the final output as,

𝛩(𝐺,𝐺′) =
∑

𝑢∈𝑉 ,𝑢′∈𝑉 ′

[ 𝐿
∑

𝑙=0
𝛩(𝑙)
(𝑅)(𝐺,𝐺

′)

]

𝑢,𝑢′
. (39)

Heterogeneous Graph Kernel based Graph Neural Network (HGK-GNN)
(Long, Xu et al., 2021). HGK-GNN first proposed GKNN for heteroge-
neous graphs. It adopted ⟨𝑓 (𝑢1), 𝑓 (𝑢2)⟩𝑀 as graph kernel based on the
Mahalanobis Distance to build connections among heterogeneous nodes
and edges,

⟨𝑓 (𝑢1), 𝑓 (𝑢2)⟩𝑀1
= 𝑓 (𝑢1)𝑇𝑴1𝑓 (𝑢2),

⟨𝑓 (𝑒⋅,𝑢1 ), 𝑓 (𝑒⋅,𝑢2 )⟩𝑀2
= 𝑓 (𝑒⋅,𝑢1 )

𝑇𝑴2𝑓 (𝑒⋅,𝑢2 ).

Following the route introduced in Lei et al. (2017), the correspond-
ing neural network architecture of heterogeneous graph kernel can be
9

derived as

ℎ(0)(𝑣) =𝑾 (0)
𝑡𝑉 (𝑣)

𝑓 (𝑣),

ℎ(𝑙)(𝑣) =𝑾 (𝑙)
𝑡𝑉 (𝑣)

𝑓 (𝑣)⊙
∑

𝑢∈𝑁(𝑣)
(𝑼 (𝑙)

𝑡𝑉 (𝑣)
ℎ(𝑙−1)(𝑢)

⊙ 𝑼 (𝑙)
𝑡𝐸 (𝑒𝑢,𝑣)

𝑓 (𝑒𝑢,𝑣)), 1 < 𝑙 ≤ 𝐿,

(40)

where ℎ(𝑙)(𝑣) is the cell state vector of node v, and 𝑾 (𝑙)
𝑡𝑉 (𝑣)

, 𝑼 (𝑙)
𝑡𝑉 (𝑣)

𝑼 (𝑙)
𝑡𝐸 (𝑒𝑢,𝑣)

are learnable parameters.

4.4. Summary

This section introduces graph kernel neural networks. We provide
the summary as follows:

• Techniques. Graph kernel neural networks (GKNNs) are a recent
popular research area that combines the advantages of graph
kernels and GNNs to learn more effective graph representations.
Researchers have studied GKNNs in various aspects, such as the-
oretical foundations, algorithmic design, and practical applica-
tions. As a result, a wide range of GKNN-based models and
methods have been developed for graph analysis and represen-
tation tasks, including node classification, link prediction, and
graph clustering.

• Challenges and Limitations. Although GKNNs have shown great
potential in graph-related tasks, they also have several limitations
that need to be addressed. Scalability is a significant challenge,
particularly when dealing with large-scale graphs and networks.
As the size of the graph increases, the computational cost of
GKNNs grows exponentially, which can limit their ability to
handle large and complex real-world applications.

• Future Works. For future works, we expect the GKNNs can
integrate more domain-specific knowledge into the designed ker-
nels. Domain-specific knowledge has been shown to significantly
improve the performance of many applications, such as drug
discovery (Zeng et al., 2023), knowledge graph-based information
retrieval systems, and molecular analysis (Feinberg et al., 2018;
Wang et al., 2019; Zang et al., 2023). Incorporating domain-
specific knowledge into GKNNs can enhance their ability to han-
dle complex and diverse data structures, leading to more accurate
and interpretable models.
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Table 4
Summary of graph pooling methods.

Method Type TopK-based Cluster-based Attention mechanism

Mean/Sum/Max GlobalPooling

GGS-NN (Li et al., 2016) Global ✓

SortPool (Zhang, Cui et al., 2018) Global
SSRead (Lee et al., 2021) Global
gPool (Gao & Ji, 2019b) Hierarchical ✓

SAGPool (Lee, Lee, & Kang, 2019) Hierarchical ✓ ✓

HGP-SL (Zhang et al., 2019) Hierarchical ✓ ✓

TAPool (Gao, Liu, & Ji, 2021) Hierarchical ✓

DiffPool (Ying et al., 2018) Hierarchical ✓

MinCutPool (Bianchi, Grattarola, & Alippi, 2020) Hierarchical ✓

SEP (Wu, Chen, Xu, & Li, 2022) Hierarchical ✓

ASAP (Ranjan, Sanyal, & Talukdar, 2020) Hierarchical ✓ ✓ ✓

MuchPool (Du, Wang, Miao, & Zhang, 2021) Hierarchical ✓ ✓
5. Graph pooling

When it comes to graph-level tasks, such as graph classification
and graph regression, graph pooling is an essential component for
generating the whole graph representation from the learned node em-
beddings. To ensure isomorphic graphs have the same representation,
the graph pooling operations should be invariant to the permutations
of nodes. In this section, we give a systematic review of existing graph
pooling algorithms and generally classify them into two categories:
global pooling algorithms and hierarchical pooling algorithms. The
global pooling algorithms aggregate the node embeddings to the final
graph representation directly, while the hierarchical pooling algorithms
reduce the graph size and generate the immediate representations
gradually to capture the hierarchical structure and characteristics of
the input graph. A summary is provided in Table 4.

5.1. Global pooling

Global pooling operations generate a holistic graph representation
from the learned node embeddings in one step, which are referred to as
readout functions in some literature (Corso et al., 2020; Xu, Hu et al.,
2018) as well. Several simple permutation-invariant operations, such as
mean, sum, and max, are widely employed on the node embeddings to
output the graph-level representation. To enhance the adaptiveness of
global pooling operators, GGS-NN (Li, Zemel, Brockschmidt, & Tarlow,
2016) introduces a soft attention mechanism to evaluate the impor-
tance of nodes for a particular task and then takes a weighted sum of
the node embeddings. SortPool (Zhang, Cui, Neumann and Chen, 2018)
exploits Weisfeiler–Lehman methods (Weisfeiler & Leman, 1968) to sort
nodes based on their structural positions in the graph topology, and
produces the graph representation from the sorted node embeddings
by traditional convolutional neural networks. Recently, SSRead (Lee,
Kim, Lee, Park, & Yu, 2021) proposes a structural-semantic pooling
method, which first aligns nodes and learnable structural prototypes
semantically, and then aggregates node representations in groups based
on matching structural prototypes.

5.2. Hierarchical pooling

Different from global pooling methods, hierarchical pooling meth-
ods coarsen the graph gradually, to preserve the structural information
of the graph better. To adaptively coarse the graph and learn optimal
hierarchical representations according to a particular task, many learn-
able hierarchical pooling operators have been proposed in the past few
years, which can be integrated with multifarious graph convolution
layers. There are two common approaches to coarsening the graph, one
is selecting important nodes and dropping the others by TopK selection,
and the other one is merging nodes and generating the coarsened graph
by clustering methods. We call the former TopK-based pooling, and
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the latter cluster-based pooling in this survey. In addition, some works
combine these two types of pooling methods, which will be reviewed
in the hybrid pooling section.

5.2.1. TopK-based pooling
Typically, TopK-based pooling methods first learn a scoring function

to evaluate the importance of nodes of the original graph. Based on
importance score 𝐙 ∈ R|𝑉 |×1 generated, they select the top 𝐾 nodes
out of all nodes,

𝑖𝑑𝑥 = TOP𝑘 (𝐙) , (41)

where 𝑖𝑑𝑥 denotes the index of the top 𝐾 nodes. Based on these selected
nodes, most methods directly employ the induced subgraph as the
pooled graph,

𝐀pool = 𝐀𝑖𝑑𝑥,𝑖𝑑𝑥, (42)

where 𝐴𝑖𝑑𝑥,𝑖𝑑𝑥 denotes the adjacency matrix indexed by the selected
rows and columns. Moreover, to make the scoring function learnable,
they further use score 𝑍 as a gate for the selected node features,

𝐗pool = 𝐗𝑖𝑑𝑥,∶ ⊙ 𝐙𝑖𝑑𝑥, (43)

where 𝑋𝑖𝑑𝑥,∶ denotes the feature matrix indexed by the selected nodes,
and ⊙ denotes the broadcasted element-wise product. With the help
of the gate mechanism, the scoring function can be trained by back-
propagation, to adaptively evaluate the importance of nodes according
to a certain task. Several representative TopK-based pooling methods
are reviewed in detail in the following.

gPool (Gao & Ji, 2019b). gPool is one of the first works to select
the most important node subset from the original graph to construct
the coarsened graph by Top K operation. The key idea of gPool is to
evaluate the importance of all nodes by learning a projection vector 𝐩,
which projects node features to a scalar score,

𝐙𝑗 = 𝐗𝑗,∶𝐩∕‖𝐩‖, (44)

and then select nodes with K-highest scores to form the pooled graph.
Self-Attention Graph Pooling (SAGPool) (Lee et al., 2019). Unlike

gPool (Gao & Ji, 2019b), which only uses node features to generate
projection scores, SAGPool captures both graph topology and node
features to obtain self-attention scores by graph convolution. The var-
ious formulas of graph convolution can be employed to compute the
self-attention score 𝐙,

𝐙 = 𝜎(GNN(𝐗,𝐀)), (45)

where 𝜎 denotes the activation function, and GNN denotes various
graph convolutional layers or stacks of them, whose output dimension
is one.

Hierarchical Graph Pooling with Structure Learning (HGP-SL) (Zhang,
Bu et al., 2019) . HGP-SL evaluates the importance score of a node

according to the information it contains given its neighbors. It supposes
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that a node which can be easily represented by its neighborhood carries
relatively little information. Specifically, the importance score can be
defined by the Manhattan distance between the original node repre-
sentation and the reconstructed one aggregated from its neighbors’
representation,

𝐙 = ‖

‖

‖

(

𝐈 − 𝐃−1𝐀
)

𝐗‖‖
‖1
, (46)

here 𝐈 denotes the identity matrix, 𝐃 denotes the diagonal degree
atrix of 𝐀, and ‖ ⋅ ‖1 means 𝓁1 norm. Furthermore, to reduce the loss

f topology information, HGP-SL leverages structure learning to learn
refined graph topology for the reserved nodes. Specifically, it utilizes

he attention mechanism to compute the similarity of two nodes as the
eight of the reconstructed edge,

̃pool
𝑖𝑗 = sparsemax

(

𝜎
(

𝐰
[

𝑿pool
𝑖,∶ ∥ 𝑿pool

𝑗,∶

]⊤
)

+ 𝜆 ⋅𝑨pool
𝑖𝑗

)

, (47)

here �̃�
pool denotes the refined adjacency matrix of the pooled graph,

parsemax(⋅) truncates the values below a threshold to zeros, 𝐰 denotes
learnable weight vector, and 𝜆 is a weight parameter between the

riginal edges and the reconstructed edges. These reconstructed edges
ay capture the underlying relationship between nodes disconnected
ue to node dropping.

Topology-Aware Graph Pooling (TAPool) (Gao et al., 2021). TAPool
akes both the local and global significance of a node into account. On
he one hand, it utilizes the average similarity between a node and its
eighbors to evaluate its local importance,

̂ =
(

𝐗𝐗𝑇
)

⊙
(

𝐃−1𝐀
)

,𝐙𝑙 = sof tmax
( 1
𝑛
�̂�𝟏𝑛

)

, (48)

here �̂� denotes the localized similarity matrix, and 𝐙𝑙 denotes the
ocal importance score. On the other hand, it measures the global
mportance of a node according to the significance of its one-hop
eighborhood in the whole graph,

̂ = 𝐃−1𝐀𝐗,𝐙𝑔 = sof tmax
(

�̂�𝐩
)

, (49)

here 𝐩 is a learnable and globally shared projector vector, similar
o the aforementioned gPool (Gao & Ji, 2019b). However, �̂� here
urther aggregates the features from the neighborhood, which enables
he global importance score 𝐙𝑔 to capture more topology information
uch as salient subgraphs. Moreover, TAPool encourages connectivity
n the coarsened graph with the help of a degree-based connectivity
erm, then obtaining the final importance score 𝐙 = 𝐙𝑙 + 𝐙𝑔 + 𝜆𝐃∕|𝑉 |,
here 𝜆 is a trade-off hyperparameter.

.2.2. Cluster-based pooling
Pooling the graph by clustering and merging nodes is the main

oncept behind cluster-based pooling methods. Typically, they allocate
odes to a collection of clusters by learning a cluster assignment matrix
∈ R|𝑉 |×𝐾 , where 𝐾 is the number of the clusters. After that, they
erge the nodes within each cluster to generate a new node in the
ooled graph. The feature (embedding) matrix of the new nodes can
e obtained by aggregating the features (embeddings) of nodes within
he clusters, according to the cluster assignment matrix,
pool = 𝐒𝑇𝐗. (50)

While the adjacency matrix of the pooled graph can be generated
y calculating the connectivity strength between each pair of clusters,
pool = 𝐒𝑇𝐀𝐒. (51)

Then, we review several representative cluster-based pooling meth-
ds in detail.

DiffPool (Ying et al., 2018). DiffPool is one of the first and classic
orks to hierarchically pool the graph by graph clustering. Specifically,

t uses an embedding GNN to generate embeddings of nodes, and a
ooling GNN to generate the cluster assignment matrix,
̂ = GNN 𝐗,𝐀 ,𝐒 = sof tmax

(

GNN 𝐗,𝐀
)

,𝐗pool = 𝐒𝑇 �̂�. (52)
11

embed ( ) pool ( )
Besides, DiffPool leverages an auxiliary link prediction objective
𝐿LP = ‖

‖

𝐀,𝐒𝐒𝑇 ‖
‖𝐹 to encourage the adjacent nodes to be in the same

cluster and avoid fake local minima, where ‖⋅‖𝐹 is the Frobenius norm.
And it utilizes an entropy regularization term 𝐿E = 1

|𝑉 |

∑

|𝑉 |

𝑖=1𝐻
(

𝐒𝑖
)

to

impel clear cluster assignments, where 𝐻(⋅) represents the entropy.
Graph Pooling with Spectral Clustering (MinCutPool) (Bianchi et al.,

2020). MinCutPool takes advantage of the properties of spectral cluster-
ing (SC) to provide a better inductive bias and avoid degenerate cluster
assignments. It learns to cluster like SC by optimizing the MinCut loss,

𝐿𝑐 = −
Tr

(

𝐒𝑇𝐀𝐒
)

Tr
(

𝐒𝑇𝐃𝐒
) . (53)

In addition, it utilizes an orthogonality loss 𝐿𝑜 =
‖

‖

‖

‖

𝐒𝑇 𝐒
‖𝐒𝑇 𝐒‖𝐹

− 𝐈𝐾
√

𝐾

‖

‖

‖

‖𝐹

to encourage orthogonal and uniform cluster assignments, and prevent
the bad minima of 𝐿𝑐 , where 𝐾 is the number of the clusters. When
performing a specific task, it can optimize the weighted sum of the
unsupervised loss 𝐿𝑢 = 𝐿𝑐 + 𝐿𝑜 and a task-specific loss to find the
optimal balance between the theoretical prior and the task objective.

Structural Entropy Guided Graph Pooling (SEP) (Wu et al., 2022). In
order to lessen the local structural harm and suboptimal performance
caused by separate pooling layers and predesigned pooling ratios, SEP
leverages the concept of structural entropy to generate the global and
hierarchical cluster assignments at once. Specifically, SEP treats the
nodes of a given graph as the leaf nodes of a coding tree and exploits
the hierarchical layers of the coding tree to capture the hierarchical
structure of the graph. The optimal code tree 𝑇 can be obtained by
minimizing the structural entropy (Li & Pan, 2016),

𝑇 (𝐺) = −
∑

𝑣𝑖∈𝑇

𝑔(𝑃𝑣𝑖 )
vol(𝑉 )

log
vol

(

𝑃𝑣𝑖
)

vol
(

𝑃𝑣+𝑖

) , (54)

where 𝑣+𝑖 represents the father node of node 𝑣𝑖, 𝑃𝑣𝑖 denotes the partition
f leaf nodes which are descendants of 𝑣𝑖 in the coding tree 𝑇 , 𝑔(𝑃𝑣𝑖 )
enotes the number of edges that have a terminal in the 𝑃𝑣𝑖 , and vol(⋅)
enotes the total degrees of leaf nodes in the given partition. Then, the
luster assignment matrix for each pooling layer can be derived from
he edges of each layer in the coding tree. With the help of the one-
tep joint assignments generation based on structural entropy, it can
ot only make the best use of the hierarchical relationships of pooling
ayers, but also reduce the structural noise in the original graph.

.2.3. Hybrid pooling
Hybrid pooling methods combine TopK-based pooling methods and

luster-based pooling methods, to exert the advantages of the two
ethods and overcome their respective limitations. Here, we review

wo representative hybrid pooling methods, Adaptive Structure Aware
ooling (Ranjan et al., 2020) and Multi-channel Pooling (Du et al.,
021).

Adaptive Structure Aware Pooling (ASAP) (Ranjan et al., 2020). Con-
idering that TopK-based pooling methods are not good at capturing
he connectivity of the coarsened graph, while cluster-based pooling
ethods fail to be employed for large graphs because of the dense

ssignment matrix, ASAP organically combines the two types of pooling
ethods to overcome the above limitations. Specifically, it regards

he ℎ-hop ego-network 𝑐ℎ(𝑣𝑖) of each node 𝑣𝑖 as a cluster. Such local
lustering enables the cluster assignment matrix to be sparse. Then, a
ew self-attention mechanism Master2Token is used to learn the cluster
ssignment matrix 𝐒 and the cluster representations,

𝑖 = max
𝑣𝑗∈𝑐ℎ(𝑣𝑖)

(

𝐗′
𝑗

)

,𝐒𝑗,𝑖 = sof tmax
(

𝐰𝑇 𝜎
(

𝐖𝐦𝑖 ∥ 𝐗′
𝑗

))

,

𝑐
𝑖 =

|𝑐ℎ(𝑣𝑖)|
∑

𝐒𝑗,𝑖𝐗𝑗 , (55)

𝑗=1
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where 𝐗′ is the node embedding matrix after passing GCN, 𝐰 and 𝐖
enote the trainable vector and matrix respectively, and 𝐗𝑐𝑖 denotes
he representation of the cluster 𝑐ℎ(𝑣𝑖). Next, it utilizes the graph

convolution and TopK selection to choose the top 𝐾 clusters, whose
centers are treated as the nodes of the pooled graph. The adjacency
matrix of the pooled graph can be calculated like common cluster-based
pooling methods (51), preserving the connectivity of the original graph
well.

Multi-channel Pooling (MuchPool) (Du et al., 2021). The key idea
of MuchPool is to capture both the local and global structure of a
given graph by combining the TopK-based pooling methods and the
cluster-based pooling methods. MuchPool has two pooling channels
based on TopK selection to yield two fine-grained pooled graphs,
whose selection criteria are node degrees and projected scores of node
features respectively, so that both the local topology and the node
features are considered. Besides, it leverages a channel based on graph
clustering to obtain a coarse-grained pooled graph, which captures the
global and hierarchical structure of the input graph. To better integrate
the information of different channels, a cross-channel convolution is
proposed, which fuses the node embeddings of the fine-grained pooled
graph 𝐗fine and the coarse-grained pooled graph 𝐗coarse with the help
of the cluster assignments 𝐒 of the cluster-based pooling channel,

�̃�fine = 𝜎
([

𝐗fine + 𝐒𝐗coarse] ⋅𝐖
)

, (56)

where 𝐖 denotes the learnable weights. Finally, it merges the node
embeddings and the adjacency matrices of the two fine-grained pooled
graphs to obtain the eventually pooled graph.

5.3. Summary

This section introduces graph pooling. We provide the summary as
follows:

• Techniques. Graph pooling methods play a vital role in gener-
ating an entire graph representation by aggregating node embed-
dings. There are mainly two categories of graph pooling methods:
global pooling methods and hierarchical pooling methods. While
global pooling methods directly aggregate node embeddings in
one step, hierarchical pooling methods gradually coarsen a graph
to capture hierarchical structure characteristics of the graph based
on TopK selection, clustering methods, or hybrid methods.

• Challenges and Limitations. Despite the great success of graph
pooling methods for learning the whole graph representation,
there remain several challenges and limitations unsolved: (1)
For hierarchical pooling, most cluster-based methods involve the
dense assignment matrix, which limits their application to large
graphs, while TopK-based methods are not good at capturing
structure information of the graph and may lose information due
to node dropping. (2) Most graph pooling methods are designed
for simple attributed graphs, while pooling algorithms tailored
to other types of graphs, like dynamic graphs and heterogeneous
graphs, are largely under-explored.

• Future Works. In the future, we expect that more hybrid or other
pooling methods can be studied to capture the graph structure
information sufficiently as well as be efficient for large graphs.
In realistic scenarios, there are various types of graphs involving
dynamic, heterogeneous, or spatial–temporal information. It is
promising to design graph pooling methods specifically for these
graphs, which can be beneficial to more real-world applications,
such as traffic analysis and recommendation systems.

6. Graph transformer

Though GNNs based on the message-passing paradigm have
12

achieved impressive performance on multiple well-known tasks s
(Gilmer, Schoenholz, Riley, Vinyals, & Dahl, 2017; Li, Xiong, Tha-
bet and Ghanem, 2020; Wang et al., 2019; Xu, Hu et al., 2018),
they still face some intrinsic problems due to the iterative neighbor-
aggregation operation. Many previous works have demonstrated the
two major defects of message-passing GNNs, which are known as the
over-smoothing and long-distance modeling problems. And there are
lots of explanatory works trying to mine insights from these two issues.
The over-smoothing problem can be explained in terms of various GNNs
focusing only on low-frequency information (Bo, Wang, Shi, & Shen,
2021), mixing information between different kinds of nodes destroying
model performance (Chen et al., 2020), GCN is equivalent to Laplacian
smoothing (Li, Han, & Wu, 2018), isotropic aggregation among neigh-
bors leading to the same influence distribution as random walk (Xu
et al., 2018), etc. The inability to model long-distance dependencies of
GNNs is partially due to the over-smoothing problem, because in the
context of conventional neighbor-aggregation GNNs, node information
can be passed over long distances only through multiple GNN layers.
Recently, Alon and Yahav (2020) found that this problem may also
be caused by over-squashing, which means the exponential growth
of computation paths with increasing distance. Though the two basic
performance bottlenecks can be tackled with elaborate message passing
and aggregation strategies, the representational power of GNNs is
inherently bounded by the Weisfeiler–Lehman isomorphism hierarchy
(Morris et al., 2019). Worse still, most GNNs (Gilmer et al., 2017;
Kipf & Welling, 2016a; Veličković et al., 2017) are bounded by the
simplest first-order Weisfeiler–Lehman test (1-WL). Some efforts have
been dedicated to break this limitation, such as hypergraph-based
(Feng, You, Zhang, Ji, & Gao, 2019; Huang & Yang, 2021), path-based
(Cai & Lam, 2020; Ying et al., 2021), and k-WL-based (Balcilar et al.,
2021; Morris et al., 2019) approaches.

Among many attempts to solve these fundamental problems, an
essential one is the adaptation of Transformer (Vaswani et al., 2017) for
graph representation learning. Transformers, both the vanilla version
and several variants, have been adopted with impressive results in var-
ious deep learning fields including natural language processing (Devlin,
Chang, Lee, & Toutanova, 2018; Vaswani et al., 2017), computer vision
(Carion et al., 2020; Zhu et al., 2020), etc. Recently, Transformer also
shows powerful graph modeling abilities in many researches (Chen,
O’Bray et al., 2022; Dwivedi & Bresson, 2020; Kreuzer, Beaini, Hamil-
ton, Létourneau, & Tossou, 2021; Ma et al., 2023; Wu et al., 2021;
Ying et al., 2021; Zhao, Ma, Zhang, Deng and Wei, 2023). Extensive
empirical results show that some chronic shortcomings in conventional
GNNs can be easily overcome in Transformer-based approaches. This
section gives an overview of the current progress on this kind of
method.

6.1. Transformer

Transformer (Vaswani et al., 2017) was first applied to model ma-
chine translation, but two of the key mechanisms adopted in this work,
attention operation and positional encoding, are highly compatible
with the graph modeling problem.

To be specific, we denote the input of attention layer in Transformer
as 𝐗 = [𝐱0, 𝐱1,… , 𝐱𝑛−1], 𝐱𝑖 ∈ R𝑑 , where 𝑛 is the length of input sequence
and 𝑑 is the dimension of each input embedding 𝐱𝑖. Then the core
peration of calculating new embedding �̂�𝑖 for each 𝐱𝑖 in attention layer
an be streamlined as:
ℎ(𝐱𝑖, 𝐱𝑗 ) = NORM𝑗 ( ∥

𝐱𝑘∈𝐗
ℎ(𝐱𝑖)Tℎ(𝐱𝑘)),

𝐱ℎ𝑖 =
∑

𝐱𝑗∈𝐗
sℎ(𝐱𝑖, 𝐱𝑗 )ℎ(𝐱𝑗 ),

�̂�𝑖 = MERGE(𝐱1𝑖 , 𝐱
2
𝑖 ,… , 𝐱𝐻𝑖 ),

(57)

here ℎ ∈ {0, 1,… ,𝐻 − 1} represents the attention head number. ℎ,
ℎ and ℎ are projection functions mapping a vector to the query

ℎ
pace, key space and value space respectively. s (𝐱𝑖, 𝐱𝑗 ) is score function
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Table 5
Summary of graph transformer methods.

Method Technique Capacity

Attention modification Encoding enhancement Heterogeneous Long distance >1-WL

GGT (Dwivedi & Bresson, 2020) ✓ ✓ Structure only ✓

GTSA (Kreuzer et al., 2021) ✓ ✓ ✓ ✓

HGT (Hu, Dong, Wang and Sun, 2020) ✓ ✓

G2SHGT (Yao, Wang, & Wan, 2020) ✓ ✓ ✓

HINormer (Mao, Liu, Liu and Sun, 2023) ✓ ✓ ✓

GRUGT (Cai & Lam, 2020) ✓ ✓ ✓

GRIT (Ma et al., 2023) ✓ ✓ ✓

Graphormer-GD (Zhang, Luo, Wang and He, 2023) ✓ ✓ ✓

Graphormer (Ying et al., 2021) ✓ ✓ ✓ ✓

GSGT (Hussain, Zaki, & Subramanian, 2021) ✓ ✓ ✓

TMDG (Geisler et al., 2023) ✓ ✓ ✓

Graph-BERT (Zhang, Zhang, Xia and Sun, 2020) ✓ ✓ ✓

LRGT (Wu et al., 2021) ✓ ✓

SAT (Chen, O’Bray et al., 2022) ✓ ✓ ✓
w
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measuring the similarity between 𝐱𝑖 and 𝐱𝑗 . NORM is the normalization
operation ensuring ∑

𝐱𝑗∈𝐗 sℎ(𝐱𝑖, 𝐱𝑗 ) ≡ 1 to propel the stability of the
output generated by a stack of attention layers, it is usually performed
as scaled softmax: NORM(⋅) = SoftMax(⋅∕

√

𝑑). And MERGE function is
designed to combine the information extracted from multiple attention
heads. Here, we omit further implementation details that do not affect
our understanding of attention operation.

The attention process cannot encode the position information of
each 𝐱𝑖, which is essential in machine translation problems. So po-
sitional encoding is introduced to remedy this deficiency, and it is
calculated as:

𝐗𝑝𝑜𝑠𝑖,2𝑗 = sin(𝑖∕100002𝑗∕𝑑 ), 𝐗𝑝𝑜𝑠𝑖,2𝑗+1 = cos(𝑖∕100002𝑗∕𝑑 ), (58)

where 𝑖 is the position and 𝑗 is the dimension. The positional encoding
is added to the input before it is fed to the Transformer.

6.2. Overview

From the simplified process shown in Eq. (57), we can see that
the core of the attention operation is to accomplish information trans-
fer based on the similarity between the source and the target to be
updated. It is quite similar to the message-passing process on a fully-
connected graph. However, the direct application of this architecture
to arbitrary graphs does not make use of structural information, so it
may lead to poor performance when graph topology is important. On
the other hand, the definition of positional encoding in graphs is not
a trivial problem because the order or coordinates of graph nodes are
underdefined.

According to these two challenges, Transformer-based methods for
graph representation learning can be classified into two major cate-
gories, one considering graph structure during the attention process,
and the other encoding the topological information of the graph into
initial node features. We name the first one as Attention Modification and
the second one as Encoding Enhancement. A summarization is provided
in Table 5. In the following discussion, if both methods are used in one
paper, we will list them in different subsections, and we will ignore the
multi-head trick in attention operation.

6.3. Attention modification

This group of works attempts to modify the full attention opera-
tion to capture structure information. The most prevalent approach
is changing the score function, which is denoted as s(⋅, ⋅) in Eq. (57).
GGT (Dwivedi & Bresson, 2020) constrains each node feature can only
attend to neighbors and enables the model to represent edge feature
13

t

information by rewrite s(⋅, ⋅) as:

s̃1(𝐱𝑖, 𝐱𝑗 ) =
{

(𝐖𝑄𝐱𝑖)T(𝐖𝐾𝐱𝑗 ⊙𝐖𝐸𝐞𝑗𝑖), ⟨𝑗, 𝑖⟩ ∈ 𝐸

− ∞, otherwise
,

s1(𝐱𝑖, 𝐱𝑗 ) = SoftMax𝑗 ( ∥
𝐱𝑘∈𝐗

s̃1(𝐱𝑖, 𝐱𝑘)),
(59)

here ⊙ is Hadamard product and 𝐖𝑄,𝐾,𝐸 represents trainable param-
eter matrix. This approach is not efficient yet to model long-distance
dependencies since only 1st-neighbors are considered. Though it adopts
Laplacian eigenvectors to gather global information (see Section 6.4),
but only long-distance structure information is remedied while the
node and edge features are not. GTSA (Kreuzer et al., 2021) improves
this approach by combining the original graph and the full graph.
Specifically, it extends s1(⋅, ⋅) to:

s̃2(𝐱𝑖, 𝐱𝑗 ) =
{

(𝐖𝑄
1 𝐱𝑖)

T(𝐖𝐾
1 𝐱𝑗 ⊙𝐖𝐸

1 𝐞𝑗𝑖), ⟨𝑗, 𝑖⟩ ∈ 𝐸

(𝐖𝑄
0 𝐱𝑖)

T(𝐖𝐾
0 𝐱𝑗 ⊙𝐖𝐸

0 𝐞𝑗𝑖), otherwise
,

2(𝐱𝑖, 𝐱𝑗 ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
1 + 𝜆

SoftMax𝑗 ( ∥
⟨𝑘,𝑖⟩∈𝐸

s̃2(𝐱𝑖, 𝐱𝑘)), ⟨𝑗, 𝑖⟩ ∈ 𝐸

𝜆
1 + 𝜆

SoftMax𝑗 ( ∥
⟨𝑘,𝑖⟩∉𝐸

s̃2(𝐱𝑖, 𝐱𝑘)), otherwise
,

(60)

here 𝜆 is a hyperparameter representing the strength of the full
onnection.

Some works try to reduce information-mixing problems (Chen, Lin
t al., 2020) in heterogeneous graphs. HGT (Hu, Dong, Wang and Sun,
020) disentangles the attention of different node types and edge types
y adopting additional attention heads. It defines 𝐖𝜏(𝑣)

𝑄,𝐾,𝑉 for each node
ype 𝜏(𝑣) and 𝐖𝜙(𝑒)

𝐸 for each edge type 𝜙(𝑒), 𝜏(⋅) and 𝜙(⋅) are type
ndicating function. G2SHGT (Yao et al., 2020) defines four types of
ubgraphs, fully-connected, connected, default and reverse, to capture
lobal, undirected, forward and backward information respectively.
ach subgraph is homogeneous, so it can reduce interactions between
ifferent classes.

Path features between nodes are always treated as inductive bias
dded to the original score function. Let SP𝑖𝑗 = (𝑒1, 𝑒2,… , 𝑒𝑁 ) denote
he shortest path between node pair (𝑣𝑖, 𝑣𝑗 ). GRUGT (Cai & Lam, 2020)
ses GRU (Chung, Gulcehre, Cho, & Bengio, 2014) to encode forward
nd backward features as: 𝐫𝑖𝑗 = GRU(SP𝑖𝑗 ), 𝐫𝑗𝑖 = GRU(SP𝑗𝑖). Then, the
inal attention score is calculated by adding up four components:

̃3(𝐱𝑖, 𝐱𝑗 ) = (𝐖𝑄𝐱𝑖)T𝐖𝐾𝐱𝑗 + (𝐖𝑄𝐱𝑖)T𝐖𝐾𝐫𝑗𝑖 + (𝐖𝑄𝐫𝑖𝑗 )T𝐖𝐾𝐱𝑗
+(𝐖𝑄𝐫𝑖𝑗 )T𝐖𝐾𝐫𝑗𝑖,

(61)

rom front to back, which represent content-based score,
ource-dependent bias, target-dependent bias and universal bias respec-
ively. Graphormer (Ying et al., 2021) uses both path length and path
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embedding to introduce structural bias as:

s̃4(𝐱𝑖, 𝐱𝑗 ) = (𝐖𝑄𝐱𝑖)T𝐖𝐾𝐱𝑗∕
√

𝑑 + 𝑏𝑁 + 𝑐𝑖𝑗 ,

𝑐𝑖𝑗 =
1
𝑁

𝑁
∑

𝑘=1
(𝐞𝑘)T𝐰𝐸𝑘 ,

s4(𝐱𝑖, 𝐱𝑗 ) = SoftMax𝑗 ( ∥
𝐱𝑘∈𝐗

s̃4(𝐱𝑖, 𝐱𝑘)),

(62)

here 𝑏𝑁 is a trainable scalar indexed by 𝑁 , the length of SP𝑖𝑗 . 𝐞𝑘 is
he embedding of the edge 𝑒𝑘, and 𝐰𝐸𝑘 ∈ R𝑑 is the 𝑘th edge parameter.
f SP𝑖𝑗 does not exist, then 𝑏𝑁 and 𝑐𝑖𝑗 are set to be special values.
RIT (Ma, Lin et al., 2023) utilizes relative random walk probabilities
s an inductive bias to encode relative path information. Graphormer-
D (Zhang, Luo et al., 2023) also incorporates relative distance as
ias, and rigorously proves that this bias is crucial for determining the
iconnectivity of a graph.

.4. Encoding enhancement

This kind of method intends to enhance initial node representations
o enable the Transformer to encode structure information. They can
e further divided into two categories, position-analogy methods and
tructure-aware methods.

.4.1. Position-analogy methods
In Euclidean space, the Laplacian operator corresponds to the di-

ergence of the gradient, whose eigenfunctions are sine/cosine func-
ions. For the graph, the Laplacian operator is the Laplacian matrix,
hose eigenvectors can be considered as eigenfunctions. Hence, in-

pired by Eq. (58), position-analogy methods utilize Laplacian eigen-
ectors to simulate positional encoding 𝐗𝑝𝑜𝑠 as they are the equivalents
f sine/cosine functions.

Laplacian eigenvectors can be calculated via the eigendecomposi-
ion of normalized graph Laplacian matrix �̃�:

̃ ≜ 𝐈 − 𝐃−1∕2𝐀𝐃−1∕2 = 𝐔Λ𝐔T, (63)

here 𝐀 is the adjacency matrix, 𝐃 is the degree matrix, 𝐔 = [𝐮1,𝐮2,
,𝐮𝑛−1] are eigenvectors and Λ = 𝑑𝑖𝑎𝑔(𝜆0, 𝜆1,… , 𝜆𝑛−1) are eigenval-

es. With 𝐔 and Λ, GGT (Dwivedi & Bresson, 2020) uses eigenvectors
f the k smallest non-trivial eigenvalues to denote the intermediate
mbedding 𝐗𝑚𝑖𝑑 ∈ R𝑛×𝑘, and maps it to d-dimensional space and gets
he position encoding 𝐗𝑝𝑜𝑠 ∈ R𝑛×𝑑 . This process can be formalized as:

𝑛𝑑𝑒𝑥 = argmin𝑘({𝜆𝑖|0 ≤ 𝑖 < 𝑛 ∧ 𝜆𝑖 > 0}),

𝐗𝑚𝑖𝑑 = [𝐮𝑖𝑛𝑑𝑒𝑥0 ,𝐮𝑖𝑛𝑑𝑒𝑥1 ,… ,𝐮𝑖𝑛𝑑𝑒𝑥𝑘−1 ]
T,

𝐗𝑝𝑜𝑠 = 𝐗𝑚𝑖𝑑𝐖𝑘×𝑑 ,

(64)

here 𝑖𝑛𝑑𝑒𝑥 is the subscript of the selected eigenvectors. GTSA (Kreuzer
t al., 2021) puts eigenvector 𝐮𝑖 on the frequency axis at 𝜆𝑖 and uses
equence modeling methods to generate positional encoding. Specifi-
ally, it extends 𝐗𝑚𝑖𝑑 in Eq. (64) to �̃�𝑚𝑖𝑑 ∈ R𝑛×𝑘×2 by concatenating
ach value in eigenvectors with corresponding eigenvalue, and then
ositional encoding 𝐗𝑝𝑜𝑠 ∈ R𝑛×𝑑 are generated as:

𝐗𝑖𝑛𝑝𝑢𝑡 = �̃�𝑚𝑖𝑑𝐖2×𝑑 ,
𝑝𝑜𝑠 = SumPooling(Transformer(𝐗𝑖𝑛𝑝𝑢𝑡),dim = 1).

(65)

Here, 𝐗𝑖𝑛𝑝𝑢𝑡 ∈ R𝑛×𝑘×𝑑 is equivalent to the input matrix in sequence
odeling with shape (𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒, 𝑙𝑒𝑛𝑔𝑡ℎ, 𝑑𝑖𝑚), and can be naturally
rocessed by Transformer. Since the Laplacian eigenvectors can be
omplex-valued for directed graph, GSGT (Hussain et al., 2021) pro-
oses to utilize SVD of adjacency matrix 𝐀, which is denoted as 𝐀 =
Σ𝐕T, and uses the largest 𝑘 singular values Σ𝑘 and associated left
nd right singular vectors 𝐔𝑘 and 𝐕T

𝑘 to output 𝐗𝑝𝑜𝑠 as 𝐗𝑝𝑜𝑠 = [𝐔𝑘Σ
1∕2
𝑘 ∥

𝑘Σ
1∕2
𝑘 ], where ∥ is the concatenation operation. In addition to SVD,

MDG (Geisler et al., 2023) processes directed graphs by utilizing the
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agnetic Laplacian. All these methods above randomly flip the signs of w
igenvectors or singular vectors during the training phase to promote
he invariance of the models to the sign ambiguity.

.4.2. Structure-aware methods
In contrast to position-analogy methods, structure-aware methods

o not attempt to mathematically rigorously simulate sequence po-
itional encoding. They use some additional mechanisms to directly
alculate structure-related encoding.

Some approaches compute extra encoding 𝐗𝑎𝑑𝑑 and add it to the
nitial node representation. Graphormer (Ying et al., 2021) proposes
o leverage node centrality as an additional signal to address the im-
ortance of each node. Concretely, 𝐱𝑎𝑑𝑑𝑖 is determined by the in-degree
eg−𝑖 and outdegree deg+𝑖 :

𝑎𝑑𝑑
𝑖 = −(deg−𝑖 ) + +(deg+𝑖 ), (66)

here − and + are learnable embedding function. Graph-BERT
Zhang, Zhang et al., 2020) employs Weisfeiler–Lehman algorithm to
abel node 𝑣𝑖 to a number WL(𝑣𝑖) ∈ N and defines 𝐱𝑎𝑑𝑑𝑖 as:

𝑎𝑑𝑑
𝑖,2𝑗 = sin(WL(𝑣𝑖)∕100002𝑗∕𝑑 ), 𝐱𝑎𝑑𝑑𝑖,2𝑗+1 = cos(WL(𝑣𝑖)∕100002𝑗∕𝑑 ). (67)

The other approaches try to leverage GNNs to initialize inputs to the
ransformer. LRGT (Wu et al., 2021) applies GNN to get intermediate
ectors as 𝐗′ = GNN(𝐗), and passes the concatenation of 𝐗′ and a
pecial vector 𝐱CLS to Transformer layer as: �̂� = Transformer([𝐗′ ∥
CLS]). Then �̂�CLS can be used as the representation of the entire graph
or downstream tasks. This method cannot break the 1-WL bottleneck
ecause it uses GCN (Kipf & Welling, 2016a) and GIN (Xu, Hu et al.,
018) as graph encoders in the first step, which are intrinsically limited
y 1-WL test. SAT (Chen, O’Bray et al., 2022) improves this deficiency
y using subgraph-GNN NGNN (Zhang & Li, 2021) for initialization,
nd achieves outstanding performance.

.5. Summary

This section introduces Transformer-based approaches for graph
epresentation learning and we provide the summary as follows:

• Techniques. Graph Transformer methods modify two fundamen-
tal techniques in Transformer, attention operation and positional
encoding, to enhance its ability to encode graph data. Typically,
they introduce fully connected attention to model long-distance
relationships, utilize shortest path and Laplacian eigenvectors to
break 1-WL bottleneck, and separate points and edges belonging
to different classes to avoid over-mixing problems.

• Challenges and Limitations. Though Graph Transformers
achieve encouraging performance, they still face two major chal-
lenges. The first challenge is the computational cost of the
quadratic attention mechanism and shortest path calculation.
These operations require significant computing resources and can
be a bottleneck, particularly for large graphs. The second is the
reliance of Transformer-based models on large amounts of data
for stable performance. It poses a challenge when dealing with
problems that lack sufficient data, especially for few-shot and
zero-shot settings.

• Future Works. We expect efficiency improvement for Graph
Transformer should be further explored. Additionally, there are
some works using pre-training and fine-tuning frameworks to
balance performance and complexity in downstream tasks (Ying
et al., 2021), this may be a promising solution to address the
aforementioned two challenges.

. Semi-supervised learning on graphs

We have investigated various architectures of graph neural net-

orks in which the parameters should be tuned by a learning objective.
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Table 6
Summary of methods for semi-supervised learning on graphs. Contrastive learning can be considered as a specific kind of consistency learning.

Approach Pseudo-labeling Consistency learning Knowledge distillation Active learning

Node-level

CoGNet (Li, Yang et al., 2022) ✓

DSGCN (Zhou et al., 2019) ✓

GRAND (Feng et al., 2020) ✓

AugGCR (Park et al., 2021) ✓

HCPL (Luo et al., 2023) ✓

Graph-level

SEAL (Li et al., 2019) ✓ ✓

InfoGraph (Sun, Hoffmann, Verma and Tang, 2020) ✓ ✓

DSGC (Yang et al., 2022) ✓

ASGN (Hao et al., 2020) ✓ ✓

TGNN (Ju et al., 2022) ✓

KGNN (Ju, Yang et al., 2022) ✓

HGMI (Li, Huang, Chang and Rong, 2022) ✓ ✓

ASGNN (Xie, Lv, Qian, Wen and Liang, 2022) ✓ ✓

DualGraph (Luo et al., 2022) ✓ ✓

GLA (Yue, Zhang, Zhang, & Liu, 2022) ✓

SS (Xie et al., 2022) ✓
w
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The most prevalent optimization approach is supervised learning on
graph data. Due to the label deficiency, semi-supervised learning has
attracted increasing attention in the data mining community. In detail,
these methods attempt to combine graph representation learning with
current semi-supervised techniques including pseudo-labeling, consis-
tency learning, knowledge distillation and active learning. These works
can be further subdivided into node-level representation learning and
graph-level representation learning. We would introduce both parts
in detail as in Sections 7.1 and 7.2, respectively. A summarization is
provided in Table 6.

7.1. Node representation learning

Typically, node representation learning follows the concept of trans-
ductive learning, which has access to test unlabeled data. We first
review the simplest loss objective, i.e., node-level supervised loss. This
loss exploits the ground truth of labeled nodes on graphs. The standard
cross-entropy is usually adopted for optimization. In formulation,

𝑁𝑆𝐿 = − 1
|𝐿

|

∑

𝑖∈𝐿
𝐲𝑇𝑖 log𝐩𝑖, (68)

where 𝐿 denotes the set of labeled nodes. Additionally, there are
a variety of unlabeled nodes that can be used to offer semantic in-
formation. To fully utilize these nodes, a range of methods attempt
to combine semi-supervised approaches with graph neural networks.
Pseudo-labeling (Lee et al., 2013) is a fundamental semi-supervised
technique that uses the classifier to produce the label distribution of
unlabeled examples and then adds appropriately labeled examples to
the training set (Li, Yang, Pagnucco and Song, 2022; Zhou, Zhang, &
Huang, 2019). Another line of semi-supervised learning is consistency
regularization (Laine & Aila, 2016) that requires two examples to have
identical predictions under perturbation. This regularization is based on
the assumption that each instance has a distinct label that is resistant
to random perturbations (Feng et al., 2020; Park et al., 2021). Then,
we show several representative works in detail.

Cooperative Graph Neural Networks (CoGNet) (Li, Yang et al., 2022).
CoGNet is a representative pseudo-label-based GNN approach for semi-
supervised node classification. It employs two GNN classifiers to jointly
annotate unlabeled nodes. In particular, it calculates the confidence of
each node as follows:

𝐶𝑉 (𝐩𝑖) = 𝐩𝑇𝑖 log𝐩𝑖, (69)

where 𝐩𝑖 denotes the output label distribution. Then it selects the
pseudo-labels with high confidence generated from one model to su-
pervise the optimization of the other model. In particular, the objective
for unlabeled nodes is written as follows:

𝐶𝑜𝐺𝑁𝑒𝑡 =
∑

𝟏𝐶𝑉 (𝐩𝑖)>𝜏 �̂�
𝑇
𝑖 𝑙𝑜𝑔𝐪𝑖, (70)
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𝑖∈𝑈 (
here �̂�𝑖 denotes the one-hot formulation of the pseudo-label �̂�𝑖 =
𝑎𝑟𝑔𝑚𝑎𝑥𝐩𝑖 and 𝐪𝑖 denotes the label distribution predicted by the other
classifier. 𝜏 is a pre-defined temperature coefficient. This cross su-
pervision has been demonstrated effective in Chen, Yuan, Zeng and
Wang (2021) and Luo et al. (2021) to prevent the provision of biased
pseudo-labels. Moreover, it employs GNNExplainer (Ying, Bourgeois,
You, Zitnik, & Leskovec, 2019) to provide additional information from
a dual perspective. Here it measures the minimal subgraphs where GNN
classifiers can still generate the same prediction. In this way, CoGNet
can illustrate the entire optimization process to enhance our under-
standing. HCPL (Luo, Ju, Gu, Qin et al., 2023) incorporates curriculum
learning into pseudo-labeling in semi-supervised node classification,
which can generate dynamics thresholds for reliable nodes.

Dynamic Self-training Graph Neural Network (DSGCN) (Zhou et al.,
2019). DSGCN develops an adaptive manner to utilize reliable pseudo-
labels for unlabeled nodes. In particular, it allocates smaller weights
to samples with lower confidence with the additional consideration of
class balance. The weight is formulated as:

𝜔𝑖 =
1
𝑛𝑐𝑖

max
(

RELU
(

𝐩𝑖 − 𝛽 ⋅ 𝟏
))

, (71)

here 𝑛𝑐𝑖 denotes the number of unlabeled samples assigned to the
lass 𝑐𝑖. This technique will decrease the impact of wrong pseudo-labels
uring iterative training.

Graph Random Neural Networks (GRAND) (Feng et al., 2020).
RAND is a representative consistency learning-based method. It first
dds a variety of perturbations to the input graph to generate a list of
raph views. Each graph view 𝐺𝑟 is sent to a GNN classifier to produce
prediction matrix 𝐏𝑟 = [𝐩𝑟1,… ,𝐩𝑟𝑁 ]. Then it summarizes these matrices
s:

= 1
𝑅
𝐏𝑟. (72)

To provide more discriminative information and ensure that the ma-
trix is row-normalized, GRAND sharpens the summarized label matrix
into 𝐏𝑆𝐴 as:

𝐏𝑆𝐴𝑖𝑗 =
𝐏1∕𝑇
𝑖𝑗

∑

𝑗′=0 𝐏
1∕𝑇
𝑖𝑗′

, (73)

here 𝑇 is a given temperature parameter. Finally, consistency learning
s performed by comparing the sharpened summarized matrix with the
atrix of each graph view. Formally, the objective is:

𝐺𝑅𝐴𝑁𝐷 = 1
𝑅

𝑅
∑

𝑟=1

∑

𝑖∈𝑉
‖𝐏𝑆𝐴𝑖 − 𝐏𝑖‖, (74)

ere 𝐺𝑅𝐴𝑁𝐷 serves as a regularization which is combined with the
tandard supervised loss.

Augmentation for GNNs with the Consistency Regularization (AugGCR)
Park et al., 2021). AugGCR begins with the generation of augmented



Neural Networks 173 (2024) 106207W. Ju et al.

𝑁
g



graphs by random dropout and mixup of different order features.
To enhance the model generalization, it borrows the idea of meta-
learning to partition the training data, which improves the quality of
graph augmentation. In addition, it utilizes consistency regularization
to enhance the semi-supervised node classification.

7.2. Graph representation learning

The objective of graph classification is to predict the property of the
whole graph example. Assuming that the training set comprises 𝑁 𝑙 and
𝑢 graph samples 𝑙 = {𝐺1,… , 𝐺𝑁 𝑙} and 𝑢 = {𝐺𝑁 𝑙+1,… , 𝐺𝑁 𝑙+𝑁𝑢}, the

raph-level supervised loss for labeled data can be expressed as follows:

𝐺𝑆𝐿 = − 1
|𝑢|

∑

𝐺𝑗∈𝐿
𝐲𝑗 𝑇 𝑙𝑜𝑔𝐩𝑗 , (75)

where 𝐲𝑗 denotes the one-hot label vector for the 𝑗th sample while 𝐩𝑗
denotes the predicted distribution of 𝐺𝑗 . When 𝑁𝑢 = 0, this objective
can be utilized to optimize supervised methods. However, due to the
shortage of labels in graph data, supervised methods cannot reach ex-
ceptional performance in real-world applications (Hao et al., 2020; Liu,
Zhao, Inae, Luo and Jiang, 2023; Mao, Ju, Qin, Luo and Zhang, 2023;
Yi et al., 2023). To tackle this, semi-supervised graph classification has
been developed extensively. These approaches can be categorized into
pseudo-labeling-based methods, knowledge distillation-based methods
and contrastive learning-based methods. Pseudo-labeling methods an-
notate graph instances and utilize well-classified graph examples to
update the training set (Ju et al., 2024; Li, Huang et al., 2022; Li, Rong
et al., 2019). Knowledge distillation-based methods usually utilize a
teacher-student architecture, where the teacher model conducts graph
representation learning without label information to extract general-
ized knowledge while the student model focuses on the downstream
task. Due to the restricted number of labeled instances, the student
model transfers knowledge from the teacher model to prevent overfit-
ting (Hao et al., 2020; Sun, Hoffmann et al., 2020). Another line of
this topic is to utilize graph contrastive learning, which is frequently
used in unsupervised learning. Typically, these methods extract topo-
logical information from two perspectives (i.e., different perturbation
strategies and graph encoders), and maximize the similarity of their
representations compared with those from other examples (Ju, Luo, Ma
et al., 2022; Ju, Luo, Qu et al., 2022; Luo, Ju, Qu, Chen et al., 2022).
Active learning, as a prevalent technique to improve the efficiency of
data annotation, has also been utilized for semi-supervised methods
(Hao et al., 2020; Xie, Lv et al., 2022). Then, we review these methods
in detail.

SEmi-supervised grAph cLassification (SEAL) (Li, Rong et al., 2019).
SEAL treats each graph example as a node in a hierarchical graph.
It builds two graph classifiers which generate graph representations
and conduct semi-supervised graph classification respectively. SEAL
employs a self-attention module to encode each graph into a graph-
level representation, and then conducts message passing from a graph
level for final classification. SEAL can also be combined with cau-
tious iteration and active iteration. The former merely utilizes partial
graph samples to optimize the parameters in the first classifier due
to the potential erroneous pseudo-labels. The second combines active
learning with the model, which increases the annotation efficiency in
semi-supervised scenarios.

InfoGraph (Sun, Hoffmann et al., 2020). Infograph is the first con-
trastive learning-based method. It maximizes the similarity between
summarized graph representations and their node representations. In
particular, it generates node representations using the message passing
mechanism and summarizes these node representations into a graph
representation. Let 𝛷(⋅, ⋅) denote a discriminator to distinguish whether
16
a node belongs to the graph, and we have:

𝐼𝑛𝑓𝑜𝐺𝑟𝑎𝑝ℎ =
|𝑙 |+|𝑢|
∑

𝑗=1

∑

𝑖∈𝑗

[

− sp
(

−𝛷
(

𝐡𝑗𝑖 , 𝐳
𝑗
))]

− 1
|𝑁 𝑗

𝑖 |

∑

𝑖′𝑗′∈𝑁𝑗
𝑖

[

sp
(

𝛷
(

𝐡𝑗
′

𝑖′ , 𝐳
𝑗
))]

, (76)

where sp(⋅) denotes the softplus function. 𝑁 𝑗
𝑖 denotes the negative node

set where nodes are not in 𝐺𝑗 . This mutual information maximization
formulation is originally developed for unsupervised learning and it
can be simply extended for semi-supervised graph classification. In
particular, InfoGraph utilizes a teacher-student architecture that com-
pares the representation across the teacher and student networks. The
contrastive learning objective serves as a regularization by combining
with supervised loss.

Dual Space Graph Contrastive Learning (DSGC) (Yang, Chen et al.,
2022). DSGC is a representative contrastive learning-based method. It
utilizes two graph encoders. The first is a standard GNN encoder in
the Euclidean space and the second is the hyperbolic GNN encoder.
The hyperbolic GNN encoder first converts graph embeddings into
hyperbolic space and then measures the distance based on the length
of geodesics. DSGC compares graph embeddings in the Euclidean space
and hyperbolic space. Assuming the two GNNs are named as 𝑓1(⋅) and
𝑓2(⋅), the positive pair is denoted as:

𝐳𝑗𝐸→𝐻 = exp𝑐𝐨(𝑓1(𝐺
𝑗 )),

𝐳𝑗𝐻 = exp𝑐𝐨
(

𝑓2(𝐺𝑗 )
)

.
(77)

Then it selects one labeled sample and 𝑁𝐵 unlabeled sample 𝐺𝑗 for
graph contrastive learning in the hyperbolic space. In formulation,

𝐷𝑆𝐺𝐶 = − log e𝑑
𝐻
(

𝐡𝑖𝐻 ,𝐳
𝑖
𝐸→𝐻

)

∕𝜏

𝐞𝑑
𝐻
(

𝐳𝑖𝐻 ,𝐳
𝑖
𝐸→𝐻

)

∕𝜏 +
∑𝑁
𝑖=1 e

𝑑D
(

𝐳𝑖𝐸→𝐻 ,𝐳
𝑗
𝐻

)

∕𝜏

−
𝜆𝑢
𝑁

𝑁
∑

𝑖=1
log e𝑑

𝑢
D

(

𝐳𝑗𝐻 ,𝐳
𝑗
𝐸→𝐻

)

∕𝜏

e𝑑
𝑢
D

(

𝐳𝑗𝐻 ,𝐳
𝑗
𝐸→𝐻

)

∕𝜏 + e𝑑D
(

𝐳𝑖𝐻 ,𝐳
𝑗
𝐸→𝐻

)

∕𝜏
,

(78)

where 𝐳𝑖𝐸→𝐻 and 𝐳𝑖𝐻 denote the embeddings for labeled graph sample
𝐺𝑖 and 𝑑𝐻 (⋅) denotes a distance metric in the hyperbolic space. This
contrastive learning objective maximizes the similarity between embed-
dings learned from two encoders compared with other samples. Finally,
the contrastive learning objective can be combined with the supervised
loss to achieve effective semi-supervised contrastive learning.

Active Semi-supervised Graph Neural Network (ASGN) (Hao et al.,
2020). ASGN utilizes a teacher-student architecture with the teacher
model focusing on representation learning and the student model tar-
geting at molecular property prediction. In the teacher model, ASGN
first employs a message passing neural network to learn node repre-
sentations under the reconstruction task and then borrows the idea
of balanced clustering to learn graph-level representations in a self-
supervised fashion. In the student model, ASGN utilizes label infor-
mation to monitor the model training based on the weights of the
teacher model. In addition, active learning is also used to minimize the
annotation cost while maintaining sufficient performance. Typically,
the teacher model seeks to provide discriminative graph-level represen-
tations without labels, which transfer knowledge to the student model
to overcome the potential overfitting in the presence of label scarcity.

Twin Graph Neural Networks (TGNN) (Ju, Luo, Qu et al., 2022).
TGNN also uses two graph neural networks to give different perspec-
tives to learn graph representations. Differently, it adopts a graph
kernel neural network to learn graph-level representations in virtue
of random walk kernels. Rather than directly enforcing representation
from two modules to be similar, TGNN exchanges information by
contrasting the similarity structure of the two modules. In particular,
it constructs a list of anchor graphs, 𝐺𝑎1 , 𝐺𝑎2 ,… , 𝐺𝑎𝑀 , and utilizes two
graph encoders to produce their embeddings, i.e., 𝑧𝑎𝑚 𝑀 , 𝑤𝑎𝑚 𝑀 .
{ }𝑚=1 { }𝑚=1
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Then it calculates the similarity distribution between each unlabeled
graph and anchor graphs for two modules. Formally,

𝑝𝑗𝑚 =
exp

(

cos
(

𝑧𝑗 , 𝑧𝑎𝑚
)

∕𝜏
)

∑𝑀
𝑚′=1 exp

(

cos
(

𝑧𝑗 , 𝑧𝑎𝑚′
)

∕𝜏
)
, (79)

𝑞𝑗𝑚 =
exp

(

cos
(

𝐰𝑗 ,𝐰𝑎𝑚
)

∕𝜏
)

∑𝑀
𝑚′=1 exp

(

cos
(

𝐰𝑗 ,𝐰𝑎𝑚′
)

∕𝜏
)
. (80)

Then, TGNN minimizes the distance between distributions from
different modules as follows:

𝑇𝐺𝑁𝑁 = 1
|

|

𝑈 |
|

∑

𝐺𝑗∈𝑢

1
2
(

𝐷KL
(

𝐩𝑗 ∥ 𝐪𝑗
)

+𝐷KL
(

𝐪𝑗 ∥ 𝐩𝑗
))

, (81)

which serves as a regularization term to combine with the supervised
loss.

7.3. Summary

This section introduces semi-supervised learning for graph represen-
tation learning and we provide the summary as follows:

• Techniques. Classic node classification aims to conduct transduc-
tive learning on graphs with access to unlabeled data, which is
a natural semi-supervised problem. Semi-supervised graph clas-
sification aims to relieve the requirement of abundant labeled
graphs. Here, a variety of semi-supervised methods have been put
forward to achieve better performance under the label scarcity.
Typically, they try to integrate semi-supervised techniques such
as active learning, pseudo-labeling, consistency learning, and con-
sistency learning with graph representation learning.

• Challenges and Limitations. Despite their great success, the
performance of these methods is still unsatisfactory, especially
in graph-level representation learning. For example, DSGC can
only achieve an accuracy of 57% in a binary classification dataset
REDDIT-BINARY. Even worse, label scarcity is often accompa-
nied by unbalanced datasets and potential domain shifts, which
provides more challenges from real-world applications.

• Future Works. In the future, we expect that these methods
can be applied to different problems such as molecular property
predictions. There are also works to extend graph representa-
tion learning in more realistic scenarios like few-shot learning
(Chauhan, Nathani, & Kaul, 2020; Ma et al., 2020). A higher
accuracy is always anticipated for more advanced and effective
semi-supervised techniques.

. Graph self-supervised learning

Besides supervised or semi-supervised methods, self-supervised
earning (SSL) also has shown its powerful capability in data mining
nd representation embedding in recent years. In this section, we
nvestigated Graph Neural Networks based on SSL and provided a
etailed introduction to a few typical models. Graph SSL methods
sually have a unified pipeline, which includes pretext tasks and
ownstream tasks. Pretext tasks help the model encoder to learn better
epresentation, as a premise of better performance in downstream tasks.
o a delicate design of pretext task is crucial for Graph SSL. We would
irstly introduce the overall framework of Graph SSL in Section 8.1,
hen introduce the two kinds of pretext task design, generation-based
ethods and contrast-based methods respectively in Sections 8.2 and
.3. A summarization is provided in Table 7.

.1. Overall framework

Consider a featured graph , we denote a graph encoder 𝑓 to learn
17

he representation of the graph, and a pretext decoder 𝑔 with specific f
rchitecture in different pretext tasks. Then the pretext self-supervised
earning loss can be formulated as:

𝑡𝑜𝑡𝑎𝑙 = 𝐸∼[𝑠𝑠𝑙(𝑔, 𝑓 ,)], (82)

here  denotes the distribution of featured graph . By minimizing
𝑜𝑣𝑒𝑟𝑎𝑙𝑙, we can learn encoder 𝑓 with capacity to produce high-quality
mbedding. As for downstream tasks, we denote a graph decoder 𝑑
hich transforms the output of graph encoder 𝑓 into model prediction.
he loss of downstream tasks can be formulated as:

𝑠𝑢𝑝 = 𝑠𝑢𝑝(𝑑, 𝑓 ,; 𝑦), (83)

here 𝑦 is the ground truth in downstream tasks. We can obverse that
𝑠𝑢𝑝 is a typical supervised loss. To ensure the model achieves wise
raph representation extraction and optimistic prediction performance,
𝑠𝑠𝑙 and 𝑠𝑢𝑝 have to be minimized simultaneously. We introduce 3
ifferent ways to minimize the two loss functions:
Pre-training. This strategy has two steps. In pre-training step, the

𝑠𝑠𝑙 is minimized to get 𝑔∗ and 𝑓 ∗:
∗, 𝑓 ∗ = argmin

𝑔,𝑓
𝑠𝑠𝑙(𝑔, 𝑓 ,). (84)

Then the parameter of 𝑓 ∗ is kept to continue training in pretext
upervised learning progress. The supervised loss is minimized to get
he final parameters of 𝑓 and 𝑑.

in
𝑑,𝑓

𝑠𝑠𝑙(𝑑, 𝑓 |∗𝑓0=𝑓 ,; 𝑦). (85)

Collaborative Train. In this strategy, 𝑠𝑠𝑙 and 𝑠𝑢𝑝 are optimized
imultaneously. A hyperparameter 𝛼 is used to balance the contribution
f pretext task loss and downstream task loss. The overall minimization
trategy is like the traditional supervised strategy with a pretext task
egularization:

min
,𝑓 ,𝑑

[𝑠𝑠𝑙(𝑔, 𝑓 ,) + 𝛼𝑠𝑢𝑝(𝑑, 𝑓 ,; 𝑦)]. (86)

Unsupervised Feature Extracting. This strategy is similar to the
re-training and Fine-tuning strategy in the first step to minimize pre-
ext task loss 𝑠𝑠𝑙 and get 𝑓 ∗. However, when minimizing downstream
oss 𝑠𝑢𝑝, the encoder 𝑓 ∗ is fixed. Also, the training graph data are on
he same dataset, which differs from the Pre-training and Fine-tuning
trategy. The formulation is defined as:
∗, 𝑓 ∗ = argmin

𝑔,𝑓
𝑠𝑠𝑙(𝑔, 𝑓 ,), (87)

in
𝑑

𝑠𝑢𝑝(𝑑, 𝑓 ∗,; 𝑦). (88)

.2. Generation-based pretext task design

If a model with an encoder–decoder structure can reproduce certain
raph features from an incomplete or perturbed graph, it indicates
he encoder has the ability to extract useful graph representation.
his motivation is derived from Autoencoder (Hinton & Salakhutdinov,
006) which originally learns on image dataset. In such a case, Eq. (84)
an be rewritten as:

in
𝑔,𝑓

𝑠𝑠𝑙(𝑔(𝑓 (̂)),), (89)

here 𝑓 (⋅) and 𝑔(⋅) stand for the representation encoder and rebuilding
ecoder. However, feature information and structure information are
oth important compositions suitable to be rebuilt for graph datasets.
o generation-based pretext can be divided into two categories: feature
ebuilding and structure rebuilding. We introduce several outstanding
odels in the following part.

Graph Completion (You et al., 2020) is one of the representative
ethods of feature rebuilding. They mask some node features to gen-

rate an incomplete graph. Then the pretext task is set as predicting
he removed node features. As shown in Eq. (90), this method can be

̂ ̂
ormulated as a special case of Eq. (90), letting  = (𝐴,𝑋) and replacing
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Table 7
Summary of methods for self-supervised learning on graphs. ‘‘PT’’, ‘‘CT’’ and ‘‘UFE’’ mean ‘‘Pre-training’’, ‘‘Collaborative Train’’ and ‘‘Unsupervised Feature Extracting’’
respectively.

Approach Augmentation
scheme

Training
scheme

Generation target Objective
function

Generation-based

Graph Completion (You, Chen, Wang, & Shen, 2020) Feature mask PT/CT Node feature –
AttributeMask (Jin et al., 2020) Feature mask PT/CT PCA Node feature –
AttrMasking (Hu et al., 2019) Feature mask PT Node/Edge feature –
MGAE (Wang, Pan, Long, Zhu, & Jiang, 2017) No augmentation CT Node feature –
GAE (Kipf & Welling, 2016b) Feature noise UFE Adjacency matrix –

Contrast-based

DeepWalk (Perozzi et al., 2014) Random walk UFE – SkipGram
LINE (Tang, Qu, Wang et al., 2015) Random walk UFE – Jensen–Shannon
GCC (Qiu et al., 2020) Random walk PT/URL – InfoNCE
SimGCL (Yu et al., 2022) Embedding noise UFE – InfoNCE
SimGRACE (Xia, Wu, Chen, Hu and Li, 2022) Model noise UFE – InfoNCE

GCA (Zhu et al., 2021) Feature masking &
Structure adjustment

URL – InfoNCE

BGRL (Grill et al., 2020) Feature masking &
Structure adjustment

URL – BYOL
i
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 ←←→ 𝑋. The loss function is often Mean Squared Error or Cross Entropy,
depending on whether the feature is continuous or binary.

min
𝑔,𝑓

𝐌𝐒𝐄(𝑔(𝑓 (̂)),𝐗). (90)

Other works make some changes to the feature settings. For exam-
le, AttrMasking (Hu et al., 2019) aims to rebuild both node represen-
ation and edge representation, AttributeMask (Jin, Derr et al., 2020)
reprocess 𝑋 firstly by PCA to reduce the complexity of rebuilding
eatures.

On the other hand, MGAE (Wang et al., 2017) modifies the original
raph by adding noise in node representation, motivated by denoising
utoencoder (Vincent et al., 2010). As shown in Eq. (90), we can also
onsider MGAE as an implement of Eq. (84) where ̂ = (𝐴, �̂�) and
←←→ 𝑋. �̂� stands for perturbed node representation. Since the noise is

ndependent and random, the encoder is more robust to feature input.

in
𝑔,𝑓

𝐁𝐂𝐄(𝑔(𝑓 (̂)),𝐀). (91)

As for structure rebuilding methods, GAE (Kipf & Welling, 2016b)
s the simplest instance, which can be regarded as an implement of
q. (84) where ̂ =  and  ←←→ 𝐴. 𝐴 is the adjacency matrix of
he graph. Similar to feature rebuilding methods, GAE compresses
aw node representation vectors into low-dimensional embedding with
ts encoder. Then the adjacency matrix is rebuilt by computing node
mbedding similarity. The loss function is set to the error between
he ground-truth adjacency matrix and the recovered one, to help the
odel rebuild the correct graph structure. Other feature rebuilding
ethods (Zang et al., 2023) and structure rebuilding methods (Tan

t al., 2023; Wen et al., 2023) are also increasingly being developed
cross numerous related publications.

.3. Contrast-based pretext task design

The mutual information maximization principle, which implements
elf-supervising by predicting the similarity between the two aug-
ented views, forms the foundation of contrast-based approaches.

ince mutual information represents the degree of correlation between
wo samples, we can maximize it in augmented pairs and minimize it
n random-selected pairs.

The contrast-based graph SSL taxonomy can be formulated as Eq.
92). The discriminator that calculates the similarity of sample pairs is
ndicated by pretext decoder 𝑔. (1) and (2) are two variants of 𝐺 that
ave been augmented. Since graph contrastive learning methods differ
rom each other in (1) view generation, (2) MI estimation method we
ntroduce this methodology in these two perspectives.

in𝑠𝑠𝑙(𝑔[𝑓 (̂(1)), 𝑓 (̂(2))]). (92)
18

𝑔,𝑓
The domain of contrastive-based graph SSL is witnessing an expand-
ng body of work in a growing number of methods (Ho & Armanfard,
023; Ji et al., 2023; Yang, Huang, Xia and Huang, 2023; Zhao, Wen,
u, Zhang and Ye, 2023) and applications (Farhat & Ben-Hamadou,
023; Gao, Wang, He, Feng, & Zhang, 2023; Xia et al., 2023).

.3.1. View generation
The traditional pipeline of contrastive learning-based models first

nvolves augmenting the graph using well-crafted empirical methods,
nd then maximizing the consistency between different augmentations.
rawing from methods in the computer vision domain and considering

he non-Euclidean structure of graph data, typical graph augmentation
ethods aim to modify the graph topologically or representationally.

Given graph  = (𝐴,𝑋), the topologically augmentation methods
sually modify the adjacency matrix 𝐴, which can be formulated as:

̂ = 𝒯𝐴(𝐴), (93)

here 𝒯𝐴(⋅) is the transform function of adjacency matrix. Topology
ugmentation methods have many variants, in which the most popular
ne is edge modification, given by 𝒯𝐴(𝐴) = 𝑃◦𝐴 +𝑄◦(1 −𝐴). 𝑃 and 𝑄
re two matrices representing edge dropping and adding respectively.
nother method, graph diffusion, connect nodes with their k-hop neigh-
ors with specific weight, defined as: 𝒯𝐴(𝐴) =

∑∞
𝑘=0 𝛼𝑘𝑇

𝑘. where 𝛼 and
are coefficient and transition matrix. Graph diffusion method can

ntegrate broad topological information with local structure.
On the other hand, the representative augmentation modifies the

ode representation directly, which can be formulated as:

̂ = 𝒯𝑋 (𝑋), (94)

sually 𝒯𝑋 (⋅) can be a simple masking operator, a.k.a. 𝒯𝑋 (𝑋) = 𝑀◦𝑋
nd 𝑀 ∈ {0, 1}𝑁×𝐷. Based on such mask strategy, some methods
ropose ways to improve performance. GCA (Zhu et al., 2021) preserves
ritical nodes while giving less significant nodes a larger masking
robability, where significance is determined by node centrality.

As introduced before, the paradigm of augmentation has been
roven to be effective in contrastive learning view generation. How-
ver, given the variety of graph data, it is challenging to maintain
emantics properly during augmentations. To preserve the valuable
ature of specific graph datasets, There are currently three mainly used
ethods: picking by trial-and-errors, trying laborious search, or seeking
omain-specific information as guidance (Ju et al., 2023; Luo et al.,
023, 2022). Such complicated augmentation methods constrain the
ffectiveness and widespread application of graph contrastive learning.
o many newest works question the necessity of augmentation and seek
ther contrastive view generation methods.

SimGCL (Yu et al., 2022) is one of the outstanding works chal-
enging the effectiveness of graph augmentation. The author finds that
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noise can be a substitution to augmentation to produce graph views
in specific tasks such as recommendation. After doing an ablation
study about augmentation and InfoNCE (Xie, Xu, Zhang, Wang and Ji,
2022), they find that the InfoNCE loss, not the augmentation of the
graph, is what makes the difference. It can be further explained by the
importance of distribution uniformity. Contrastive learning enhances
model representation ability by intensifying two characteristics: The
alignment of features from positive samples and the uniformity of the
normalized feature distribution. SimGCL directly adds random noises
to node embeddings as augmentation, to control the uniformity of the
representation distribution more effectively:

𝐞(1)𝑖 = 𝐞𝑖 + 𝜖(1) ∗ 𝜏
(1)
𝑖 , 𝐞(2)𝑖 = 𝐞𝑖 + 𝜖(2) ∗ 𝜏

(2)
𝑖 ,

𝜖 ∼  (0, 𝜎2),
(95)

where 𝐞𝑖 is a node representation in embedding space, 𝜏(1)𝑖 and 𝜏(2)𝑖
are two random sampled unit vector. The experiment results indi-
cate that SimGCL performs better than its graph augmentation-based
competitors, while training time is significantly decreased.

SimGRACE (Xia, Wu et al., 2022) is another graph contrastive
learning framework without data augmentation. Motivated by the ob-
servation that despite encoder disruption, graph data can effectively
maintain their semantics, SimGRACE takes GNN with its modified
version as an encoder to produce two contrastive embedding views
by the same graph input. For GNN encoder 𝑓 (⋅; 𝜃), the two contrastive
embedding views 𝐞, 𝐞′ can be computed by:

𝐞(1) = 𝑓 (; 𝜃), 𝐞(2) = 𝑓 (; 𝜃 + 𝜖 ⋅ 𝛥𝜃),

𝛥𝜃𝑙 ∼  (0, 𝜎2𝑙 ),
(96)

where 𝛥𝜃𝑙 represents GNN parameter perturbation 𝛥𝜃 in the 𝑙th layer.
SimGRACE can improve alignment and uniformity simultaneously,
proving its capacity to produce high-quality embedding.

8.3.2. MI estimation method.
The mutual information 𝐼(𝑥, 𝑦) measures the information that 𝑥 and

𝑦 share, given a pair of random variables (𝑥, 𝑦). As discussed before,
mutual information is a significant component of the contrast-based
method by formulating the loss function. Mathematically rigorous MI is
defined on the probability space, we can formulate mutual information
between a pair of instances (𝑥𝑖, 𝑥𝑗 ) as:

𝐼(𝑥, 𝑦) = 𝐷𝐾𝐿(𝑝(𝑥, 𝑦) ∥ 𝑝(𝑥)𝑝(𝑦))

= 𝐸𝑝(𝑥,𝑦)[log
𝑝(𝑥, 𝑦)
𝑝(𝑥)𝑝(𝑦)

].
(97)

However, directly computing Eq. (97) is quite difficult, so we intro-
duce several different types of estimation for MI:

InfoNCE. Noise-contrastive estimator is a widely used lower bound
MI estimator. Given a positive sample 𝑦 and several negative sample
𝑦′𝑖 , a noise-contrastive estimator can be formulated as (Qiu, Chen et al.,
2020; Zhu et al., 2020):

 = −𝐼(𝑥, 𝑦) = −𝐸𝑝(𝑥,𝑦)[log
𝑒𝑔(𝑥,𝑦)

𝑒𝑔(𝑥,𝑦) +
∑

𝑖 𝑒
𝑔(𝑥,𝑦′𝑖 )

], (98)

sually the kernel function 𝑔(⋅) can be cosine similarity or dot product.
Triplet Loss. Intuitively, we can aim to create a distinct separation

n the degree of similarity, ensuring that positive samples are closer
ogether and negative samples are further apart by a certain distance.
o we can define the loss function in the following manner (Jiao et al.,
020):

= 𝐸𝑝(𝑥,𝑦)[max(𝑔(𝑥, 𝑦) − 𝑔(𝑥, 𝑦′) + 𝜖, 0)], (99)

here 𝜖 is a hyperparameter. This function is straightforward to com-
ute.
BYOL Loss. Estimation without negative samples is investigated by

YOL (Grill et al., 2020). The estimator is Asymmetrically structured:

= 𝐸𝑝(𝑥,𝑦)[2 − 2
𝑔(𝑥) ⋅ 𝑦

], (100)
19

‖𝑔(𝑥)‖‖𝑦‖
ote that encoder 𝑔 should keep the dimension of input and output the
same.

8.4. Summary

This section introduces graph self-supervised learning and we pro-
vide the summary as follows:

• Techniques. Differing from classic supervised and semi-super-
vised learning, self-supervised learning increases a model’s gen-
eralization ability and robustness while decreasing reliance on
labels. Graph SSL utilizes pretext tasks to extract inherent in-
formation from representation distributions. Typical Graph SSL
methods can be divided into generation-based and contrast-based
approaches. Generation-based methods learn an encoder with
the ability to reconstruct a graph as precisely as possible, moti-
vated by the principles of Autoencoder. Contrast-based methods,
which have recently attracted significant interest, involve learn-
ing an encoder to minimize mutual information between relevant
instances and maximize mutual information between unrelated
instances.

• Challenges and Limitations. Although graph SSL has achieved
superior performance in many tasks, its theoretical basis is not
so solid. Many well-known methods are validated only through
experiments, without providing theoretical explanations or math-
ematical proofs. It is imperative to establish a strong theoretical
foundation for graph SSL.

• Future Works. In the future we expect more graph ssl meth-
ods designed essentially by theoretical proof, without dedicated
designed augment process or pretext tasks by intuition. This
will bring us more definite mathematical properties and a less
ambiguous empirical sense. Also, graphs are a prevalent form of
data representation across diverse domains, yet obtaining manual
labels can be prohibitively expensive. Expanding the applications
of graph SSL to broader fields is a promising avenue for future
research.

9. Graph structure learning

Graph structure determines how node features propagate and affect
each other, playing a crucial role in graph representation learning. In
some scenarios the provided graph is incomplete, noisy, or even has
no structure information at all. Recent research also finds that graph
adversarial attacks (i.e., modifying a small number of node features or
edges), can degrade learned representations significantly. These issues
motivate graph structure learning (GSL), which aims to learn a new
graph structure to produce optimal graph representations. According to
how edge connectivity is modeled, there are three different approaches
in GSL, namely metric-based approaches, model-based approaches, and
direct approaches. Besides edge modeling, regularization is also a com-
mon trick to make the learned graph satisfy some desired properties.
We first present the basic framework and regularization methods for
GSL in Sections 9.1 and 9.2, respectively, and then introduce different
categories of GSL in Sections 9.3, 9.4 and 9.5. We summarize GSL
approaches in Table 8.

9.1. Overall framework

We denote a graph by  = (𝐀,𝐗), where 𝐀 ∈ R𝑁×𝑁 is the adjacency
matrix and 𝐗 ∈ R𝑁×𝑀 is the node feature matrix with 𝑀 being the
dimension of each node feature. A graph encoder 𝑓𝜃 learns to represent
the graph based on node features and graph structure for task-specific
objective 𝑡(𝑓𝜃(𝐀,𝐗)). In the GSL setting, there is also a graph structure
learner which aims to build a new graph adjacency matrix 𝐀∗ to

optimize the learned representation. Besides the task-specific objective,
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Table 8
Summary of graph structure learning methods.

Method Structure learning Regularization

Sparsity Low-rank Smoothness

M
et

ric
-b

as
ed

AGCN (Li, Wang, Zhu and Huang, 2018) Mahalanobis distance
GRCN (Yu, Zhang, Jiang, Wu and Yang, 2021) Inner product ✓

CAGCN (Zhu, Xu, Yu, Wu and Wang, 2020) Inner product ✓

GNNGUARD (Zhang & Zitnik, 2020) Cosine similarity
IDGL (Chen, Wu and Zaki, 2020) Cosine similarity ✓ ✓ ✓

HGSL (Zhao et al., 2021) Cosine similarity ✓

GDC (Gasteiger, Weißenberger, & Günnemann, 2019) Graph diffusion ✓

M
od

el
-b

as
ed

GLN (Pilco & Rivera, 2019) Recurrent blocks
GLCN (Jiang, Zhang, Lin, Tang and Luo, 2019) One-layer neural network ✓ ✓

NeuralSparse (Zheng et al., 2020) Multi-layer neural network ✓

GAT (Veličković et al., 2017) Self-attention
GaAN (Zhang et al., 2018) Gated attention
hGAO (Gao & Ji, 2019a) Hard attention ✓

VIB-GSL (Sun et al., 2022) Dot-product attention ✓

MAGNA (Wang, Ying, Huang and Leskovec, 2020) Graph attention diffusion

Di
re

ct

GLNN (Gao, Hu, & Guo, 2020) MAP estimation ✓ ✓

Pro-GNN (Jin et al., 2020) Direct optimization ✓ ✓ ✓

GSML (Wan & Kokel, 2021) Bilevel optimization ✓

LSD-GNN (Franceschi, Niepert, Pontil, & He, 2019) Bilevel optimization
BGCNN (Zhang, Pal, Coates and Ustebay, 2019) Bayesian optimization
VGCN (Elinas, Bonilla, & Tiao, 2020) Stochastic variational inference
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a regularization term can be added to constrain the learned structure.
So the overall objective function of GSL can be formulated as

min
𝜃,𝐀∗

 = 𝑡(𝑓𝜃(𝐀∗,𝐗)) + 𝜆𝑟(𝐀∗,𝐀,𝐗), (101)

here 𝑡 is the task-specific objective, 𝑟 is the regularization term and
is a hyperparameter for the weight of regularization.

.2. Regularization

The goal of regularization is to constrain the learned graph to satisfy
ome properties by adding some penalties to the learned structure.
he most common properties used in GSL are sparsity, low lank, and
moothness.

.2.1. Sparsity
Noise or adversarial attacks will introduce redundant edges into

raphs and degrade the quality of graph representation. An effec-
ive technique to remove unnecessary edges is sparsity regularization,
.e., adding a penalty on the number of nonzero entries of the adjacency
atrix (𝓁0-norm) (Wan & Kokel, 2021; Yu, Zhang et al., 2021; Zhao,
ang et al., 2021; Zheng et al., 2020):

𝑠𝑝 = ‖𝐀‖0, (102)

owever, 𝓁0-norm is not differentiable so optimizing it is difficult,
nd in many cases 𝓁1-norm is used instead as a convex relaxation.
ther methods to impose sparsity include pruning and discretization

Franceschi et al., 2019; Zhu, Xu, Yu, Wu et al., 2020). These processes
re also called postprocessing since they usually happen after the adja-
ency matrix is learned. Pruning removes part of the edges according
o some criteria (Zhu, Xu, Yu, Wu et al., 2020). For example, edges
ith weights lower than a threshold, or those not in the top-K edges of
odes or graphs. Discretization is applied to generate graph structure by
ampling from some distribution (Franceschi et al., 2019). Compared
o directly learning edge weights, sampling enjoys the advantage of
ontrolling the generated graph, but has issues during optimizing since
ampling itself is discrete and hard to optimize. Reparameterization and
umbel-softmax are two useful techniques to overcome such issues, and
re widely adopted in GSL.

.2.2. Low rank
In real-world graphs, similar nodes are likely to group together and

orm communities, which should lead to a low-rank adjacency matrix.
20
ecent work also finds that adversarial attacks tend to increase the rank
f the adjacency matrix quickly (Chen, Wu et al., 2020; Jin, Ma et al.,
020). Therefore, low-rank regularization is also a useful tool to make
raph representation learning more robust:

𝑙𝑟 = 𝑅𝑎𝑛𝑘(𝐀). (103)

It is hard to minimize matrix rank directly. A common technique is
o optimize the nuclear norm, which is a convex envelope of the matrix
ank:

𝑛𝑐 = ‖𝐀‖∗ =
𝑁
∑

𝑖
𝜎𝑖, (104)

where 𝜎𝑖 are singular values of 𝐀. Entezari et al. replaces the learned
djacency matrix with rank-r approximation by singular value decom-
osition (SVD) to achieve robust graph learning against adversarial
ttacks.

.2.3. Smoothness
A common assumption is that connected nodes share similar fea-

ures, or in other words, the graph is ‘‘smooth’’ as the difference
etween local neighbors is small (Chen, Wu et al., 2020; Gao et al.,
020; Jiang, Zhang et al., 2019; Jin, Ma et al., 2020). The following
etric is a natural way to measure graph smoothness:

𝑠𝑚 = 1
2

𝑁
∑

𝑖,𝑗=1
𝐴𝑖𝑗 (𝑥𝑖 − 𝑥𝑗 )2 = 𝑡𝑟(𝐗⊤(𝐃 − 𝐀)𝐗) = 𝑡𝑟(𝐗⊤𝐋𝐗), (105)

here 𝐃 is the degree matrix of 𝐀 and 𝐋 = 𝐃 − 𝐀 is called graph
aplacian. A variant is to use the normalized graph Laplacian �̂� =
− 1

2 𝐋𝐃− 1
2 .

9.3. Metric-based methods

Metric-based methods measure the similarity between nodes as the
edge weights. They follow the basic assumption that similar nodes tend
to have connections with each other. We show some representative
works

Adaptive Graph Convolutional Neural Networks (AGCN) (Li, Wang
et al., 2018). AGCN learns a task-driven adaptive graph during training
to enable a more generalized and flexible graph representation model.
After parameterizing the distance metric between nodes, AGCN is able
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to adapt graph topology to the given task. It proposes a generalized
Mahalanobis distance between two nodes with the following formula:

D(𝑥𝑖, 𝑥𝑗 ) =
√

(𝑥𝑖 − 𝑥𝑗 )⊤𝑀(𝑥𝑖 − 𝑥𝑗 ), (106)

where 𝑀 = 𝑊𝑑𝑊 ⊤
𝑑 and 𝑊𝑑 is the trainable weights to minimize

task-specific objective. Then the Gaussian kernel is used to obtain the
adjacency matrix:

G𝑖𝑗 = exp(−D(𝑥𝑖, 𝑥𝑗 )∕(2𝜎2)), (107)

�̂� = 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(G). (108)

Graph-Revised Convolutional Network (GRCN) (Yu, Zhang et al.,
2021). GRCN uses a graph revision module to predict missing edges and
revise edge weights through joint optimization on downstream tasks. It
first learns the node embedding with GCN and then calculates pair-wise
node similarity with the dot product as the kernel function.

𝑍 = 𝐺𝐶𝑁𝑔(𝐴,𝑋), (109)

𝑆𝑖𝑗 =
⟨

𝑧𝑖, 𝑧𝑗
⟩

. (110)

The revised adjacency matrix is the residual summation of the
original adjacency matrix �̂� = 𝐴+𝑆. GRCN also applies a sparsification
technique on the similarity matrix 𝑆 to reduce computation cost:

𝑆(𝐾)
𝑖𝑗 =

{

𝑆𝑖𝑗 , 𝑆𝑖𝑗 ∈ 𝑡𝑜𝑝𝐾(𝑆𝑖)

0, 𝑆𝑖𝑗 ∉ 𝑡𝑜𝑝𝐾(𝑆𝑖)
. (111)

Threshold pruning is also a common strategy for sparsification. For
xample, CAGCN (Zhu, Xu, Yu, Wu et al., 2020) uses dot product to
easure node similarity, and refines the graph structure by removing

dges between nodes whose similarity is less than a threshold 𝜏𝑟 and
dding edges between nodes whose similarity is greater than another
hreshold 𝜏𝑎.

Defending Graph Neural Networks against Adversarial Attacks (GNN-
uard) (Zhang & Zitnik, 2020). GNNGuard measures similarity between
node 𝑢 and its neighbor 𝑣 in the 𝑘th layer by cosine similarity and

ormalizes node similarity at the node level within the neighborhood
s follows:

𝑠𝑘𝑢𝑣 =
ℎ𝑘𝑢 ⊙ ℎ

𝑘
𝑣

‖ℎ𝑘𝑢‖2‖ℎ𝑘𝑣‖2
, (112)

𝑘
𝑢𝑣 =

⎧

⎪

⎨

⎪

⎩

𝑠𝑘𝑢𝑣∕
∑

𝑣∈𝑢

𝑠𝑘𝑢𝑣 × �̂�
𝑘
𝑢 ∕(�̂�

𝑘
𝑢 + 1), 𝑖𝑓 𝑢 ≠ 𝑣

1∕(�̂�𝑘
𝑢 + 1), 𝑖𝑓 𝑢 = 𝑣

, (113)

here 𝑢 denotes the neighborhood of node 𝑢 and �̂�𝑘
𝑢 =

∑

𝑣∈𝑢
‖𝑠𝑘𝑢𝑣‖0.

o stabilize GNN training, it also proposes a layer-wise graph memory
y keeping part of the information from the previous layer in the
urrent layer. Similar to GNNGuard, IDGL (Chen, Wu et al., 2020)
ses multi-head cosine similarity and mask edges with node similarity
maller than a non-negative threshold, and HGSL (Zhao, Wang et al.,
021) generalizes this idea to heterogeneous graphs.

Graph Diffusion Convolution (GDC) (Gasteiger et al., 2019). GDC
eplaces the original adjacency matrix with generalized graph diffusion
atrix 𝐒:

=
∞
∑

𝑘=0
𝜃𝑘𝐓𝑘, (114)

here 𝜃𝑘 is the weighting coefficient and 𝐓 is the generalized transition
atrix. To ensure convergence, GDC further requires that ∑∞

𝑘=0 𝜃𝑘 = 1
nd the eigenvalues of 𝐓 lie in [0, 1]. The random walk transition
atrix 𝐓𝑟𝑤 = 𝐀𝐃−1 and the symmetric transition matrix 𝐓𝑠𝑦𝑚 =
−1∕2𝐀𝐃−1∕2 are two examples. This new graph structure allows graph
onvolution to aggregate information from a larger neighborhood. The
raph diffusion acts as a smoothing operator to filter out underlying
oise. However, in most cases graph diffusion will result in a dense
21

djacency matrix 𝑆, so sparsification technology like top-k filtering a
nd threshold filtering will be applied to graph diffusion. Following
DC, there are some other graph diffusion proposed. For example,
daCAD (Lim, Um, Chang, Jo, & Choi, 2021) proposes Class-Attentive
iffusion, which further considers node features and aggregates nodes
robably of the same class among K-hop neighbors. Adaptive diffusion
onvolution (ADC) (Zhao, Dong, Ding, Kharlamov and Tang, 2021)
earns the optimal neighborhood size via optimizing a bi-level problem.

.4. Model-based methods

Model-based methods parameterize edge weights with more com-
lex models like deep neural networks. Compared to metric-based
ethods, model-based methods offer greater flexibility and expressive
ower.

Graph Learning Network (GLN) (Pilco & Rivera, 2019). GLN proposes
recurrent block to first produce intermediate node embeddings and

hen merge them with adjacency information as the output of this layer
o predict the adjacency matrix for the next layer. Specifically, it uses
onvolutional graph operations to extract node features, and creates
local-context embedding based on node features and the current

djacency matrix:

(𝑙)
𝑖𝑛𝑡 =

𝑘
∑

𝑖=1
𝜎𝑙(𝜏(𝐴(𝑙))𝐻 (𝑙)𝑊 (𝑙)

𝑖 ), (115)

(𝑙)
𝑙𝑜𝑐𝑎𝑙 = 𝜎𝑙(𝜏(𝐴(𝑙))𝐻 (𝑙)

𝑖𝑛𝑡𝑈
(𝑙)), (116)

here 𝑊 (𝑙)
𝑖 and 𝑈 (𝑙) are the learnable weights. GLN then predicts the

ext adjacency matrix as follows:

(𝑙+1) = 𝜎𝑙(𝑀 (𝑙)𝛼𝑙(𝐻
(𝑙)
𝑙𝑜𝑐𝑎𝑙)𝑀

(𝑙)⊤). (117)

Similarly, GLCN (Jiang, Zhang et al., 2019) models graph structure
ith a softmax layer over the inner product between the difference of
ode features and a learnable vector. NeuralSparse (Zheng et al., 2020)
ses a multi-layer neural network to generate a learnable distribution
rom which a sparse graph structure is sampled. PTDNet (Luo et al.,
021) prunes graph edges with a multi-layer neural network and
enalizes the number of non-zero elements to encourage sparsity.

Graph Attention Networks (GAT) (Veličković et al., 2017). Besides
onstructing a new graph to guide the message passing and aggregation
rocess of GNNs, many recent researchers also leverage the attention
echanism to adaptively model the relationship between nodes. GAT

s the first work to introduce the self-attention strategy into graph
earning. In each attention layer, the attention weight between two
odes is calculated as the Softmax output on the combination of linear
nd non-linear transform of node features:

𝑒𝑖𝑗 = 𝑎(𝐖ℎ⃗𝑖,𝐖ℎ⃗𝑗 ), (118)

𝑖𝑗 =
𝑒𝑥𝑝(𝑒𝑖𝑗 )

∑

𝑘∈𝑖
𝑒𝑥𝑝(𝑒𝑖𝑘)

, (119)

where 𝑖 denotes the neighborhood of node 𝑖, 𝐖 is learnable linear
transform and 𝑎 is pre-defined attention function. In the original imple-
mentation of GAT, 𝑎 is a single-layer neural network with LeakyReLU:

𝑎(𝐖ℎ⃗𝑖,𝐖ℎ⃗𝑗 ) = LeakyReLU(a⃗⊤[𝐖ℎ⃗𝑖 ∥ 𝐖ℎ⃗𝑗 ]). (120)

The attention weights are then used to guide the message-passing
phase of GNNs:

ℎ⃗′𝑖 = 𝜎(
∑

𝑗∈𝑖

𝛼𝑖𝑗𝐖ℎ⃗𝑗 ), (121)

where 𝜎 is a nonlinear function. It is beneficial to concatenate multiple
eads of attention together to get a more stable and generalizable
odel, so-called multi-head attention. The attention mechanism serves

s a soft graph structure learner which captures important connections
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within node neighborhoods. Following GAT, many recent works pro-
pose more effective and efficient graph attention operators to improve
performance. GaAN (Zhang, Shi et al., 2018) adds a soft gate at each at-
tention head to adjust its importance. MAGNA (Wang, Ying et al., 2020)
proposes a novel graph attention diffusion layer to incorporate multi-
hop information. One drawback of graph attention is that the time and
space complexities are both 𝑂(𝑁3). hGAO (Gao & Ji, 2019a) performs
hard graph attention by limiting node attention to its neighborhood.
VIB-GSL (Sun et al., 2022) adopts the information bottleneck principle
to guide feature masking in order to drop task-irrelevant information
and preserve actionable information for the downstream task.

9.5. Direct methods

Direct methods treat edge weights as free learnable parameters.
These methods enjoy more flexibility but are also more difficult to
train. The optimization is usually carried out in an alternating way,
i.e., iteratively updating the adjacency matrix 𝐀 and the GNN encoder
parameters 𝜃.

GLNN (Gao et al., 2020). GLNN uses MAP estimation to learn
an optimal adjacency matrix for a joint objective function including
sparsity and smoothness. Specifically, it targets at finding the most
probable adjacency matrix �̂� given graph node features 𝑥:

�̃�𝑀𝐴𝑃 (𝑥) = argmax
�̂�

𝑓 (𝑥|�̂�)𝑔(�̂�), (122)

where 𝑓 (𝑥|�̂�) measures the likelihood of observing 𝑥 given �̂�, and
𝑔(�̂�) is the prior distribution of �̂�. GLNN uses sparsity and property
constraint as prior, and defines the likelihood function 𝑓 as:

𝑓 (𝑥|�̂�) = 𝑒𝑥𝑝(−𝜆0𝑥⊤𝐿𝑥) (123)

= 𝑒𝑥𝑝(−𝜆0𝑥⊤(𝐼 − �̂�)𝑥), (124)

where 𝜆0 is a parameter. This likelihood imposed a smoothness assump-
tion on the learned graph structure. Some other works also model the
adjacency matrix in a probabilistic manner. Bayesian GCNN (Zhang,
Pal et al., 2019) adopts a Bayesian framework and treats the observed
graph as a realization from a family of random graphs. Then it estimates
the posterior probability of labels given the observed graph adjacency
matrix and features with Monte Carlo approximation. VGCN (Elinas
et al., 2020) follows a similar formulation and estimates the graph
posterior through stochastic variational inference. Pro-GNN (Jin, Ma
et al., 2020) learns a clean graph structure from perturbed data and
optimizes parameters for a robust GNN, leveraging properties like
sparsity, low rank, and feature smoothness.

Graph Sparsification via Meta-Learning (GSML) (Wan & Kokel, 2021).
GSML formulates GSL as a meta-learning problem and uses bi-level
optimization to find the optimal graph structure. The goal is to find
a sparse graph structure that leads to high node classification accuracy
at the same time given labeled and unlabeled nodes. To achieve this,
GSML makes the inner optimization as training on the node classifi-
cation task, and targets the outer optimization at the sparsity of the
graph structure, which formulates the following bi-level optimization
problem:

�̂�∗ = min
�̂�∈𝛷(𝐺)

𝐿𝑠𝑝𝑠(𝑓𝜃∗ (�̂�), 𝑌𝑈 ), (125)

𝑠.𝑡. 𝜃∗ = argmin
𝜃

𝐿𝑡𝑟𝑎𝑖𝑛(𝑓𝜃(�̂�), 𝑌𝐿). (126)

In this bi-level optimization problem, �̂� ∈ 𝛷(𝐺) are the meta-
parameters and optimized directly without parameterization. Similarly,
LSD-GNN (Franceschi et al., 2019) also uses bi-level optimization. It
models graph structure with a probability distribution over the graph
and reformulates the bi-level program in terms of the continuous
22

distribution parameters.
9.6. Summary

In this section, we provide the summary as follows:

• Techniques. GSL aims to learn an optimized graph structure
for better graph representations. It is also used for more robust
graph representation against adversarial attacks. According to
the way of edge modeling, we categorize GSL into three groups:
metric-based methods, model-based methods, and direct meth-
ods. Regularization is also a commonly used principle to make
the learned graph structure satisfy specific properties including
sparsity, low-rank and smoothness.

• Challenges and Limitations. Since there is no way to access
the ground truth or optimal graph structure as training data, the
learning objective of GSL is either indirect (e.g., performance
on downstream tasks) or manually designed (e.g., sparsity and
smoothness). Therefore, the optimization of GSL is difficult and
the performance is not satisfying. In addition, many GSL methods
are based on homophily assumption, i.e., similar nodes are more
likely to connect with each other. However, many other types of
connection exist in the real world which impose great challenges
for GSL.

• Future Works. In the future we expect more efficient and gen-
eralizable GSL methods to be applied to large-scale and hetero-
geneous graphs. Most existing GSL methods focus on pair-wise
node similarities and thus struggle to scale to large graphs. Be-
sides, they often learn homogeneous graph structure, but in many
scenarios graphs are heterogeneous.

10. Social analysis

In the real world, there usually exist complex relations and inter-
actions between people and multiple entities. Taking people, concrete
things, and abstract concepts in society as nodes and taking the diverse,
changeable, and large-scale connections between data as links, we
can form massive and complex social information as social networks
(Camacho, Panizo-LLedot, Bello-Orgaz, Gonzalez-Pardo, & Cambria,
2020; Tabassum, Pereira, Fernandes, & Gama, 2018). Compared with
traditional data structures such as texts and forms, modeling social data
as graphs has many benefits. Especially with the arrival of the ‘‘big
data’’ era, more and more heterogeneous information is interconnected
and integrated, and it is difficult and uneconomical to model this
information with a traditional data structure. The graph is an effective
implementation for information integration, as it can naturally incorpo-
rate different types of objects and their interactions from heterogeneous
data sources (Moscato & Sperlì, 2021; Shi, Li, Zhang, Sun, & Philip,
2016). A summarization of social analysis applications is provided in
Table 9.

10.1. Concepts of social networks

A social network is usually composed of multiple types of nodes,
link relationships, and node attributes, which inherently include rich
structural and semantic information. Specifically, a social network can
be homogeneous or heterogeneous and directed or undirected in differ-
ent scenarios. Without loss of generality, we define the social network
as a directed heterogeneous graph 𝐺 = {𝑉 ,𝐸,  ,}, where 𝑉 = {𝑛𝑖}

|𝑉 |

𝑖=1
is the node set, 𝐸 = {𝑒𝑖}

|𝐸|
𝑖=1 is the edge set,  = {𝑡𝑖}

| |

𝑖=1 is the node type
set, and  = {𝑟𝑖}

||

𝑖=1 is the edge type set. Each node 𝑛𝑖 ∈ 𝑉 is associated
with a node type mapping: 𝜙𝑛(𝑛𝑖) = 𝑡𝑗 ∶ 𝑉 ⟶  and each edge 𝑒𝑖 ∈ 𝐸
is associated with a node type mapping: 𝜙𝑒(𝑒𝑖) = 𝑟𝑗 ∶ 𝐸 ⟶ . A
node 𝑛𝑖 may have a feature set, where the feature space is specific for
the node type. An edge 𝑒𝑖 is also represented by node pairs (𝑛𝑗 , 𝑛𝑘) at
both ends and can be directed or undirected with relation-type-specific
attributes. If | | = 1 and || = 1, the social network is a homogeneous

graph; otherwise, it is a heterogeneous graph.
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Table 9
A summarization of social analysis applications.

Social networks Node type Edge type Applications References

Academic
social
network

Author,
Publication,
Venue,
Organization,
Keyword

Authorship,
Co-Author,
Advisor-advisee,
Citing, Cited,
Co-Citing,
Publishing

Classification/
Clustering

Paper/author classification (Dong, Chawla, & Swami, 2017; Qiao
et al., 2020; Wang et al., 2019; Zhang, Song, Huang, Swami and
Chawla, 2019), name disambiguation (Chen et al., 2020; Ma & Xia,
2023; Qiao, Du, Fu, Wang, & Zhou, 2019; Zhang, Zhang, Yao and
Tang, 2018)

Relationship
prediction

Co-authorship (Cho & Yu, 2018; Chuan et al., 2018; Zhu, Quan,
Chen, Kim, & Che, 2023), citation relationship (Jiang, Yin, Gao, Lu,
& Liu, 2018; Wang, Zhu, Dai and Wang, 2020; Yu, Gu, Zhou, &
Han, 2012), advisor-advisee relationship (Liu et al., 2019; Luo
et al., 2023; Zhao et al., 2018)

Recommendation Collaborator recommendation (Kong et al., 2017, 2016; Liu, Xie and
Chen, 2018), paper recommendation (Bai et al., 2019; Dai et al.,
2023; Sugiyama & Kan, 2010), venue recommendation (Margaris,
Vassilakis, & Spiliotopoulos, 2019; Yu et al., 2018)

Social
media
network

User, Blog,
Article, Image,
Video

Following, Like,
Unlike, Clicked,
Viewed,
Commented,
Reposted

Anomaly
detection

Malicious attacks (Liu et al., 2018; Sadhasivam, Valarmathie, &
Dinakaran, 2023; Sun, Wang, Yang and Liu, 2020), emergency
detection (Bian et al., 2020; Dahou, Mabrouk, Ewees, Gaheen, &
Abd Elaziz, 2023; Li, Li, Zhang, Zhao and Wang, 2023), and robot
discovery (Feng, Wan, Wang, & Luo, 2021; Lu, Gong, Li, Liu, & Liu,
2023)

Sentiment
analysis

Customer feedback (Rosa, Schwartz, Ruggiero, & Rodríguez, 2018;
Uma Maheswari & Dhenakaran, 2023; Zhang et al., 2014), public
events (Bouadjenek, Sanner, & Wu, 2023; Manguri, Ramadhan, &
Amin, 2020; Unankard, Li, Sharaf, Zhong, & Li, 2014)

Influence
analysis

Important node finding (Domingos & Richardson, 2001; Richardson
& Domingos, 2002), information diffusion modeling (Keikha,
Rahgozar, Asadpour, & Abdollahi, 2020; Kumar, Mallik, Khetarpal,
& Panda, 2022; Panagopoulos, Malliaros, & Vazirgiannis, 2020;
Zhang, Li, Wei, Liu and Li, 2022)

Location-based
social
network

Restaurant,
Cinema, Mall,
Parking

Friendship,
Check-in

POI
recommendation

Spatial/temporal influence (Si, Zhang, & Liu, 2019; Wang et al.,
2022; Zhao et al., 2020), social relationship (Long, Chen, Nguyen,
& Yin, 2023; Xu, Ding and Zhao, 2021), textual information (Wang,
Fukumoto, Li, Yu and Sun, 2023; Wang, Zeng, Wen, Gao and Zhou,
2023; Xu, Liu and Mei, 2021)

Urban
computing

Traffic congestion prediction (Jiang & Luo, 2022; Xiong, Vahedian,
Zhou, Li, & Luo, 2018), urban mobility analysis (Cao et al., 2021;
Yildirimoglu & Kim, 2018), event detection (Sofuoglu & Aviyente,
2022; Yu et al., 2021)
Almost any data produced by social activities can be modeled as
ocial networks, for example, the academic social network produced by
cademic activities such as collaboration and citation, the online social
etwork produced by user following and followed on social media,
nd the location-based social network produced by human activities on
ifferent locations. Based on constructing social networks, researchers
ave new paths to data mining, knowledge discovery, and multiple
pplication tasks on social data. Exploring social networks also brings
ew challenges. One of the critical challenges is how to succinctly
epresent the network from the massive and heterogeneous raw graph
ata, that is, how to learn continuous and low-dimensional social
etwork representations, so as to researchers can efficiently perform
dvanced machine learning techniques on the social network data for
ultiple application tasks, such as analysis, clustering, prediction, and

nowledge discovery. Thus, graph representation learning on the social
etwork becomes the foundational technique for social analysis.

0.2. Academic social network

Academic collaboration is a common and important behavior in
cademic society, and also a major way for scientists and researchers
o innovate and breakthrough scientific research, which leads to social
elationship between scholars. The academic data generated by aca-
emic collaboration usually contains a large number of interconnected
ntities with complex relationships (Kong, Shi, Yu, Liu, & Xia, 2019;
hou, Wang, Qiao, Xiao and Du, 2020). Normally, in an academic
ocial network, the node type set consists of Author, Publication, Venue,

Organization, Keyword, etc., and the relation set consists of Authorship,
23

g

Co-Author, Advisor-advisee, Citing, Cited, Co-Citing, Publishing, Co-Word,
etc. Note that in most social networks, each relation type always
connects two fixed node types with a fixed direction. For example, the
relation Authorship points from the node type Author to Publication, and
the Co-Author is an undirected relation between two nodes with type
Author. Based on the node and relation types in an academic social
network, one can divide it into multiple categories. For example, the
co-author network with nodes of Author and relations of Co-Author, the
citation network with nodes of Publication and relation of Citing, and
the academic heterogeneous information graph with multiple academic
node and relation types. Many research institutes and academic search
engines, such as Aminer,1 DBLP,2 Microsoft Academic Graph (MAG),3
have provided open academic social network datasets for research
purposes.

There are multiple applications of graph representation learning on
the academic social network. Roughly, they can be divided into three
categories–academic entity classification/clustering, academic relation-
ship prediction, and academic resource recommendation.

• Academic entities usually belong to different classes of research
areas. Research of academic entity classification and clustering
aims to categorize these entities, such as papers and authors,

1 https://www.aminer.cn/.
2 https://dblp.uni-trier.de/.
3 https://www.microsoft.com/en-us/research/project/microsoft-academic-

raph/.

https://www.aminer.cn/
https://dblp.uni-trier.de/
https://www.microsoft.com/en-us/research/project/microsoft-academic-graph/
https://www.microsoft.com/en-us/research/project/microsoft-academic-graph/
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into different classes (Dong et al., 2017; Ju et al., 2023; Qiao,
Wang et al., 2020; Wang, Ji et al., 2019; Yi et al., 2023; Zhang,
Song et al., 2019). In literature, academic networks such as Cora,
citepSeer, and Pubmed (Sen et al., 2008) have become the most
widely used benchmark datasets for examining the performance
of graph representation learning models on paper classification.
Also, the author name disambiguation problem (Chen, Zhang
et al., 2020; Ma & Xia, 2023; Qiao et al., 2019; Zhang, Zhang
et al., 2018) is also essentially a node clustering task on co-
author networks and is usually solved by the graph representation
learning technique.

• Academic relationship prediction represents the link prediction
task on various academic relations. Typical applications are co-
authorship prediction (Cho & Yu, 2018; Chuan et al., 2018; Zhu
et al., 2023) and citation relationship prediction (Jiang et al.,
2018; Wang, Zhu et al., 2020; Yu et al., 2012). Existing methods
learn representations of authors and papers and use the similarity
between two nodes to predict the link probability. Besides, some
work (Liu et al., 2019; Luo, Shi et al., 2023; Zhao et al., 2018)
studies the problem of advisor-advisee relationship prediction in
the collaboration network.

• Various academic recommendation systems have been introduced
to retrieve academic resources for users from large amounts of
academic data in recent years. For example, collaborator recom-
mendation (Kong et al., 2017, 2016; Liu, Xie et al., 2018) benefit
researchers by finding suitable collaborators under particular top-
ics; paper recommendation (Bai et al., 2019; Dai et al., 2023;
Sugiyama & Kan, 2010) help researchers find relevant papers on
given topics; venue recommendation (Margaris et al., 2019; Yu
et al., 2018) help researchers choose appropriate venues when
they submit papers.

0.3. Social media network

With the development of the Internet in decades, various online so-
ial media have emerged in large numbers and greatly changed people’s
raditional social models. People can establish friendships with others
eyond the distance limit and share interests, hobbies, status, activities,
nd other information among friends. These abundant interactions
n the Internet form large-scale complex social media networks, also
amed online social networks. Usually, in an academic social network,
he node type set consists of User, Blog, Article, Image, Video, etc., and

the relation type set consists of Following, Like, Unlike, Clicked, Viewed,
Commented, Reposted, etc. The main property of a social media network
is that it usually contains multi-mode information on the nodes, such
as video, image, and text. Also, the relations are more complex and
multiplex, including the explicit relations such as Like and Unlike and
the implicit relations such as Clicked. The social media network can be
categorized into multiple types based on their media categories. For
example, the friendship network, the movie review network, and the
music interacting network are extracted from different social media
platforms. In a broad sense, the user–item networks in online shopping
system can also be viewed as social media networks as they also exist on
the Internet and contains rich interactions by people. There are many
widely used data sources for social media network analysis, such as
Twitter, Facebook, Weibo, YouTube, and Instagram.

The mainstream application research on social media networks
via graph representation learning techniques mainly includes anomaly
detection, sentiment analysis, and influence analysis.

• Anomaly detection aims to find strange or unusual patterns in
social networks, which has a wide range of application scenarios,
such as malicious attacks (Liu, Chen et al., 2018; Sadhasivam
et al., 2023; Sun, Wang et al., 2020), emergency detection (Bian
et al., 2020; Dahou et al., 2023), and robot discovery (Feng
24

et al., 2021; Lu et al., 2023) in social networks. Unsupervised
anomaly detection usually learns a reconstructed graph to detect
those nodes with higher reconstructed error as the anomaly nodes
(Ahmed, Galoppo, Hu, & Ding, 2021; Zhao, Sawlani, Srinivasan
and Akoglu, 2022); Supervised methods model the problem as
a binary classification task on the learned graph representations
(Meng et al., 2021; Zheng, Li, Li, Li, & Gao, 2019).

• Sentiment analysis, also named as opinion mining, is to mine the
sentiment, opinions, and attitudes, which can help enterprises
understand customer feedback on products (Rosa et al., 2018;
Uma Maheswari & Dhenakaran, 2023; Zhang et al., 2014) and
help the government analyze the public emotion and make rapid
response to public events (Bouadjenek et al., 2023; Manguri et al.,
2020; Unankard et al., 2014). The graph representation learning
model is usually combined with RNN-based (Chen, Tian and Song,
2020; Zhang, Li and Song, 2019) or Transformer-based (AlBadani,
Shi, Dong, Al-Sabri, & Moctard, 2022; Tang, Ji, Li and Zhou,
2020) text encoders to incorporate both the user relationship and
textual semantic information.

• Influence analysis usually aims to find several nodes in a social
network to initially spread information such as advertisements,
so as to maximize the final spread of information (Domingos
& Richardson, 2001; Richardson & Domingos, 2002). The core
challenge is to model the information diffusion process in the so-
cial network. Deep learning methods (Keikha et al., 2020; Kumar
et al., 2022; Panagopoulos et al., 2020; Zhang, Li et al., 2022)
usually leverage graph neural networks to learn node embeddings
and diffusion probabilities between nodes.

10.4. Location-based social network

Locations are the fundamental information of human social activi-
ties. With the wide availability of mobile Internet and GPS positioning
technology, people can easily acquire their precise locations and so-
cialize with their friends by sharing their historical check-ins on the
Internet. This opens up a new avenue of research on location-based
social network analysis, which gathered significant attention from the
user, business, and government perspectives. Usually, in a location-
based social network, the node type set consists of User, and Location,
also named Point of Interest(POI) in the recommendation scenario con-
taining multiple categories such as Restaurant, Cinema, Mall, Parking,
etc. The relation type set consists of Friendship, Check-in. Also, those
node and relation types that exist in traditional social media networks
can be included in a location-based social network. The difference
with other social networks, the main location-based social networks are
spatial and temporal, making the graph representation learning more
challenging. For example, in a typical social network constructed for
the POI recommendation, the user nodes are connected with each other
by their friendship. The location nodes are connected by user nodes
with the relations feature of timestamps. The location nodes also have
a spatial relationship with each other and own have complex features,
including categories, tags, check-in counts, number of users check-in,
etc. There are many location-based social network datasets, such as
Foursquare,4 Gowalla,5 and Waze.6 Also, many social media such as
Twitter, Instagram, and Facebook can provide location information.

The research of graph representation learning on location-based so-
cial networks can be divided into two categories: POI recommendation
for business benefits and urban computing for public management.

• POI recommendation is one of the research hotspots in the field
of location-based social networks and recommendation systems in
recent years (Islam, Mohammad, Das, & Ali, 2022; Ju et al., 2022;

4 https://foursquare.com/.
5 https://www.gowalla.com/.
6
 https://www.waze.com/live-map/.

https://foursquare.com/
https://www.gowalla.com/
https://www.waze.com/live-map/
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Werneck et al., 2020), which aim to utilize historical check-ins
of users and auxiliary information to recommend potential favor
places for users from a large of location points. Existing researches
mainly integrate four essential characteristics, including spatial
influence, temporal influence (Si et al., 2019; Wang, Zhu et al.,
2022; Zhao, Luo et al., 2020), social relationship (Long et al.,
2023; Xu, Ding et al., 2021), and textual information (Wang,
Fukumoto et al., 2023; Wang, Zeng et al., 2023; Xu, Liu et al.,
2021).

• Urban computing is defined as a process of analysis of the large-
scale connected urban data created from city activities of vehi-
cles, human beings, and sensors (Paulos, Anderson, & Townsend,
2004; Paulos & Goodman, 2004; Silva et al., 2019). Besides the
local-based social network, the urban data also includes physical
sensors, city infrastructure, traffic roads, and so on. Urban com-
puting aims to improve the quality of public management and life
quality of people living in city environments. Typical applications
including traffic congestion prediction (Jiang & Luo, 2022; Xiong
et al., 2018), urban mobility analysis (Cao, Li, Tu et al., 2021;
Yildirimoglu & Kim, 2018), event detection (Sofuoglu & Aviyente,
2022; Yu, Du et al., 2021).

0.5. Summary

This section introduces social analysis by graph representation
earning and we provide the summary as follows:

• Techniques. Social networks, generated by human social activ-
ities, such as communication, collaboration, and social interac-
tions, typically involve massive and heterogeneous data, with
different types of attributes and properties that can change over
time. Thus, social network analysis is a field of study that explores
the techniques to understand and analyze the complex attributes,
heterogeneous structures, and dynamic information of social net-
works. Social network analysis typically learns low-dimensional
graph representations that capture the essential properties and
patterns of the social network data, which can be used for var-
ious downstream tasks, such as classification, clustering, link
prediction, and recommendation.

• Challenges and Limitations. Despite the structural heterogene-
ity in social networks (nodes and relations have different types),
with the technological advances in social media, the node at-
tributes have become more heterogeneous now, containing text,
video, and images. Also, the large-scale problem is a pending
issue in social network analysis. The data in the social net-
work has increased exponentially in past decades, containing a
high density of topological links and a large amount of node
attribute information, which brings new challenges to the ef-
ficiency and effectiveness of traditional network representation
learning on the social network. Lastly, social networks are often
dynamic, which means the network information usually changes
over time, and this temporal information plays a significant role
in many downstream tasks, such as recommendations. This brings
new challenges to representation learning on social networks in
incorporating temporal information.

• Future Works. Recently, multi-modal big pre-training models
that can fuse information from different modalities have gained
increasing attention (Qiao et al., 2022; Radford et al., 2021).
These models can obtain valuable information from a large
amount of unlabeled data and transfer it to various downstream
analysis tasks. Moreover, Transformer-based models have demon-
strated better effectiveness than RNNs in capturing temporal
information. In the future, there is potential for introducing
multi-modal big pre-training models in social network analysis.
Also, it is important to make the models more efficient for
25

network information extraction and use lightweight techniques E
like knowledge distillation to further enhance the applicability
of the models. These advancements can lead to more effective
social network analysis and enable the development of more
sophisticated applications in various domains.

11. Molecular property prediction

Molecular Property Prediction is an essential task in computational
drug discovery and cheminformatics. Traditional quantitative structure
property/activity relationship (QSPR/QSAR) approaches are based on
either SMILES or fingerprints (Mikolov, Sutskever, Chen, Corrado and
Dean, 2013; Xu, Wang, Zhu, & Huang, 2017; Zhang et al., 2018),
largely overlooking the topological features of the molecules. To ad-
dress this problem, graph representation learning has been widely
applied to molecular property prediction. A molecule can be repre-
sented as a graph where nodes stand for atoms and edges stand for
atom-bonds (ABs). Graph-level molecular representations are learned
via the message passing mechanism to incorporate the topological
information. The representations are then utilized for the molecular
property prediction tasks.

Specifically, a molecule is denoted as a topological graph  =
 , ), where  = {𝑣𝑖|𝑖 = 1,… , ||} is the set of nodes representing
toms. A feature vector 𝐱𝑖 is associated with each node 𝑣𝑖 indicating

its type such as Carbon, Nitrogen.  = {𝑒𝑖𝑗 |𝑖, 𝑗 = 1,… , ||} is the
et of edges connecting two nodes (atoms) 𝑣𝑖 and 𝑣𝑗 representing
tom bonds. Graph representation learning methods are used to obtain
he molecular representation 𝐡. Then downstream classification or
egression layers 𝑓 (⋅) are applied to predict the probability of target
roperty of each molecule 𝑦 = 𝑓 (𝐡).

In Section 11.1, we introduce 4 types of molecular properties graph
epresentation learning can be treated and their corresponding datasets.
ection 11.2 reviews the graph representation learning backbones
pplied to molecular property prediction. Strategies for training the
olecular property prediction methods are listed in Section 11.3.

1.1. Molecular property categorization

Plenty of molecular properties can be predicted by graph-based
ethods. We follow Wieder et al. (2020) to categorize them into 4

ypes: quantum chemistry, physicochemical properties, biophysics, and
iological effect.

Quantum chemistry is a branch of physical chemistry focused on
he application of quantum mechanics to chemical systems, including
onformation, partial charges and energies. QM7, QM8, QM9 (Wu
t al., 2018), COD (Ruddigkeit, Van Deursen, Blum, & Reymond, 2012)
nd CSD (Groom, Bruno, Lightfoot, & Ward, 2016) are datasets for
uantum chemistry prediction.

Physicochemical properties are the intrinsic physical and chemical
haracteristics of a substance, such as bioavailability, octanol solubil-
ty, aqueous solubility and hydrophobicity. ESOL, Lipophilicity and
reesolv (Wu et al., 2018) are datasets for physicochemical properties
rediction.

Biophysics properties are about the physical underpinnings of
iomolecular phenomena, such as affinity, efficacy and activity. PDB-
ind (Wang, Fang, Lu, Yang, & Wang, 2005), MUV, and HIV (Wu et al.,
018) are biophysics property prediction datasets.

Biological effect properties are generally defined as the response of
n organism, a population, or a community to changes in its environ-
ent, such as side effects, toxicity and ADMET. Tox21, toxcast (Wu

t al., 2018) and PTC (Toivonen, Srinivasan, King, Kramer, & Helma,
003) are biological effect prediction datasets.

Moleculenet (Wu et al., 2018) is a widely-used benchmark dataset
or molecule property prediction. It contains over 700,000 compounds
ested on different properties. For each dataset, they provide a metric
nd a splitting pattern. Among the datasets, QM7, OM7b, QM8, QM9,

SOL, FreeSolv, Lipophilicity and PDBbind are regression tasks, using
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Table 10
Summary of GNNs in molecular property prediction.

Type Spatial/Spectral Method Application

Recurrent GNN – R-GNN Biological effect (Scarselli, Gori, Tsoi, Hagenbuchner, & Monfardini, 2008)

Recurrent GNN – GGNN Quantum chemistry (Mansimov, Mahmood, Kang, & Cho, 2019),
Biological effect (Altae-Tran, Ramsundar, Pappu, & Pande, 2017; Feinberg et al., 2018; Withnall,
Lindelöf, Engkvist, & Chen, 2020)

Recurrent GNN – IterRefLSTM Biophysics (Altae-Tran et al., 2017), Biological effect (Altae-Tran et al., 2017)

Convolutional GNN Spatial/Spectral GCN Quantum chemistry (Liao et al., 2019; Withnall et al., 2020; Yang et al., 2019),
physicochemical properties (Coley, Barzilay, Green, Jaakkola, & Jensen, 2017; Duvenaud et al., 2015;
Ryu, Lim, Hong, & Kim, 2018),
Biophysics (Bouritsas, Frasca, Zafeiriou, & Bronstein, 2022; Duvenaud et al., 2015; Yang et al., 2019)
Biological effect (Li, Cai and He, 2017; Wu et al., 2018)

Convolutional GNN Spectral LanczosNet Quantum chemistry (Liao et al., 2019)

Convolutional GNN Spectral ChebNet Physicochemical properties,
Biophysics, Biological effect (Li, Wang et al., 2018)

Convolutional GNN Spatial GraphSAGE Physicochemical properties (Hu et al., 2019),
Biophysics (Chen, Chen, Villar and Bruna, 2020; Errica, Podda, Bacciu, & Micheli, 2019; Liang,
Zhang, Gao, & Xu, 2020),
Biological effect (Hu et al., 2019; Ma, Wang, Aggarwal, & Tang, 2019)

Convolutional GNN Spatial GAT Physicochemical properties (Ahmad, Tayara, & Chong, 2023; Hu et al., 2019),
Biophysics (Bouritsas et al., 2022; Chen, Chen, Villar et al., 2020),
Biological effect (Hu et al., 2019)

Convolutional GNN Spatial DGCNN Biophysics (Chen, Bian, & Sun, 2019), Biological effect (Zhang, Cui et al., 2018)

Convolutional GNN Spatial GIN Physicochemical properties (Bouritsas et al., 2022; Hu et al., 2019),
Biophysics (Hu et al., 2020, 2019),
Biological effect (Hu et al., 2019)

Convolutional GNN Spatial MPNN Physicochemical (Ma et al., 2020)

Transformer – MAT Physicochemical, Biophysics (Maziarka et al., 2020)
MAE or RMSE as the evaluation metrics. Other tasks such as tox21 and
toxcast are classification tasks, using AUC as evaluation metric.

11.2. Molecular graph representation learning backbones

Since node attributes and edge attributes are crucial to molecular
representation, most works use GNN instead of traditional graph rep-
resentation learning methods as backbones, since many GNN methods
consider edge information. Existing GNNs designed for the general
domain can be applied to molecular graphs. Table 10 summarizes
the GNNs used for molecular property prediction and the types of
properties they can be applied to predict.

Furthermore, many works customize their GNN structure by consid-
ering the chemical domain knowledge.

• First, the chemical bonds and molecule interaction are taken into
consideration carefully. For example, Ma, Bian et al. (2020) use
an additional edge GNN to model the chemical bonds separately.
Specifically, given an edge (𝑣,𝑤), they formulate an Edge-based
GNN as:

𝐦(𝑘)
𝑣𝑤 = AGGedge({𝐡

(𝑘−1)
𝑣𝑤 ,𝐡(𝑘−1)𝑢𝑣 , 𝐱𝑢|𝑢 ∈ 𝑣 ⧵𝑤}),

𝐡(𝑘)𝑣𝑤 = MLPedge({𝐦
(𝑘−1)
𝑣𝑤 ,𝐡(0)𝑣𝑤}), (127)

where 𝐡(0)𝑣𝑤 = 𝜎(𝐖ein𝐞𝑣𝑤) is the input state of the Edge-based GNN,
𝐖ein ∈ R𝑑hid×𝑑𝑒 is the input weight matrix. PotentialNet (Feinberg
et al., 2018) further uses different message passing operations
for different edge types. DGNN-DDI (Ma & Lei, 2023) leverage
dual graph neural networks to model the interaction between two
molecules.

• Second, motifs in molecular graphs play an important role in
molecular property prediction. GSN (Bouritsas et al., 2022) lever-
age substructure encoding to construct a topologically-aware
message-passing method. Each node 𝑣 updates its state 𝐡𝑡𝑣 by
combining its previous state with the aggregated messages:

𝐡𝑡+1 = UP𝑡+1
(

𝐡𝑡 ,𝐦𝑡+1), (128)
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𝑣 𝑣 𝑣
𝐦𝑡+1
𝑣 =

⎧

⎪

⎨

⎪

⎩

𝑀 𝑡+1([𝐡𝑡𝑣,𝐡
𝑡
𝑢, 𝐱

𝑉
𝑣 , 𝐱

𝑉
𝑢 , 𝐞𝑢,𝑣]𝑢∈ (𝑣)) (𝐆𝐒𝐍-𝐯)

or
𝑀 𝑡+1([𝐡𝑡𝑣,𝐡

𝑡
𝑢, 𝐱

𝐸
𝑢,𝑣, 𝐞𝑢,𝑣]𝑢∈ (𝑣)) (𝐆𝐒𝐍-𝐞)

, (129)

where 𝐱𝑉𝑣 , 𝐱
𝑉
𝑢 , 𝐱

𝐸
𝑢,𝑣, 𝐞𝑢,𝑣 contains the substructure information as-

sociated with nodes and edges, [] denotes a multiset. Yu and
Gao (2022) constructs a heterogeneous graph using motifs and
molecules. Motifs and molecules are both treated as nodes and the
edges model the relationship between motifs and graphs, for ex-
ample, if a graph contains a motif, there will be an edge between
them. MGSSL (Zhang, Liu, Wang, Lu & Lee, 2021) leverages a
retrosynthesis-based algorithm BRICS and additional rules to find
the motifs and combines motif layers with atom layers. It is a hier-
archical framework jointly modeling atom-level information and
motif-level information. Aouichaoui, Fan, Mansouri, Abildskov,
and Sin (2023) introduce group-contribution-based attention to
highlight the most substructures in molecules.

• Third, different feature modalities have been used to improve
molecular graph embedding. Lin, Xu, Woicik, Ma and Wang
(2022) combine SMILES modality and graph modality with con-
trastive learning. Zhu et al. (2022) encode 2D molecular graph
and 3D molecular conformation with a unified Transformer. It
uses a unified model to learn 3D conformation generation given
2D graph and 2D graph generation given 3D conformation. Cre-
mer, Medrano Sandonas, Tkatchenko, Clevert, and De Fabritiis
(2023) use a Equivariant Graph Neural Networks to represent the
3D information of molecules. Liu et al. (2023) consider molecu-
lar chirality and design a chirality-aware molecular convolution
module.

• Finally, knowledge graph and literature can provide additional
knowledge for molecular property prediction. Fang et al. (2022)
introduce a chemical element knowledge graph to summarize mi-
croscopic associations between elements and augment the molec-
ular graph based on the knowledge graph, and a knowledge-
aware message-passing network is used to encode the augmented

graph. MuMo (Su et al., 2022) introduces biomedical literature
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to guide molecular property prediction. It pretrains a GNN and
a language model on paired data of molecules and literature
mentions via contrastive learning:

𝓁
(𝐳𝐺𝑖 ,𝐳

𝑇
𝑖 )

𝑖 = − log
exp (𝑠𝑖𝑚(𝐳𝐺𝑖 , 𝐳

𝑇
𝑖 )∕𝜏)

∑𝑁
𝑗=1 exp (𝑠𝑖𝑚(𝐳

𝐺
𝑖 , 𝐳

𝑇
𝑗 )∕𝜏)

, (130)

where 𝐳𝐺𝑖 , 𝐳
𝑇
𝑖 are the representation of molecule and its corre-

sponding literature. Zhao et al. (2023) propose a unified Trans-
former architecture to jointly model molecule graph and the
corresponding bioassay description.

1.3. Training strategies

Despite the encouraging performance achieved by GNNs, the tra-
itional supervised training scheme of GNNs faces a severe limitation:
he scarcity of available molecules with desired properties. Although
here are a large number of molecular graphs in public databases such
s PubChem, labeled molecules are hard to acquire due to the high cost
f wet-lab experiments and quantum chemistry calculations. Directly
raining GNNs on such limited molecules in a supervised way is prone
o over-fitting and lack of generalization. To address this issue, few-
hot learning and self-supervised learning are widely used in molecular
roperty prediction.
Few-shot learning. Few-shot learning aims at generalizing to a task

ith a small labeled data set. The prediction of each property is treated
s a single task. Metric-based and optimization-based few-shot learning
ave been adopted for molecular property prediction. Metric-based
ew-shot learning is similar to nearest neighbors and kernel density
stimation, which learns a metric or distance function over objects.
terRefLSTM (Altae-Tran et al., 2017) leverages matching network
Vinyals, Blundell, Lillicrap, Wierstra, et al., 2016) as the few-shot
earning framework, calculating the similarity between support samples
nd query samples. Optimization-based few-shot learning optimizes a
eta-learner for parameter initialization which can be fast adapted to
ew tasks. Meta-MGNN (Guo et al., 2021) adopts MAML (Finn, Abbeel,
Levine, 2017) to train a parameter initialization to adapt to different

asks and use self-attentive task weights for each task. PAR (Wang,
buduweili, Yao and Dou, 2021) also uses MAML framework and learns
n adaptive relation graph among molecules for each task.
Self-supervised learning. Self-supervised learning can pre-train

GNN model with plenty of unlabeled molecular graphs and trans-
er it to specific molecular property prediction tasks. Self-supervised
earning contains generative methods and predictive methods. Pre-
ictive methods design prediction tasks to capture the intrinsic data
eatures. Pre-GNN (Hu et al., 2019) exploits both node-level and graph-
evel prediction tasks including context prediction, attribute masking,
raph-level property prediction and structural similarity prediction.
GSSL (Zhang, Liu et al., 2021) provides a motif-based generative

re-training framework making topology prediction and motif gener-
tion iteratively. Contrastive methods learn graph representations by
ulling views from the same graph close and pushing views from
ifferent graphs apart. Different views of the same graph are con-
tructed by graph augmentation or leveraging the 1D SMILES and 3D
tructure. MolCLR (Wang, Wang, Cao and Barati Farimani, 2022) aug-
ents molecular graphs by atom masking, bond deletion and subgraph

emoval and maximizes the agreement between the original molecular
raph and augmented graphs. Fang, Zhang et al. (2022) uses a chemical
nowledge graph to guide the graph augmentation. SMICLR (Pinheiro,
a Silva, & Quiles, 2022) uses contrastive learning across SMILES and
D molecular graphs. GeomGCL (Li, Zhou, Xu, Dou and Xiong, 2022)
everages graph contrastive learning to capture the geometry of the
olecule across 2D and 3D views. Fang et al. (2023) and Jiang (2023)

ntegrate molecule graphs with chemical knowledge graph and fuse
he two modalities with contrastive learning. Self-supervised learning
27

2

can also be combined with few-shot learning to fully leverage the
hierarchical information in the training set (Ju et al., 2023).

11.4. Summary

This section introduces graph representation learning in molecular
property prediction and we provide the summary as follows:

• Techniques. For molecular property prediction, a molecule is
represented as a graph whose nodes are atoms and edges are
atom-bonds (ABs). GNNs such as GCN, GAT, and GraphSAGE are
adopted to learn the graph-level representation. The represen-
tations are then fed into a classification or regression head for
the molecular property prediction tasks. Many works guide the
model structure design with medical domain knowledge including
chemical bond features, motif features, different modalities of
molecular representation, chemical knowledge graph and liter-
ature. Due to the scarcity of available molecules with desired
properties, few-shot learning and contrastive learning are used to
train molecular property prediction models, so that the model can
leverage the information in large unlabeled dataset and can be
adapted to new tasks with a few examples.

• Challenges and Limitations. Despite the great success of graph
representation learning in molecular property prediction, the
methods still have limitations: (1) Few-shot molecular property
prediction are not fully explored. (2) Most methods depend on
training with labeled data, but neglect the chemical domain
knowledge.

• Future Works. In the future, we expect that: (1) More few-shot
learning and zero-shot learning methods are studied for molecular
property prediction to solve the data scarcity problem. (2) Het-
erogeneous data can be fused for molecular property prediction.
There are a large amount of heterogeneous data about molecules
such as knowledge graphs, molecule descriptions and property
descriptions. They can be considered to assist molecular property
prediction. (3) Chemical domain knowledge can be leveraged for
the prediction model. For example, when we perform affinity
prediction, we can consider molecular dynamics knowledge.

12. Molecular generation

Molecular generation is pivotal to drug discovery, where it serves a
fundamental role in downstream tasks like molecular docking (Meng,
Zhang, Mezei, & Cui, 2011) and virtual screening (Walters, Stahl,
& Murcko, 1998). The goal of molecular generation is to produce
chemical structures that satisfy a specific molecular profile, e.g., nov-
elty, binding affinity, and SA scores. Traditional methods have relied
on 1D string formats like SMILES (Gómez-Bombarelli et al., 2018)
and SELFIES (Krenn, Häse, Nigam, Friederich, & Aspuru-Guzik, 2020).
With the recent advances in graph representation learning, numerous
graph-based methods have also emerged, where molecular graph  can
aturally embody both 2D topology and 3D geometry. While recent
iterature reviews (Du, Fu, Sun and Liu, 2022; Meyers, Fabian, & Brown,
021) have covered the general topics of molecular design, this chapter
s dedicated to the applications of graph representation learning in
he molecular generation task. Molecular generation is intrinsically a
e novo task, where molecular structures are generated from scratch
o navigate and sample from the vast chemical space. Therefore, this
hapter does not discuss tasks that restrict chemical structures a priori,
uch as docking (Ganea et al., 2021; Stärk, Ganea, Pattanaik, Barzilay,

Jaakkola, 2022) and conformation generation (Shi, Luo, Xu, & Tang,

021; Zhu et al., 2022).
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12.1. Taxonomy for molecular featurization methods

This section categorizes the different methods to feature molecules.
The taxonomy presented here is unique to the task of molecular gen-
eration, owing to the various modalities of molecular entities, complex
interactions with other bio-molecular systems and formal knowledge
from the laws of chemistry and physics.

2D topology vs. 3D geometry. Molecular data are multi-modal by
ature. For one thing, a molecule can be unambiguously represented
y its 2D topological graph 2D, where atoms are nodes and bonds
re edges. 2D can be encoded by canonical MPNN models like GCN
Kipf & Welling, 2016a), GAT (Veličković et al., 2017), and R-GCN
Schlichtkrull et al., 2018), in ways similar to tasks like social networks
nd knowledge graphs. A typical example of this line of work is GCPN
You, Liu, Ying, Pande, & Leskovec, 2018), a graph convolutional policy
etwork generating molecules with desired properties such as synthetic
ccessibility and drug-likeness.

For another, the 3D conformation of a molecule can be accurately
epicted by its 3D geometric graph 3D, which incorporates 3D atom
oordinates. In 3D-GNNs like SchNet (Schütt, Sauceda, Kindermans,
katchenko, & Müller, 2018) and OrbNet (Qiao, Welborn, Anandku-
ar, Manby and Miller III, 2020), 3D is organized into a 𝑘-NN graph

r a radius graph according to the Euclidean distance between atoms.
t is justifiable to approximate 3D as a 3D extension to 2D, since
ovalent atoms are closest to each other in most cases. However, 3D
an also find a more long-standing origin in the realm of computational
hemistry (Frisch et al., 2016), where both covalent and non-covalent
tomistic interactions are considered to optimize the potential surface
nd simulate molecular dynamics. Therefore, 3D more realistically
epresents the molecular geometry, which makes a good fit for pro-
ein pocket binding and 3D-QSAR optimization (Verma, Khedkar, &
outinho, 2010).

Molecules can rotate and translate, affecting their position in the 3D
pace. Therefore, it is ideal to encode these molecules with GNNs equiv-
riant/invariant to roto-translations, which can be ∼103 times more
fficient than data augmentation (Geiger & Smidt, 2022). Equivariant
NNs can be based on irreducible representation (Anderson, Hy, &
ondor, 2019; Batzner et al., 2021; Brandstetter, Hesselink, van der Pol,
ekkers, & Welling, 2022; Fuchs, Worrall, Fischer, & Welling, 2020;
homas et al., 2018), regular representation (Finzi, Stanton, Izmailov,
Wilson, 2020; Hutchinson et al., 2021), or scalarization (Huang et al.,

022; Jing, Eismann, Suriana, Townshend, & Dror, 2021; Klicpera,
ecker, & Günnemann, 2021; Klicpera, Groß, & Günnemann, 2020;
öhler, Klein, & Noe, 2020; Liu et al., 2022; Satorras, Hoogeboom, &
elling, 2021; Schütt et al., 2018; Schütt, Unke, & Gastegger, 2021;

hölke & Fabritiis, 2022), which are explained in more detail in Han,
ong, Xu, and Huang (2022). Recent works like GraphVF (Sun, Zhan,
uo, Zhang, & Tang, 2023) and MolCode (Zhang, Liu, Lee, Hsieh and
hen, 2023) have been incorporating 2D and 3D to accurately capture
he relationship between structure and properties in molecular design
n a unified way.

Unbounded vs. binding-based. Earlier works have aimed to gen-
rate unbounded molecules in either 2D or 3D space, striving to
earn good molecular representations through this task. In the 2D
cenario, GraphNVP (Madhawa, Ishiguro, Nakago, & Abe, 2019) first
ntroduces a flow-based model to learn an invertible transformation
etween the 2D chemical space and the latent space. GraphAF (Shi
t al., 2020) further adopts an autoregressive generation scheme to
heck the valence of the generated atoms and bonds. In the 3D scenario,
-SchNet (Gebauer, Gastegger, & Schütt, 2019) first proposes to utilize
3D (instead of 3D density grids) as the generation backbone. It encodes
3D via SchNet, and uses an auxiliary token to generate atoms on the
28

iscretized 3D space autoregressively. G-SphereNet (Luo & Ji, 2022) 2
ses symmetry-invariant representations in a spherical coordinate sys-
em (SCS) to generate atoms in the continuous 3D space and preserve
quivariance.

Unbounded models adopt certain techniques to optimize specific
roperties of the generated molecules. GCPN and GraphAF use scores
ike logP, QED, and chemical validity to tune the model via reinforce-
ent learning. EDM (Hoogeboom, Satorras, Vignac, & Welling, 2022)

an generate 3D molecules with property 𝑐 by re-training the diffusion
odel with 𝑐’s feature vector concatenated to the E(n) equivariant
ynamics function �̂�𝑡 = 𝜙

(

𝒛𝑡, [𝑡, 𝑐]
)

. cG-SchNet (Gebauer, Gastegger,
essmann, Müller, & Schütt, 2022) adopts a conditioning network ar-
hitecture to jointly target multiple electronic properties during condi-
ional generation without the need to re-train the model. RetMol (Wang
t al., 2022) uses a retrieval-based model for controllable generation.

On the other hand, binding-based methods generate drug-like
olecules (aka. ligands) according to the binding site (aka. binding
ocket) of a protein receptor. Drawing inspirations from the lock-
nd-key model for enzyme action (Fischer, 1894), works like LiGAN
Ragoza, Masuda, & Koes, 2022) and DESERT (Long, Zhou, Dai, & Zhou,
022) uses 3D density grids to fit the density surface between the ligand
nd the receptor, encoded by 3D-CNNs. Meanwhile, a growing amount
f literature has adopted 3D for representing ligand and receptor
olecules, because 3D more accurately depicts molecular structures

nd atomistic interactions both within and between the ligand and
he receptor. Representative works include 3D-SBDD (Luo, Guan, Ma
nd Peng, 2021), GraphBP (Liu, Luo, Uchino, Maruhashi and Ji, 2022),
ocket2Mol (Peng et al., 2022), and DiffSBDD (Schneuing et al., 2022).
raphBP shares a similar workflow with G-SphereNet, except that the

eceptor atoms are also incorporated into 3D to depict the 3D geometry
t the binding pocket.
Atom-based vs. fragment-based. Molecules are inherently hier-

rchical structures. At the atomistic level, molecules are represented
y encoding atoms and bonds. At a coarser level, molecules can also
e represented as molecular fragments like functional groups or chem-
cal sub-structures. Both the composition and the geometry are fixed
ithin a given fragment, e.g., the planar peptide-bond (–CO–NH–)

tructure. Fragment-based generation effectively reduces the degree
f freedom (DOF) of chemical structures, and injects well-established
nowledge about molecular patterns and reactivity. JT-VAE (Jin, Barzi-
ay, & Jaakkola, 2018) decomposes 2D molecular graph 2D into a

junction-tree structure  , which is further encoded via tree message-
passing. DeepScaffold (Li et al., 2019) expands the provided molecular
scaffold into 3D molecules. L-Net (Li, Pei, & Lai, 2021a) adopts a graph
U-Net architecture and devises a custom three-level node clustering
scheme for pooling and unpooling operations in molecular graphs. A
number of works have also emerged lately for fragment-based genera-
tion in the binding-based setting, including FLAG (Zhang, Min, Zheng
and Liu, 2022) and FragDiff (Peng, Guan, Peng, & Ma, 2023). FLAG uses
a regression-based approach to sequentially decide the type and torsion
angle of the next fragment to be placed at the binding site, and finally
optimizes the molecule conformation via a pseudo-force field. FragDiff
also adopts a sequential generation process but uses a diffusion model
to determine the type and pose of each fragment in one go.

12.2. Generative methods for molecular graphs

For a molecular graph generation process, the model first learns a
latent distribution 𝑃 (𝑍|) characterizing the input molecular graphs. A
ew molecular graph ̂ is then generated by sampling and decoding
rom this learned distribution. Various models have been adopted
o generate molecular graphs, including generative adversarial net-
ork (GAN), variational auto-encoder (VAE), normalizing flow (NF),
iffusion model (DM), and autoregressive model (AR).
Generative adversarial network (GAN). GAN (Goodfellow et al.,
020) is trained to discriminate real data 𝒙 from generated data 𝒛, with
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the training object formalized as

min
𝐺

max
𝐷

(𝐷,𝐺) = E𝒙∼𝑝data [log𝐷(𝒙)] + E𝒛∼𝑝(𝒛)[log(1 −𝐷(𝐺(𝒛)))], (131)

where 𝐺(⋅) is the generator function and 𝐷(⋅) is the discriminator
function. For example, MolGAN (De Cao & Kipf, 2018) encodes 2D
with R-GCN, trains 𝐷 and 𝐺 with improved W-GAN (Arjovsky, Chintala,
& Bottou, 2017), and uses reinforcement learning to generate attributed
molecules, where the score function is assigned from RDKit (Landrum
et al., 2013) and chemical validity.

Variational auto-encoder (VAE). In VAE (Kingma & Welling,
2013), the decoder parameterizes the conditional likelihood distribu-
tion 𝑝𝜃(𝒙|𝒛), and the encoder parameterizes an approximate posterior
distribution 𝑞𝜙(𝒛|𝒙) ≈ 𝑝𝜃(𝒛|𝒙). The model is optimized by the evidence
lower bound (ELBO), consisting of the reconstruction loss term and the
distance loss term:

max
𝜃,𝜙

𝜃,𝜙(𝒙) ∶= E𝒛∼𝑞𝜙(⋅|𝒙)

[

ln
𝑝𝜃(𝒙, 𝒛)
𝑞𝜙(𝒛|𝒙)

]

= ln 𝑝𝜃(𝒙)−𝐷KL
(

𝑞𝜙(⋅|𝒙) ∥ 𝑝𝜃(⋅|𝒙)
)

.

(132)

Maximizing ELBO is equivalent to simultaneously maximizing the
og-likelihood of the observed data, and minimizing the divergence
f the approximate posterior 𝑞𝜙(⋅|𝑥) from the exact posterior 𝑝𝜃(⋅|𝑥).
epresentative works along this thread include JT-VAE (Jin et al.,
018), GraphVAE (Simonovsky & Komodakis, 2018), and CGVAE (Liu,
llamanis, Brockschmidt and Gaunt, 2018) for the 2D generation task,
nd 3DMolNet (Nesterov, Wieser, & Roth, 2020) for the 3D generation
ask.
Autoregressive model (AR). Autoregressive model is an umbrella

efinition for any model that sequentially generates the components
atoms or fragments) of a molecule. ARs better capture the interdepen-
ency within the molecular structure and allows for explicit valency
heck. For each step in AR, the new component can be produced using
ifferent techniques:

• Regression/classification, such is the case with 3D-SBDD (Luo,
Guan et al., 2021), Pocket2Mol (Peng et al., 2022), etc.

• Reinforcement learning, such is the case with L-Net (Li et al.,
2021a), DeepLigBuilder (Li, Pei, & Lai, 2021b), etc.

• Probabilistic models like normalizing flow and diffusion.

Normalizing flow (NF). Based on the change-of-variable theorem,
F (Rezende & Mohamed, 2015) constructs an invertible mapping 𝑓
etween a complex data distribution 𝒙 ∼ 𝑋: and a normalized latent
istribution 𝒛 ∼ 𝑍. Unlike VAE, which has juxtaposed parameters for
ncoder and decoder, the flow model uses the same set of parameter for
ncoding and encoding: reverse flow 𝑓−1 for generation, and forward
low 𝑓 for training:

max
𝑓

log 𝑝(𝒙) = log 𝑝𝐾
(

𝒛𝐾
)

(133)

= log 𝑝𝐾−1
(

𝒛𝐾−1
)

− log
|

|

|

|

|

|

det

(

𝑑𝑓𝐾
(

𝒛𝐾−1
)

𝑑𝒛𝐾−1

)

|

|

|

|

|

|

(134)

= ⋯ (135)

= log 𝑝0
(

𝒛0
)

−
𝐾
∑

𝑖=1
log

|

|

|

|

|

|

det

(

𝑑𝑓𝑖
(

𝒛𝑖−1
)

𝑑𝒛𝑖−1

)

|

|

|

|

|

|

, (136)

where 𝑓 = 𝑓𝐾◦𝑓𝐾−1◦...◦𝑓1 is a composite of 𝐾 blocks of transformation.
hile GraphNVP (Madhawa et al., 2019) generates the molecular graph
ith NF in one go, following works tend to use the autoregressive flow
odel, including GraphAF (Shi et al., 2020), GraphDF (Luo, Yan and

i, 2021), GraphBP (Liu, Luo et al., 2022) and SiamFlow (Tan, Gao and
i, 2023).
Diffusion model (DM). Diffusion models (Ho, Jain, & Abbeel,

020; Sohl-Dickstein, Weiss, Maheswaranathan, & Ganguli, 2015; Song
Ermon, 2019) define a Markov chain of diffusion steps to slowly add
29

e

random noise to data 𝒙0 ∼ 𝑞(𝒙):

𝑞(𝒙𝑡|𝒙𝑡−1) =  (𝒙𝑡;
√

1 − 𝛽𝑡𝒙𝑡−1, 𝛽𝑡𝑰), (137)

(𝒙1∶𝑇 |𝒙0) =
𝑇
∏

𝑡=1
𝑞(𝒙𝑡|𝒙𝑡−1). (138)

They then learn to reverse the diffusion process to construct desired
ata samples from the noise:

𝑝𝜃(𝒙0∶𝑇 ) = 𝑝(𝒙𝑇 )
𝑇
∏

𝑡=1
𝑝𝜃(𝒙𝑡−1|𝒙𝑡), (139)

𝜃(𝒙𝑡−1|𝒙𝑡) =  (𝒙𝑡−1;𝝁𝜃(𝒙𝑡, 𝑡),𝜮𝜃(𝒙𝑡, 𝑡)), (140)

hile the models are trained using a variational lower bound. Diffusion
odels have been applied to generate unbounded 3D molecules in EDM

Hoogeboom et al., 2022) and GCDM (Morehead & Cheng, 2023), and
inding-specific ligands in DiffSBDD (Schneuing et al., 2022), DiffBP
Lin et al., 2022) and TargetDiff (Guan et al., 2023). Diffusion can also
e applied to generate molecular fragments in autoregressive models,
s is the case with FragDiff (Peng et al., 2023).

2.3. Summary and prospects

We wrap up this chapter with Table 11, which profiles existing
olecular generation models according to their taxonomy for molec-
lar featurization, the GNN backbone, and the generative method. This
hapter covers the critical topics of molecular generation, which also
licit valuable insights into the promising directions for future research.
e summarize these important aspects as follows.
Techniques. Graph neural networks can be flexibly leveraged to

ncode molecular features on different representation levels and across
ifferent problem settings. Canonical GNNs like GCN (Kipf & Welling,
016a), GAT (Veličković et al., 2017), and R-GCN (Schlichtkrull et al.,
018) have been widely adopted to model 2D molecular graphs, while
D equivariant GNNs have also been effective in modeling 3D molecu-
ar graphs. In particular, this 3D approach can be readily extended to
inding-based scenarios, where the 3D geometry of the binding protein
eceptor is considered alongside the ligand geometry per se. Fragment-
ased models like JT-VAE (Jin et al., 2018) and L-Net (Li et al., 2021a)
an also effectively capture the hierarchical molecular structure. Var-
ous generative methods have also been effectively incorporated into
he molecular setting, including generative adversarial network (GAN),
ariational auto-encoder (VAE), autoregressive model (AR), normaliz-
ng flow (NF), and diffusion model (DM). These models have been able
o generate valid 2D molecular topologies and realistic 3D molecular
eometries, greatly accelerating the search for drug candidates.
Challenges and Limitations. While there has been an abundant

upply of unlabeled molecular structural and geometric data (Fran-
oeur et al., 2020; Irwin, Sterling, Mysinger, Bolstad, & Coleman,
012; Spackman, Jayatilaka, & Karton, 2016), the number of labeled
olecular data over certain critical biochemical properties like toxicity

Gayvert, Madhukar, & Elemento, 2016) and solubility (Delaney, 2004)
emain very limited. On the other hand, existing models have heavily
elied on expert-crafted metrics to evaluate the quality of the generated
olecules, such as QED and Vina (Eberhardt, Santos-Martins, Tillack,
Forli, 2021), rather than actual wet lab experiments.
Future Works. Besides the structural and geometric attributes de-

cribed in this chapter, an even more extensive array of data can
e applied to aid molecular generation, including chemical reactions
nd medical ontology. These data can be organized into a heteroge-
eous knowledge graph to aid the extraction of high-quality molecular
epresentations. Furthermore, high throughput experimentation (HTE)
hould be adopted to realistically evaluate the synthesizablity and
ruggability of the generated molecules in the wet lab. Concrete case
tudies, such as the design of potential inhibitors to SARS-CoV-2 (Li

t al., 2021b), would be even more encouraging, bringing new insights
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Table 11
Summary of molecular generation models.

Model 2D/3D Binding-
based

Fragment-
based

GNN backbone Generative
model

GCPN (You et al., 2018) 2D GCN (Kipf & Welling, 2016a) GAN
MolGAN (De Cao & Kipf, 2018) 2D R-GCN (Schlichtkrull et al., 2018) GAN
DEFactor (Assouel, Ahmed, Segler, Saffari, & Bengio, 2018) 2D GCN GAN
GraphVAE (Simonovsky & Komodakis, 2018) 2D ECC (Simonovsky & Komodakis, 2017) VAE
MDVAE (Du, Guo, Shehu and Zhao, 2022) 2D GGNN (Li, Tarlow, Brockschmidt, & Zemel, 2015) VAE
JT-VAE (Jin et al., 2018) 2D ✓ MPNN (Gilmer et al., 2017) VAE
CGVAE (Liu, Allamanis et al., 2018) 2D GGNN VAE
DeepScaffold (Li, Hu et al., 2019) 2D ✓ GCN VAE
GraphNVP (Madhawa et al., 2019) 2D R-GCN NF
MoFlow (Zang & Wang, 2020) 2D R-GCN NF
GraphAF (Shi et al., 2020) 2D R-GCN NF + AR
GraphDF (Luo, Yan et al., 2021) 2D R-GCN NF + AR
L-Net (Li et al., 2021a) 3D ✓ g-U-Net (Gao & Ji, 2019b) AR
G-SchNet (Gebauer et al., 2019) 3D SchNet (Schütt et al., 2018) AR
GEN3D (Roney, Maragakis, Skopp, & Shaw, 2021) 3D EGNN (Satorras et al., 2021) AR
G-SphereNet (Luo & Ji, 2022) 3D SphereNet (Liu, Wang et al., 2022) NF + AR
EDM (Hoogeboom et al., 2022) 3D EGNN DM
GCDM (Morehead & Cheng, 2023) 3D GCPNet (Morehead & Cheng, 2022) DM
3D-SBDD (Luo, Guan et al., 2021) 3D ✓ SchNet AR
Pocket2Mol (Peng et al., 2022) 3D ✓ GVP (Jing, Eismann, Suriana, Townshend, & Dror, 2020) AR
FLAG (Zhang, Min et al., 2022) 3D ✓ ✓ SchNet AR
GraphBP (Liu, Luo et al., 2022) 3D ✓ SchNet NF + AR
SiamFlow (Tan, Gao et al., 2023) 3D ✓ R-GCN NF
DiffBP (Lin, Huang et al., 2022) 3D ✓ EGNN DM
DiffSBDD (Schneuing et al., 2022) 3D ✓ EGNN DM
TargetDiff (Guan et al., 2023) 3D ✓ EGNN DM
FragDiff (Peng et al., 2023) 2D + 3D ✓ ✓ MPNN DM + AR
GraphVF (Sun et al., 2023) 2D + 3D ✓ ✓ SchNet NF + AR
MolCode (Zhang, Liu et al., 2023) 2D + 3D ✓ EGNN NF + AR
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into leveraging these molecular generative models to facilitate the
design and fabrication of potent and applicable drug molecules in the
pharmaceutical industry.

Integrating Large Language Models (LLMs) like GPT-4 (OpenAI,
2023) with graph-based representations offers a promising new direc-
tion in molecular generation. Recent studies like those by Guo et al.
(2023) and Jablonka, Schwaller, Ortega-Guerrero, and Smit (2023)
highlight LLMs’ potential in chemistry, especially in low-data scenarios.
While current LLM-based approaches in this domain, including those
by Bagal, Aggarwal, Vinod, and Priyakumar (2021) and Mazuz, Shtar,
Shapira, and Rokach (2023), predominantly utilize textual SMILES
strings, their potential is somewhat constrained by the limits of text-
only inputs. The emerging trend, exemplified by Liu, Ren and Ren
(2023), is to leverage multi-modal data, integrating graph, image, and
text, which could more comprehensively capture the intricacies of
molecular structures. This approach marks a significant shift toward
utilizing graph-based information alongside traditional text, enhancing
the capability of LLMs in molecular generation. Such advances sug-
gest that future research should focus more on exploiting the synergy
between graph-based molecular representations and the evolving land-
scape of LLMs to address complex challenges in chemistry and material
sciences.

13. Recommender systems

The use of graph representation learning in recommender systems
has been drawing increasing attention as one of the key strategies for
addressing the issue of information overload. With their strong ability
to capture high-order connectivity between graph nodes, deep graph
representation learning has been shown to be beneficial in enhanc-
ing recommendation performance across a variety of recommendation
scenarios.

Typical recommender systems take the observed interactions be-
tween users and items and their fixed features as input, and are
intended for making proper predictions on which items a specific user
is probably interested in. To formulate, given an user set  , an item set

and the interaction matrix between users and items 𝑋 ∈ {0, 1}| |×||,
30

s

here 𝑋𝑢,𝑣 indicates there is an observed interaction between user 𝑢
nd item 𝑖. The target of GNNs on recommender systems is to learn
epresentations ℎ𝑢, ℎ𝑖 ∈ R𝑑 for given 𝑢 and 𝑖. The preference score can
urther be calculated by a similarity function:

̂𝑢,𝑖 = 𝑓 (ℎ𝑢, ℎ𝑖), (141)

where 𝑓 (⋅, ⋅) is the similarity function, e.g. inner product, cosine simi-
arity, multi-layer perceptrons that takes the representation of 𝑢 and 𝑖
nd calculate the preference score �̂�𝑢,𝑖.

When it comes to adapting graph representation learning in recom-
ender systems, a key step is to construct graph-structured data from

he interaction set 𝑋. Generally, a graph is represented as  = { , }
here  ,  denotes the set of vertices and edges respectively. According

o the construction of , we can categorize the existing works as follows
nto three parts which are introduced in the following subsections. A
ummary is provided in Table 12.

3.1. User-item bipartite graph

3.1.1. Graph construction
A undirected bipartite graph where the vertex set  =  ∪ and the

ndirected edge set  = {(𝑢, 𝑖)|𝑢 ∈  ∧ 𝑖 ∈ }. Under this case the graph
djacency can be directly obtained from the interaction matrix, thus the
ptimization target on the user–item bipartite graph is equivalent to
ollaborative filtering tasks such as MF (Koren, Bell, & Volinsky, 2009)
nd SVD++ (Koren, 2008).

There have been plenty of previous works that applied GNNs on the
onstructed user-item bipartite graphs. GC-MC (Berg et al., 2017) firstly
pplies graph convolution networks to user–item recommendation and
ptimizes a graph autoencoder (GAE) to reconstruct interactions be-
ween users and items. NGCF (Wang, He et al., 2019) introduces the
oncept of Collaborative Filtering (CF) into graph-based recommen-
ations by modeling the affinity between neighboring nodes on the
nteraction graph. MMGCN (Wei et al., 2019) extends the graph-based
ecommendation to multi-modal scenarios by constructing different

ubgraphs for each modal. LightGCN (He et al., 2020) improves NGCF
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Table 12
Summary of graph models for recommender systems.

Model Recommendation task Graph structure Graph encoder Representation

GC-MC (Berg, Kipf, & Welling, 2017) Matrix completion User-item graph GCN Last-layer
NGCF (Wang, He, Wang, Feng & Chua, 2019) Collaborative filtering User-item graph GCN+Affinity Concatenation
MMGCN (Wei et al., 2019) Micro-video Multi-modal graph GCN Last-layer
LightGCN (He et al., 2020) Collaborative filtering User-item graph LGC Mean-pooling
DGCF (Wang et al., 2020) Collaborative filtering User-item graph Dynamic routing Mean-pooling
CAGCN (Wang, Zhao, Zhang and Derr, 2023) Collaborative filtering User-item graph GCN+CIR Mean-pooling

SR-GNN (Wu et al., 2019) Session-based Transition graph GGNN Soft-attention
GC-SAN (Wu, Tang et al., 2019; Xu et al., 2019) Session-based Session graph GGNN Self-attention
FGNN (Qiu, Li, Huang, & Yin, 2019) Session-based Session graph GAT Last-layer
GAG (Qiu, Yin, Huang and Chen, 2020) Session-based Session graph GCN Self-attention
GCE-GNN (Wang et al., 2020) Session-based Transition+Global GAT Sum-pooling

HyperRec (Wang, Ding, Hong, Liu and Caverlee, 2020) Sequence-based Sequential hypergraph HGCN Self-attention
DHCF (Ji et al., 2020) Collaborative filtering Dual hypergraph JHConv Last-layer
MBHT (Yang et al., 2022) Sequence-based Learnable hypergraph Transformer Cross-view attention
HCCF (Xia et al., 2022) Collaborative filtering Learnable hypergraph HGCN Last-layer
H3Trans (Xu et al., 2023) Sequence-based Hierarchical hypergraph Message-passing Last-layer
STHGCN (Yan et al., 2023) POI recommendation Spatio-temporal hypergraph HGCN Mean-pooling
o

𝑢

f
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by removing the non-linear activation functions and simplifying the
message function. With the development of disentangled representa-
tion learning, there are works like DGCF (Wang, Jin et al., 2020)
that introduce disentangled graph representation learning to represent
users and items from multiple disentangled perspectives. Additionally,
having realized the limitation of the existing message-passing scheme in
capturing collaborative signals, CAGCN (Wang, Zhao et al., 2023) pro-
poses Common Interacted Ratio (CIR) as a recommendation-oriented
topological metric for GNN-based recommender models.

13.1.2. Graph propagation scheme
A common practice is to follow the traditional message-passing net-

works (MPNNs) and design the graph propagation method accordingly.
GC-MC adopts vanilla GCNs to encode the user–item bipartite graph.
NGCF enhances GCNs by considering the affinity between users and
items. The message function of NGCF from node 𝑗 to 𝑖 is formulated as:

⎧

⎪

⎨

⎪

⎩

𝑚𝑖←𝑗 =
1

√

|𝑖||𝑗 |
(𝑊1𝑒𝑗 +𝑊2(𝑒𝑖 ⊙ 𝑒𝑗 ))

𝑚𝑖←𝑖 = 𝑊1𝑒𝑖,
(142)

where 𝑊1,𝑊2 are trainable parameters, 𝑒𝑖 represents 𝑖’s representation
from previous layer. The matrix form can be further provided by:

𝐸(𝑙) = LeakyReLU(( + 𝐼)𝐸(𝑙−1)𝑊 (𝑙)
1 + 𝐸(𝑙−1) ⊙ 𝐸(𝑙−1)𝑊 (𝑙)

2 ), (143)

where  represents the Laplacian matrix of the user–item graph. The
element-wise product in Eq. (143) represents the affinity between
connected nodes, containing the collaborative signals from interactions.

However, the notable heaviness and burdensome calculation of
NGCF’s architecture hinder the model from making faster recommen-
dations on larger graphs. LightGCN solves this issue by proposing Light
Graph Convolution (LGC), which simplifies the convolution operation
with:

𝑒(𝑙+1)𝑖 =
∑

𝑗∈𝑖

1
√

|𝑖||𝑗 |

𝑒(𝑙)𝑗 . (144)

When an interaction takes place, e.g. a user clicks a particular item,
here could be multiple intentions behind the observed interaction.
hus it is necessary to consider the various disentangled intentions
mong users and items. DGCF proposes the cross-intent embedding
ropagation scheme on the graph, inspired by the dynamic routing
lgorithm of capsule networks (Sabour, Frosst, & Hinton, 2017). To for-
ulate, the propagation process maintains a set of routing logits �̃�𝑘(𝑢, 𝑖)

or each user 𝑢. The weighted sum aggregator to get the representation
31
f 𝑢 can be defined as:

𝑡
𝑘 =

∑

𝑖∈𝑢

𝑡𝑘(𝑢, 𝑖) ⋅ 𝑖
0
𝑘 (145)

for 𝑡th iteration, where 𝑡𝑘(𝑢, 𝑖) denotes the Laplacian matrix of 𝑆𝑡𝑘(𝑢, 𝑖),
ormulated as:

𝑡
𝑘(𝑢, 𝑖) =

𝑆𝑡𝑘
√

[
∑

𝑖′∈𝑢
𝑆𝑡𝑘(𝑢, 𝑖

′)] ⋅ [
∑

𝑢′∈𝑖
𝑆𝑡𝑘(𝑢

′, 𝑖)]
. (146)

13.1.3. Node representations
After the graph propagation module outputs node-level representa-

tions, there are multiple methods to leverage node representations for
recommendation tasks. A plain solution is to apply a readout function
on layer outputs like the concatenation operation used by NGCF:

𝑒∗ = 𝐶𝑜𝑛𝑐𝑎𝑡(𝑒(0),… , 𝑒(𝐿)) = 𝑒(0)‖...‖𝑒(𝐿). (147)

However, the readout function among layers would neglect the
relationship between the target item and the current user. A general
solution is to use the attention mechanism (Vaswani et al., 2017)
to reweight and aggregate the node representations. SR-GNN adapts
soft-attention mechanism to model the item-item relationship:

𝛼𝑖 = 𝐪𝑇 𝜎(𝑊1𝑒𝑡 +𝑊2𝑒𝑖 + 𝑐),

𝑔 =
𝑛−1
∑

𝑖=1
𝛼𝑖𝑒𝑖,

(148)

here 𝐪, 𝑊1, 𝑊2 are trainable matrices.
Some methods focus on exploiting information from multiple graph

tructures. A common practice is contrastive learning, which maximizes
he mutual information between hidden representations from several
iews. HCCF leverage InfoNCE loss as the estimator of mutual infor-
ation, given a pair of representation 𝑧𝑖, 𝛤𝑖 for node 𝑖, controlled by

temperature parameter 𝜏:

𝐼𝑛𝑓𝑜𝑁𝐶𝐸 (𝑖) = − log
exp(𝑐𝑜𝑠𝑖𝑛𝑒(𝑧𝑖, 𝛤𝑖))∕𝜏

∑

𝑖′≠𝑖 exp(𝑐𝑜𝑠𝑖𝑛𝑒(𝑧𝑖, 𝛤𝑖′ ))∕𝜏
. (149)

Besides InfoNCE, there exist several other ways to combine node
representations from different views. For instance, MBHT applies an at-
tention mechanism to fuse multiple semantics, DisenPOI adapts
bayesian personalized ranking loss (BPR) (Rendle, Freudenthaler, Gant-
ner, & Schmidt-Thieme, 2012) as a soft estimator for contrastive learn-
ing, and KBGNN applies pair-wise similarities to ensure the consistency
from two views.
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13.2. Transition graph

13.2.1. Transition graph construction
Since sequence-based recommendation (SR) is one of the funda-

mental problems in recommender systems, some researches focus on
modeling the sequential information with GNNs. A commonly applied
way is to construct transition graphs based on each given sequence
according to the clicking sequence by a user. To formulate, given a
user 𝑢’s clicking sequence 𝑠𝑢 = [𝑖𝑢,1, 𝑖𝑢,2,… , 𝑖𝑢,𝑛] containing 𝑛 items,
noting that there could be duplicated items, the sequential graph is
constructed via 𝑠 = {SET(𝑠𝑢), }, where ∀

⟨

𝑖𝑗 , 𝑖𝑘
⟩

∈  indicates there
exists a successive transition from 𝑖𝑗 to 𝑖𝑘. Since 𝑠 are directed graphs,
a widely used way to depict graph connectivity is by building the
connection matrix 𝐴𝑠 ∈ R𝑛×2𝑛. 𝐴𝑠 is the combination of two adjacency
matrices 𝐴𝑠 = [𝐴(𝑖𝑛)

𝑠 ;𝐴(𝑜𝑢𝑡)
𝑠 ], which denotes the normalized node degrees

of incoming and outgoing edges in the session graph respectively.
The proposed transition graphs that obtain user behavior patterns

have been demonstrated important to session-based recommendations
(Li et al., 2017; Liu, Zeng, Mokhosi and Zhang, 2018). SR-GNN and
GC-SAN (Wu, Tang et al., 2019; Xu, Zhao et al., 2019) propose to
leverage transition graphs and apply attention-based GNNs to capture
the sequential information for session-based recommendation. FGNN
(Qiu et al., 2019) formulates the recommendation within a session as a
graph classification problem to predict the next item for an anonymous
user. GAG (Qiu, Yin et al., 2020) and GCE-GNN (Wang, Wei et al.,
2020) further extend the model to capture global embeddings among
multiple session graphs.

13.2.2. Session graph propagation
Since the session graphs are directed item graphs, there have been

multiple session graph propagation methods to obtain node represen-
tations on session graphs.

SR-GNN leverages Gated Graph Neural Networks (GGNNs) to obtain
sequential information from a given session graph adjacency 𝐴𝑠 =
[𝐴(𝑖𝑛)

𝑠 ;𝐴(𝑜𝑢𝑡)
𝑠 ] and item embedding set {𝑒𝑖}:

𝑎𝑡 = 𝐴𝑠[𝑒1,… , 𝑒𝑡−1]𝑇𝐻 + 𝑏, (150)

𝑧𝑡 = 𝜎(𝑊𝑧𝑎𝑡 + 𝑈𝑧𝑒𝑡−1), (151)

𝑟𝑡 = 𝜎(𝑊𝑟𝑎𝑡 + 𝑈𝑟𝑒𝑡−1), (152)

𝑒𝑡 = tanh(𝑊𝑜𝑎𝑡 + 𝑈𝑜(𝑟𝑡 ⊙ 𝑒𝑡−1)), (153)

𝑒𝑡 = (1 − 𝑧𝑡)⊙ 𝑒𝑡−1 + 𝑧𝑡𝑒𝑡, (154)

where 𝑊 s and 𝑈s are trainable parameters. GC-SAN extend GGNN
by calculating initial state 𝑎𝑡 separately to better exploit transition
information:

𝑎𝑡 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝐴(𝑖𝑛)
𝑠 ([𝑒1,… , 𝑒𝑡−1𝑊

(𝑖𝑛)
𝑎 ] + 𝑏(𝑖𝑛)),

𝐴(𝑜𝑢𝑡)
𝑠 ([𝑒1,… , 𝑒𝑡−1𝑊

(𝑜𝑢𝑡)
𝑎 ] + 𝑏(𝑜𝑢𝑡))). (155)

13.3. HyperGraph

13.3.1. Hypergraph topology construction
Motivated by the idea of modeling hyper-structures and high-order

correlation among nodes, hypergraphs (Feng et al., 2019) are proposed
as extensions of the commonly used graph structures. For graph-based
recommender systems, a common practice is to construct hyper struc-
tures among the original user–item bipartite graphs. To be specific, an
incidence matrix of a graph with vertex set  is presented as a binary
matrix 𝐻 ∈ {0, 1}||×||, where  represents the set of hyperedges.
Each entry ℎ(𝑣, 𝑒) of 𝐻 depicts the connectivity between vertex 𝑣 and
hyperedge 𝑒:

ℎ(𝑣, 𝑒) =

{

1 𝑖𝑓 𝑣 ∈ 𝑒
(156)
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0 𝑖𝑓 𝑣 ∉ 𝑒.
Given the formulation of hypergraphs, the degrees of vertices and
hyperedges of 𝐻 can then be defined with two diagonal matrices 𝐷𝑣 ∈
N||×|| and 𝐷𝑒 ∈ N||×||, where

𝐷𝑣(𝑖; 𝑖) =
∑

𝑒∈
ℎ(𝑣𝑖, 𝑒), 𝐷𝑒(𝑗; 𝑗) =

∑

𝑣∈
ℎ(𝑣, 𝑒𝑗 ). (157)

The development of Hypergraph Neural Networks (HGNNs) (Feng
et al., 2019; Huang, Elhoseiny, Elgammal, & Yang, 2015; Zhou, Huang,
& Schölkopf, 2006) have shown to be capable of capturing the high-
order connectivity between nodes. HyperRec (Wang, Ding et al., 2020)
firstly attempts to leverage hypergraph structures for sequential rec-
ommendation by connecting items with hyperedges according to the
interactions with users during different time periods. DHCF (Ji et al.,
2020) proposes to construct hypergraphs for users and items respec-
tively based on certain rules, to explicitly capture the collaborative
similarities via HGNNs. MBHT (Yang, Huang et al., 2022) combines
hypergraphs with a low-rank self-attention mechanism to capture the
dynamic heterogeneous relationships between users and items. HCCF
(Xia, Huang et al., 2022) uses the contrastive information between
hypergraph and interaction graph to enhance the recommendation per-
formance. To extend the model’s ability to multi-domain categories of
items, H3Trans (Xu, Wei et al., 2023) incorporates two hyperedge-based
modules and leverages hierarchical hypergraph propagation to transfer
from domains. STHGCN (Yan et al., 2023) formulates a spatio-temporal
hypergraph structure for POI recommendation.

13.3.2. Hyper graph message passing
With the development of HGNNs, previous works have proposed

different variants of HGNN to better exploit hypergraph structures. A
classic high-order hyper convolution process on a fixed hypergraph
 = { , } with hyper adjacency 𝐻 is given by:

𝑔 ⋆ 𝑋 = 𝐷−1∕2
𝑣 𝐻𝐷−1

𝑒 𝐻𝑇𝐷−1∕2
𝑣 𝑋𝛩, (158)

where 𝐷𝑣, 𝐷𝑒 are degree matrices of nodes and hyperedges, 𝛩 denotes
the convolution kernel. For hyper adjacency matrix 𝐻 , DHCF refers to
a rule-based hyperstructure via k-order reachable rule, where nodes in
the same hyperedge group are k-order reachable to each other:

𝐴𝑘𝑢 = min(1,power(𝐴 ⋅ 𝐴𝑇 , 𝑘)), (159)

where 𝐴 denotes the graph adjacency matrix. By considering the situ-
ations where 𝑘 = 1, 2, the matrix formulation of the hyper connectivity
of users and items is calculated with:
{

𝐻𝑢 = 𝐴 ∥ (𝐴(𝐴𝑇𝐴))
𝐻𝑖 = 𝐴𝑇 ∥ (𝐴𝑇 (𝐴𝐴𝑇 )),

(160)

which depicts the dual hypergraphs for users and items.
HCCF proposes to construct a learnable hypergraph to depict the

global dependencies between nodes on the interaction graph. To be
specific, the hyperstructure is factorized with two low-rank embedding
matrices to achieve model efficiency:

𝐻𝑢 = 𝐸𝑢 ⋅𝑊𝑢, 𝐻𝑣 = 𝐸𝑣 ⋅𝑊𝑣. (161)

13.4. Other graphs

Since there are a variety of recommendation scenarios, several
tailored designed graph structures have been proposed accordingly,
to better exploit the domain information from different scenarios. For
instance, CKE (Zhang, Yuan, Lian, Xie, & Ma, 2016) and MKR (Wang,
Zhang et al., 2019) introduce Knowledge graphs to enhance graph
recommendation. GSTN (Wang, Zhu et al., 2022), KBGNN (Ju, Qin
et al., 2022), DisenPOI (Qin et al., 2022) and Diff-POI (Qin, Wu, Ju,
Luo, & Zhang, 2023) propose to build geographical graphs based on the
distance between Point-of-Interests (POIs) to better model the locality
of users’ visiting patterns. TGSRec (Fan et al., 2021) and DisenCTR

(Wang et al., 2022) empower the user–item interaction graphs with
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temporal sampling between layers to obtain sequential information
from static bipartite graphs.

13.5. Summary

This section introduces the application of different kinds of graph
neural networks in recommender systems and can be summarized as
follows:

• Graph Constructions. There are multiple options for construct-
ing graph-structured data for a variety of recommendation tasks.
For instance, the user–item bipartite graphs reveal the high-
order collaborative similarity between users and items, and the
transition graph is suitable for encoding sequential information
in clicking history. These diversified graph structures provide
different views for node representation learning on users and
items, and can be further used for downstream ranking tasks.

• Challenges and Limitations. Though the superiority of graph-
structured data and GNNs against traditional methods has been
widely illustrated, there are still challenges unsolved. For ex-
ample, the computational cost of graph methods is normally
expensive and thus unacceptable in real-world applications. The
data sparsity and cold-started issue in graph recommendation
remains to be explored as well.

• Future Works. In the future, an efficient solution for applying
GNNs in recommendation tasks is expected. There are also some
attempts (Fan et al., 2021; Qin, Ju, Wu, Luo, & Zhang, 2024;
Wang, Qin et al., 2022) on incorporating temporal information
in graph representation learning for sequential recommendation
tasks.

14. Traffic analysis

Intelligent Transportation Systems (ITS) are essential for safe, re-
liable, and efficient transportation in smart cities, serving the daily
commuting and traveling needs of millions of people. To support ITS,
advanced modeling and analysis techniques are necessary, and Graph
Neural Networks (GNNs) are a promising tool for traffic analysis. GNNs
can effectively model spatial correlations, making them well-suited
for analyzing complex transportation networks. As such, GNNs have
garnered significant interest in the traffic domain for their ability to
provide insights into traffic patterns and behaviors (Li et al., 2024).

In this section, we first conclude the main GNN research direc-
tions in the traffic domain, and then we summarize the typical graph
construction processes in different traffic scenes and datasets. Finally,
we list the classical GNN workflows for dealing with tasks in traffic
networks. A summary is provided in Table 13.

14.1. Research directions in traffic domain

We summarize main GNN research directions in the traffic domain
as follows,

• Traffic Flow Forecasting. Traffic flow forecasting plays an in-
dispensable role in ITS (Dimitrakopoulos & Demestichas, 2010;
Ran & Boyce, 2012), which involves leveraging spatial–temporal
data collected by various sensors to gain insights into future
traffic patterns and behaviors. Classic methods, like autoregres-
sive integrated moving average (ARIMA) (Box & Pierce, 1970),
support vector machine (SVM) (Hearst, Dumais, Osuna, Platt, &
Scholkopf, 1998) and recurrent neural networks (RNN) (Connor,
Martin, & Atlas, 1994) can only model time series separately
without considering their spatial connections. To address this
issue, graph neural networks (GNNs) have emerged as a powerful
approach for traffic forecasting due to their strong ability of
33

modeling complex graph-structured correlations (Bui, Cho, & Yi, t
2021; Jiang & Luo, 2022; Li, Yu, Zhang and Xu, 2023; Oskarsson,
Sidén, & Lindsten, 2023; Rao et al., 2022; Xie et al., 2020; Zhao
et al., 2023).

• Trajectory Prediction. Trajectory prediction is a crucial task
in various applications, such as autonomous driving and traffic
surveillance, which aims to forecast future positions of agents
in the traffic scene. However, accurately predicting trajectories
can be challenging, as the behavior of an agent is influenced not
only by its own motion but also by interactions with surrounding
objects. To address this challenge, Graph Neural Networks (GNNs)
have emerged as a promising tool for modeling complex interac-
tions in trajectory prediction (Cao, Li, Ma and Tomizuka, 2021;
Mohamed, Qian, Elhoseiny, & Claudel, 2020; Sun, Jiang and Lu,
2020; Zhou et al., 2021). By representing the scene as a graph,
where each node corresponds to an agent and the edges capture
interactions between them, GNNs can effectively capture spatial
dependencies and interactions between agents. This makes GNNs
well-suited for predicting trajectories that accurately capture the
behavior of agents in complex traffic scenes.

• Traffic Anomaly Detection. Anomaly detection is an essential
support for ITS. There are lots of traffic anomalies in daily
transportation systems, for example, traffic accidents, extreme
weather and unexpected situations. Handling these traffic anoma-
lies timely can improve the service quality of public transporta-
tion. The main trouble of traffic anomaly detection is the highly
twisted spatial–temporal characteristics of traffic data. The cri-
teria and influence of traffic anomaly vary among locations and
times. GNNs have been introduced and achieved success in this
domain (Chen, Chen, Zhang, Yuan and Cheng, 2021; Deng &
Hooi, 2021; Deng, Lian, Huang, & Chen, 2022; Zhang et al.,
2022).

• Others. Traffic demand prediction targets at estimating the future
number of traveling at some location. It is of vital and practical
significance in the resource scheduling for ITS. By using GNNs,
the spatial dependencies of demands can be revealed (Yang,
Heppenstall, Turner, & Comber, 2020; Yao et al., 2018). What is
more, urban vehicle emission analysis is also considered in recent
work, which is closely related to environmental protection and
gains increasing researcher attention (Xu, Kang, Cao, & Li, 2020).

14.2. Traffic graph construction

14.2.1. Traffic graph
The traffic network is represented as a graph  = (𝑉 ,𝐸,𝐴), where

𝑉 is the set of 𝑁 traffic nodes, 𝐸 is the set of edges, and 𝐴 ∈ R𝑁×𝑁 is
n adjacency matrix representing the connectivity of 𝑁 nodes. In the
raffic domain, 𝑉 usually represents a set of physical nodes, like traffic
tations or traffic sensors. The features of nodes typically depend on the
pecific task. Take traffic flow forecasting as an example. The features
re the traffic flows, i.e., the historical time series of nodes. The traffic
low can be represented as a flow matrix 𝑋 ∈ R𝑁×𝑇 , where 𝑁 is the

number of traffic nodes and 𝑇 is the length of historical series, and 𝑋𝑛𝑡
denotes the traffic flow of node 𝑛 at time 𝑡. The goal of traffic flow
forecasting is to learn a mapping function 𝑓 to predict the traffic flow
during future 𝑇 ′ steps given the historical 𝑇 step information, which
can be formulated as follows:
[

𝑋∶,𝑡−𝑇+1, 𝑋∶,𝑡−𝑇+2,… , 𝑋∶,𝑡;
] 𝑓
⟶

[

𝑋∶,𝑡+1, 𝑋∶,𝑡+2,… , 𝑋∶,𝑡+𝑇 ′
]

. (162)

4.2.2. Graph construction
Constructing a graph to describe the interactions among traffic

odes, i.e., the design of the adjacency matrix 𝐴, is the key part
f traffic analysis. The mainstream designs can be divided into two
ategories, fixed matrix and dynamic matrix.
Fixed matrix. Lots of works assume that the correlations among
raffic nodes are fixed and constant over time, and they design a fixed
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Table 13
Summary of graph models for traffic analysis.

Models Tasks Adjacency matrices GNN types Temporal modules

STGCN (Yu, Yin, & Zhu, 2017) Traffic flow forecasting Fixed matrix GCN TCN
DCRNN (Li, Yu, Shahabi and Liu, 2017) Traffic flow forecasting Fixed matrix ChebNet RNN
AGCRN (Bai, Yao, Li, Wang, & Wang, 2020) Traffic flow forecasting Dynamic matrix GCN GRU
ASTGCN (Guo, Lin, Feng, Song, & Wan, 2019) Traffic flow forecasting Fixed matrix GAT Attention&TCN
GraphWaveNet (Wu, Pan, Long, Jiang and Zhang, 2019) Traffic flow forecasting Dynamic matrix GCN Gated-TCN
STSGCN (Song, Lin, Guo and Wan, 2020) Traffic flow forecasting Dynamic matrix GCN Cropping
LSGCN (Huang, Huang, Liu, Dai, & Kong, 2020) Traffic flow forecasting Fixed matrix GAT GLU
GAC-Net (Song, Ming, Hu, Niu and Gao, 2020) Traffic flow forecasting Fixed matrix GAT Gated-TCN
STGODE (Fang, Long, Song, & Xie, 2021) Traffic flow forecasting Fixed matrix Graph ODE TCN
STG-NCDE (Choi, Choi, Hwang, & Park, 2022) Traffic flow forecasting Dynamic matrix GCN NCDE
DDGCRN (Weng et al., 2023) Traffic flow forecasting Dynamic matrix GAT RNN
MS-ASTN (Wang, Miao, Chen and Huang, 2020) OD flow forecasting OD matrix GCN LSTM
Social-STGCNN (Mohamed et al., 2020) Trajectory prediction Fixed matrix GCN TXP-CNN
RSBG (Sun, Jiang et al., 2020) Trajectory prediction Dynamic matrix GCN LSTM
ATG (Yuan, Ding, Wang, Jin, & Li, 2022) Trajectory prediction Fixed matrix GODE NODE
STGAN (Deng et al., 2022) Anomaly detection Fixed matrix GCN GRU
DMVST-VGNN (Jin, Xi, Sha, Feng and Huang, 2020) Traffic demand prediction Fixed matrix GAT GLU
DST-GNN (Huang et al., 2022) Traffic demand prediction Dynamic matrix GCN Transformer
TC-SGC (Pan, Hou, & Li, 2022) Traffic speed prediction Fixed matrix GCN GRU
t
t
c
t
b

e
c
t
d

𝑋

w
r

and pre-defined adjacency matrix to capture the spatial correlation.
Here we list several common choices of fixed adjacency matrix.

The connectivity matrix is the most natural construction way. It
elies on the support of road map data. The element of the connectivity
atrix is defined as 1 if two nodes are physically connected and 0

therwise. This binary format is convenient to construct and easy to
nterpret.

The distance-based matrix is also a common choice, which shows
the connection between two nodes more precisely. The elements of
the matrix are defined as the function of distance between two nodes
(driving distance or geographical distance). A typical way is to use the
threshold Gaussian function as follows,

𝐴𝑖𝑗 =

{

exp(−
𝑑2𝑖𝑗
𝜎2

), 𝑑𝑖𝑗 < 𝜖
0, 𝑑𝑖𝑗 > 𝜖

, (163)

here 𝑑𝑖𝑗 is the distance between node 𝑖 and 𝑗, and 𝜎 and 𝜖 are two
hyperparameters to control the distribution and the sparsity of the
matrix.

Another kind of fixed adjacency matrix is the similarity-based
matrix. In fact, a similarity matrix is not an adjacency matrix to some
extent. It is constructed according to the similarity of two nodes, which
means the neighbors in the similarity graph may be far away in the real
world. There are various similarity metrics. For example, many works
measure the similarity of two nodes by their functionality, e.g., the
distribution of surrounding points of interest (POIs). The assumption
behind this is that nodes that share similar functionality may share
similar traffic patterns. We can also define the similarity through the
historical flow patterns. To compute the similarity of two-time series, a
common practice is to use Dynamic Time Wrapping (DTW) algorithm
(Müller, 2007), which is superior to other metrics due to its sensitivity
to shape similarity rather than point-wise similarity. Specifically, given
two time series 𝑋 = (𝑥1, 𝑥2,… , 𝑥𝑛) and 𝑌 = (𝑦1, 𝑦2,… , 𝑦𝑛), DTW is a
dynamic programming algorithm defined as

𝐷(𝑖, 𝑗) = 𝑑𝑖𝑠𝑡(𝑥𝑖, 𝑦𝑗 ) + min (𝐷(𝑖 − 1, 𝑗), 𝐷(𝑖, 𝑗 − 1), 𝐷(𝑖 − 1, 𝑗 − 1)) , (164)

where 𝐷(𝑖, 𝑗) represents the shortest distance between subseries 𝑋 =
(𝑥1, 𝑥2,… , 𝑥𝑖) and 𝑌 = (𝑦1, 𝑦2,… , 𝑦𝑗 ), and 𝑑𝑖𝑠𝑡(𝑥𝑖, 𝑦𝑗 ) is some distance
metric like absolute distance. As a result, 𝐷𝑇𝑊 (𝑋, 𝑌 ) = 𝐷(𝑛, 𝑛) is set as
the final distance between 𝑋 and 𝑌 , which better reflects the similarity
of the two-time series compared to the Euclidean distance.

Dynamic matrix. The pre-defined matrix is sometimes unavail-
able and cannot reflect complete information of spatial correlations.
The dynamic adaptive matrix is proposed to solve the issue. The
dynamic matrix is learned from input data automatically. To achieve
the best prediction performance, the dynamic matrix will manage to
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t

infer the hidden correlations among nodes, more than those physical
connections.

A typical practice is learning adjacency matrix from node embed-
dings (Bai et al., 2020). Let 𝐸𝐴 ∈ R𝑁×𝑑 be a learnable node embedding
dictionary, where each row of 𝐸𝐴 represents the embedding of a node,
𝑁 and 𝑑 denote the number of nodes and the dimension of embeddings
respectively. The graph adjacency matrix is defined as the similarities
among node embeddings,

𝐷− 1
2𝐴𝐷− 1

2 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥
(

𝑅𝑒𝐿𝑈 (𝐸𝐴 ⋅ 𝐸𝑇𝐴 )
)

, (165)

where 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 function is to perform row-normalization, and
𝐷− 1

2𝐴𝐷− 1
2 is the Laplacian matrix.

14.3. Typical GNN frameworks in traffic domain

Spatial Temporal Graph Convolution Network (STGCN) (Yu et al.,
2017). STGCN is a pioneering work in the spatial–temporal GNN do-
main. It utilizes graph convolution to capture spatial features, and
deploys a gated causal convolution to extract temporal patterns. Specif-
ically, the graph convolution and temporal convolution are defined as
follows,

𝛩 ∗ 𝑥 = 𝜃(𝐼𝑛 +𝐷
− 1

2𝐴𝐷− 1
2 )𝑥 = 𝜃(�̃�− 1

2 �̃��̃�− 1
2 )𝑥, (166)

𝛤 ∗ 𝑦 = 𝑃 ⊙ 𝜎(𝑄), (167)

where 𝛩 is the parameter of graph convolution, 𝑃 and 𝑄 are the outputs
of a 1-d convolution along the temporal dimension. The sigmoid gate
𝜎(𝑄) controls how the states of 𝑃 are relevant for discovering hidden
emporal patterns. In order to fuse features from both spatial and
emporal dimension, the spatial convolution layer and the temporal
onvolution layer are combined to construct a spatial temporal block
o jointly deal with graph-structured time series, and more blocks can
e stacked to achieve a more scalable and complex model.

Diffusion Convolutional Recurrent Neural Network (DCRNN) (Li, Yu
t al., 2017). DCRNN is a representative solution combining graph
onvolution networks with recurrent neural networks. It captures spa-
ial dependencies by bidirectional random walks on the graph. The
iffusion convolution operation on a graph is defined as:

∗ 𝑓𝜃 =
𝐾
∑

𝑘=0

(

𝜃𝑘,1(𝐷−1
𝑂 𝐴)𝑘 + 𝜃𝑘,2(𝐷−1

𝐼 𝐴)𝑘
)

𝑋, (168)

here 𝜃 are parameters for the convolution filter, and 𝐷−1
𝑂 𝐴,𝐷−1

𝐼 𝐴
epresent the bidirectional diffusion processes respectively. In term of
emporal dependency, DCRNN utilizes Gated Recurrent Units (GRU),
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and replace the linear transformation in the GRU with the diffusion
convolution as follows,

𝑟(𝑡) = 𝜎(𝛩𝑟 ∗ [𝑋(𝑡),𝐻 (𝑡−1)] + 𝑏𝑟), (169)

𝑢(𝑡) = 𝜎(𝛩𝑢 ∗ [𝑋(𝑡),𝐻 (𝑡−1)] + 𝑏𝑢), (170)

𝐶 (𝑡) = tanh(𝛩𝐶 ∗ [𝑋(𝑡), (𝑟(𝑡) ⊙𝐻 (𝑡−1)] + 𝑏𝑐 )), (171)

𝐻 (𝑡) = 𝑢(𝑡) ⊙𝐻 (𝑡−1) + (1 − 𝑢(𝑡))⊙ 𝐶 (𝑡), (172)

where 𝑋(𝑡),𝐻 (𝑡) denote the input and output at time 𝑡, 𝑟(𝑡), 𝑢(𝑡) are the
reset and update gates respectively, and 𝛩𝑟, 𝛩𝑢, 𝛩𝐶 are parameters of
convolution filters. Moreover, DCRNN employs a sequence-to-sequence
architecture to predict future series. Both the encoder and the decoder
are constructed with diffusion convolutional recurrent layers. The his-
torical time series are fed into the encoder and the predictions are
generated by the decoder. The scheduled sampling technique is utilized
to solve the discrepancy problem between training and test distribution.

Adaptive Graph Convolutional Recurrent Network (AGCRN) (Bai et al.,
2020). The focuses of AGCRN are two-fold. On the one hand, it argues
that the temporal patterns are diversified and thus parameter-sharing
for each node is inferior; on the other hand, it proposes that the
pre-defined graph may be intuitive and incomplete for the specific
prediction task. To mitigate the two issues, it designs a Node Adaptive
Parameter Learning (NAPL) module to learn node-specific patterns for
each traffic series, and a Data Adaptive Graph Generation (DAGG)
module to infer the hidden correlations among nodes from data and
to generate the graph during training. Specifically, the NAPL module is
defined as follows,

𝑍 = (𝐼𝑛 +𝐷
− 1

2𝐴𝐷− 1
2 )𝑋𝐸𝑊 + 𝐸𝑏, (173)

here 𝑋 ∈ R𝑁×𝐶 is the input feature, 𝐸 ∈ R𝑁×𝑑 is a node embedding
ictionary, 𝑑 is the embedding dimension (𝑑 ≪ 𝑁), 𝑊 ∈ R𝑑×𝐶×𝐹 is
weight pool. The original parameter 𝛩 in the graph convolution is

eplaced by the matrix production of 𝐸𝑊, and the same operation is
pplied for the bias. This can help the model to capture node-specific
atterns from a pattern pool according to the node embedding. The
AGG module has been introduced in (165). The whole workflow of
GCRN is formulated as follows,

�̃� = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑅𝑒𝐿𝑈 (𝐸𝐸𝑇 )), (174)

𝑧(𝑡) = 𝜎(�̃�[𝑋(𝑡),𝐻 (𝑡−1)]𝐸𝑊𝑧 + 𝐸𝑏𝑧), (175)

𝑟(𝑡) = 𝜎(�̃�[𝑋(𝑡),𝐻 (𝑡−1)]𝐸𝑊𝑟 + 𝐸𝑏𝑟), (176)
̂ (𝑡) = tanh(�̃�[𝑋, 𝑟(𝑡) ⊙𝐻 (𝑡−1)]𝐸𝑊ℎ + 𝐸𝑏ℎ), (177)
(𝑡) = 𝑧(𝑡) ⊙𝐻 (𝑡−1) + (1 − 𝑧(𝑡))⊙ �̂� (𝑡). (178)

Attention Based Spatial-Temporal Graph Convolutional Networks (AST-
CN) (Guo et al., 2019). ASTGCN introduces two kinds of attention
echanisms into spatial–temporal forecasting, i.e., spatial attention

nd temporal attention. Spatial attention is defined as the following,

= 𝑉𝑆𝜎
(

(𝑋𝑊1)𝑊2(𝑊3𝑋)𝑇 + 𝑏𝑆
)

, (179)

′
𝑖,𝑗 =

exp(𝑆𝑖,𝑗 )
∑𝑁
𝑗=1 exp(𝑆𝑖,𝑗 )

, (180)

where 𝑆′ is the attention score, and 𝑊1,𝑊2,𝑊 3 are learnable parame-
ers. A similar construction is applied for temporal attention. Besides
he attention mechanism, ASTGCN also introduces multi-component
usion to enhance the prediction ability. The input of ASTGCN consists
f three parts, the recent segments, the daily-periodic segments and
he weekly-periodic segment. The three segments are processed by the
ain model independently and fused with learnable weights at last:

= 𝑊ℎ ⊙ 𝑌ℎ +𝑊𝑑 ⊙ 𝑌𝑑 +𝑊𝑤 ⊙ 𝑌𝑤, (181)

here 𝑌ℎ, 𝑌𝑑 , 𝑌𝑤 denotes the predictions of different segments respec-
ively.
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5. Summary

This section introduces graph models for traffic analysis and we
rovide a summary as follows:

• Techniques. Traffic analysis is a classical spatial temporal data
mining task, and graph models play a vital role for extracting spa-
tial correlations. Typical procedures include graph construction,
spatial dimension operations, temporal dimension operations and
information fusion. There are multiple implementations for each
procedure, each implementation has its strengths and weaknesses.
By combining different implementations, various kinds of traffic
analysis models can be created. Choosing the right combination of
procedures and implementations is critical for achieving accurate
and reliable traffic analysis results.

• Challenges and Limitations. Despite the remarkable success of
graph representation learning in traffic analysis, there are still
several challenges that need to be addressed in current studies.
Firstly, external data, such as weather and calendar information,
are not well-utilized in current models, despite their close relation
to traffic status. The challenge lies in how to effectively fuse het-
erogeneous data to improve traffic analysis accuracy. Secondly,
the interpretability of models has been underexplored, which
could hinder their deployment in real-world transportation sys-
tems. Interpretable models are crucial for building trust and un-
derstanding among stakeholders, and more research is needed to
develop models that are both accurate and interpretable. Address-
ing these challenges will be critical for advancing the state-of-the-
art in traffic analysis and ensuring the deployment of effective
transportation systems.

• Future Works. In the future, we anticipate that more data sources
will be available for traffic analysis, enabling a more compre-
hensive understanding of real-world traffic scenes. From data
collection to model design, there is still a lot of work to be
done to fully leverage the potential of GNNs in traffic analy-
sis. In addition, we expect to see more creative applications of
GNN-based traffic analysis, such as designing traffic light control
strategies, which can help to improve the efficiency and safety of
transportation systems. To achieve these goals, it is necessary to
continue advancing the development of GNN-based models and
exploring new ways to fuse diverse data sources. Additionally,
there is a need to enhance the interpretability of models and
ensure their applicability to real-world transportation systems.
We believe that these efforts will contribute to the continued
success of traffic analysis and the development of intelligent
transportation systems.

16. Discussion

In this section, we systematically compare the strengths and weak-
nesses of different components within both GNN architectures and
learning paradigms. This comprehensive exploration aims to shed light
on how these components can be harnessed to better serve the field of
deep graph representation learning.

16.1. GNN architectures

Here, we summarize the advantages and disadvantages of different
components in GNN architectures in Table 14.

Graph Convolutions

• Advantages: (i) Local Information Aggregation: Graph convolu-
tions excel at capturing intricate local neighborhood information,
making them highly effective for tasks where node representa-

tions heavily depend on nearby nodes. (ii) Parameter Sharing:
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Table 14
Comparison of different components in GNN architectures.

Method Advantages Disadvantages

Graph
convolutions

Local information aggregation,
parameter sharing

Limited global context,
sensitivity to graph structure

Graph kernel
neural networks

Kernel trick benefits,
embedding similarity

Computational complexity,
limited scalability

Graph pooling Hierarchical representation,
dimensionality reduction

Information loss,
pooling strategy sensitivity

Graph
transformer

Attention mechanism,
parallelization

Computational intensity,
limited interpretability

Shared weights in graph convolutions enable the model to gen-
eralize robustly across different regions of the graph, enhancing
efficiency.

• Disadvantages: (i) Limited Global Context: One limitation lies
in the potential struggle to capture long-range dependencies in
graphs, leading to information loss on more distant nodes. (ii) Sen-
sitivity to Graph Structure: The performance of graph convolutions
can be influenced by irregularities in graph structures, impacting
their adaptability.

Graph Kernel Neural Networks

• Advantages: (i) Kernel Trick Benefits: Leveraging kernel meth-
ods, graph kernel neural networks effectively learn on structured
data, providing flexibility in capturing complex relationships. (ii)
Embedding Similarity: These networks encode similarity measures
between nodes, capturing nuanced graph structure information
crucial for certain applications.

• Disadvantages: (i) Computational Complexity: Graph kernel meth-
ods may face challenges related to computational expense, par-
ticularly when dealing with large graphs. (ii) Limited Scalability:
Scalability issues arise when extending these methods to graphs
of varying sizes and structures.

Graph Pooling

• Advantages: (i) Hierarchical Representation: Graph pooling con-
tributes to creating hierarchical representations, enabling the
model to capture information at multiple levels of granularity,
fostering a more comprehensive understanding. (ii) Dimensionality
Reduction: Effectively reduces computational load by downsam-
pling the graph, making it more computationally tractable.

• Disadvantages: (i) Information Loss: Aggregating information
during pooling may lead to a loss of fine-grained details, po-
tentially impacting the model’s performance on certain down-
stream tasks. (ii) Pooling Strategy Sensitivity: The choice of pooling
strategy may significantly affect performance, emphasizing the
importance of thoughtful strategy selection.

Graph Transformer

• Advantages: (i) Attention Mechanism: Graph transformers lever-
age attention mechanisms to capture global dependencies and
relationships effectively, enabling the model to consider the entire
graph when making predictions. (ii) Parallelization: The attention
mechanism allows for parallelization of computations, enhancing
computational efficiency, particularly on hardware optimized for
parallel processing.

• Disadvantages: (i) Computational Intensity: Transformers can be
computationally intensive, especially with large graphs, requiring
careful consideration of resource constraints. (ii) Limited Inter-
pretability: The attention mechanism, while powerful, may lack
interpretability, making it challenging to understand the model’s
decision-making process.
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16.2. Learning paradigms

Here, we summarize the advantages and disadvantages of different
components in learning paradigms in Table 15.

Supervised/Semi-Supervised Learning on Graphs

• Advantages: (i) Utilization of Labeled Data: Supervised learning
effectively utilizes labeled data for direct prediction, while semi-
supervised learning leverages both labeled and unlabeled data,
providing a flexible approach. (ii) Task-Specific Objectives: Clear
task objectives guide the learning process, allowing for precise
model training.

• Disadvantages: (i) Data Dependency: These paradigms heavily
rely on the availability of labeled data, potentially limiting their
applicability in scenarios with sparse labels. (ii) Generalization
Challenges: Generalizing to unseen nodes or graphs can be chal-
lenging, particularly in dynamic or evolving graph structures.

Graph Self-Supervised Learning

• Advantages: (i) Data Efficiency: Utilizes unlabeled data for pre-
training, making efficient use of available resources and poten-
tially reducing the need for extensive labeled datasets. (ii) Trans-
ferability: Pre-trained models can be fine-tuned for downstream
tasks, enhancing generalization across various applications.

• Disadvantages: (i) Pretext Task Design: The effectiveness of self-
supervised learning depends on the design of pretext tasks, requir-
ing careful consideration of task relevance. (ii) Computationally
Intensive Pre-training: The pre-training phase can be computation-
ally intensive, especially when dealing with large and complex
graphs.

Graph Structure Learning

• Advantages: (i) Incorporation of Inherent Graph Properties: Focuses
on exploiting the intrinsic structure of graphs, enhancing repre-
sentation learning by considering the unique properties of graph
data. (ii) Robustness to Label Sparsity: Less dependent on labeled
data, making it suitable for scenarios with limited labels, and
potentially more robust in the face of sparse data.

• Disadvantages: (i) Limited Task Specificity: May not be inher-
ently task-specific and might not outperform task-tailored meth-
ods on certain applications that demand specialized representa-
tions. (ii) Sensitivity to Graph Noises: Performance may degrade in
the presence of noisy or irregular graph structures, necessitating
preprocessing steps for noise reduction.

17. Future directions

In this section, we outline some prospective future directions of
deep graph representation learning based on the above cornerstone,
taxonomy, and real-world applications. We also outline a few more
directions closer to the theoretical side.

17.1. Application-inspired directions

Since deep graph representation has been widely used these years,
many problems have been solved while many others have arisen.
While we observe many real-world applications, we conclude plenty of
challenging problems that are not yet solved. Here in this subsection,
we outline a few.

17.1.1. Fairness in graph representation learning
One common aspect to care about is the fairness concern. Fairness,

by definition, refers to the protected features that do not infect the
outcome. In general, a data set’s fairness refers to that the protected
features are not influencing the data distribution. A model’s fairness, on

the other hand, refers to the concern that the output of our algorithms
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Table 15
Comparison of different components in learning paradigms.

Method Advantages Disadvantages

Supervised/Semi-supervised learning
on graphs

Utilization of labeled data,
task-specific objectives

Data dependency,
generalization challenges

Graph self-supervised learning Data efficiency,
transferability

Pretext task design,
computationally intensive pre-training

Graph structure learning Incorporation of inherent graph properties,
robustness to label sparsity

Limited task specificity,
sensitivity to graph noises
should not be affected by certain protected features. The protected
features can be race, gender, etc.

Similar to the fairness challenge in many other fields of machine
learning (Chouldechova & Roth, 2018; Mehrabi, Morstatter, Saxena,
Lerman, & Galstyan, 2021), graph representation learning can easily
suffer from bias from the data sets that inherit stereotypes from the
real world. As graph representation has become increasingly popular
in recent years, researchers are getting fairness into their sights (Dong,
Kang, Tong, & Li, 2021; Ma, Deng, & Mei, 2021).

Different from i.i.d. data, graph data contains a lot of relational in-
formation that would bring about new challenges to bias detection (Dai
& Wang, 2021; Dong, Liu, Jalaian, & Li, 2022). Besides, another chal-
lenge is that better algorithms are needed to prevent the model from
inheriting the input data’s biases (Dong et al., 2022; Ma et al., 2021).
Researchers have been working on various fairness notions regarding
graph-representation learning. Such as group fairness, individual fair-
ness, and application-specific fairness (Dong, Ma, Wang, Chen, & Li,
2023). Application-specific fairness mostly refers to that in the field of
recommender systems (Fu et al., 2020; Li, Chen, Fu, Ge and Zhang,
2021) and knowledge graphs (Fisher, Palfrey, Christodoulopoulos, &
Mittal, 2019).

Fairness concern in graph mining is crucial in real-world applica-
tions. Researchers have already found significant gender and ethnic
group bias in existing recommender systems (Lambrecht & Tucker,
2019; Sweeney, 2013). Not to mention more sensitive domains of appli-
cations, such as loan approval and criminal justice (Agarwal, Lakkaraju,
& Zitnik, 2021; Sarkar & Alvari, 2020).

17.1.2. Robustness in graph representation learning
Real-world data is always noisy, containing many different kinds of

disruptions, and does not end up being a perfectly normal distribution.
In the worst case, some noise can potentially prevent a model from
learning the correct knowledge. Better robustness refers to the model
having a better chance of reaching a relatively good and stable outcome
while input is being manipulated. If a model is not robust enough,
the performance cannot be relied on. Therefore, robustness is another
important yet challenging consideration in deep graph representation
learning. It is especially true when given that researchers have already
found that existing graph representation learning models are vulnerable
to adversarial data samples in general (Bojchevski & Günnemann, 2019;
Chen et al., 2020; Wang et al., 2022; Yuan et al., 2023, 2023; Zügner
& Günnemann, 2020).

Again, similar to many other machine learning approaches that aim
at solving real-world problems (Carlini & Wagner, 2017), improving
the robustness of deep graph representation models is a nontrivial
direction. Either enhancing the models’ robustness or conducting ad-
versarial attacks to challenge the robustness of graph representations,
are promising directions to go for Geisler et al. (2021), Günnemann
(2022) and Tang et al. (2020).

There have been studies on enhancing graph neural networks’ ro-
bustness, from different perspectives (Chen, Li et al., 2020; Xu et al.,
2021). There they introduced some metrics to measure the robustness
of graph models, such as classification margin, and adversarial gap (Xu,
Chen et al., 2021).

One of the most common solutions to enhance robustness is to avoid
using malicious samples. Starting from the preprocessing steps, some
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researchers have already studied how to get rid of the poisoned data.
For example, Xu, Wang, Lal, Gunter and Li (2023) worked on sampling
sub-graphs from the poisoned training data set and then detected
outliers so that they could filter the adversarial edges. In particular, for
example, since some attacker models are known as adding high-rank
perturbations to data, in order to get rid of those attacks, Entezari, Al-
Sayouri, Darvishzadeh, and Papalexakis (2020) ‘‘vaccinate’’ data sets
in pre-processing steps, by using low-rank approximation matrices.
Some other works have a more general measurement of which edges
to eliminate, such as using the Jaccard Similarity score to measure an
edge’s end nodes and remove the suspicious edges whose score is not
high enough (Wu et al., 2019).

Moving one step ahead, it is natural to consider conducting anomaly
detection. There has already been a lot of anomaly detection work done
on static graphs (Jiang et al., 2019; Wang et al., 2021). These works are
of great importance since many traditional anomaly detection methods
fail to take link connections into consideration and behave poorly on
graph data. Nonetheless, anomaly detection works on dynamic graphs
are much fewer (Du, Li, Zheng, & Srikumar, 2017). Robustness on
dynamic graphs has been of increasing importance in recent years (Arp
et al., 2022) and is also worth being studied.

However, despite the efforts to eliminate malicious samples at an
early stage, adversarial attacks can still easily reach the training stage.
There we need more careful design of the model to make it robust
when facing poisoned data directly on its own. Some researchers are
focusing on adversarial training, by either utilizing adversarial mini-
max objectives (Jin et al., 2021; Li, Jin, Xu and Tang, 2020), or adding
adversarial samples intentionally so as to learn how to deal with them
Deng, Dong, and Zhu (2019), Yang, Liang and Zhang (2022) and Zhang,
Jia, Wang and Gong (2021). Some other researchers also propose to
relieve the threat of poisoned data by using a variance-based attention
mechanism, under the assumption that fake links and nodes should
have higher uncertainty in prediction results (Zhu, Zhang, Cui, & Zhu,
2019).

17.1.3. Adversarial reprogramming
With the emergence of pre-trained graph neural network models

(Hu, Dong, Wang, Chang and Sun, 2020; Hu et al., 2019; Qiu, Chen
et al., 2020), introducing adversarial reprogramming (Elsayed, Good-
fellow, & Sohl-Dickstein, 2018; Zheng et al., 2021) into deep graph
representation learning becomes another possibility as well. The major
difference between adversarial reprogramming and adversarial attack
(Huang, Papernot, Goodfellow, Duan, & Abbeel, 2017; Thys, Van Ranst,
& Goedemé, 2019; Zhao, Yan and Wei, 2020) lies in whether or not
there is a particular target after putting some adversarial samples
against the model. An adversarial attack requires some small modifi-
cations to the input data samples. An adversarial attack is considered
successful once the result is influenced. However, under the adversarial
reprogramming settings, the task succeeds if and only if the influenced
results can be used for another desired task.

This is to say, without changing much on the model’s inner structure
or fine-tuning its parameters, we might be able to use some pre-
trained graph models for some other tasks that were not planned to be
solved by these models in the first place. In other deep learning fields,

adversarial reprogramming problems are normally solved by having



Neural Networks 173 (2024) 106207W. Ju et al.
the input carefully encoded, and output cleverly mapped. On some
graph data sets, such as chemical data sets and biology data sets, pre-
trained models are already available. Therefore, there is a possibility
that adversarial reprogramming could be applied in the future.

17.1.4. Generalizing to out of distribution data
In order to perform better on unobserved data sets, in the ideal

case, the representation we learn should better be able to generalize
to some out-of-distribution (OOD) data. Being out-of-distribution is not
identical to being misclassified. The misclassified samples are coming
from the same distribution of the training data but the model fails to
classify it correctly, while out-of-distribution refers to the case where
the sample comes from a distribution other than the training data
(Hendrycks & Gimpel, 2016; Luo, Zhao, Qin, Ju and Zhang, 2023).
Being able to generalize to out-of-distribution data will greatly enhance
a model’s reliability in real life. And studying out-of-distribution gen-
eralized graph representation (Li, Wang, Zhang, & Zhu, 2022a) is an
opening field (Li, Wang, Zhang, & Zhu, 2022b). This is partly because
of, currently, even the problem of detecting out-of-distribution data
samples is not fully conquered yet (Hendrycks & Gimpel, 2016).

In order to do something on the out-of-distribution data samples, we
need to detect which samples belong to this type first. Detecting OOD
samples itself is somewhat similar to novelty detection, or outlier de-
tection problems (Pimentel, Clifton, Clifton, & Tarassenko, 2014). Their
major difference is whether or not a well-performed model conducting
the original tasks remains part of our goal. Novelty detection cares only
about figuring out who are the outliers; OOD detection requires our
model to detect the outliers while keeping the performance unharmed
at the same time.

17.1.5. Interpretability in graph representation learning
Interpretability concern is another limitation that exists when re-

searchers try to apply deep graph representation learning to some of
the emerging application fields. For instance, in the field of computa-
tional social science, researchers are urging more efforts in integrating
explanation and prediction together (Hofman et al., 2021). So as drug
discovery, being able to explain why such a structure is chosen in-
stead of another option, is very important (Jiménez-Luna, Grisoni, &
Schneider, 2020). Generally speaking, neural networks are completely
in black-box mode to human knowledge without making efforts to
make them interpretable and explainable. Although more and more
tasks are being handled by deep learning methods in many fields, the
tool remains mysterious to most human beings. Even an expert in deep
learning cannot easily explain to you how the tasks are performed and
what the model has learned from the data. This situation reduces the
trustworthiness of the neural network models, prevents a human from
learning more from the models’ results, and even limits the potential
improvements of the models themselves, without sufficient feedback to
human beings.

Seeking for better interpretability is not only some personal interests
of companies and researchers, in fact, as more and more ethical con-
cerns arose since more and more black-box decisions were made by AI
algorithms, interpretability has become a legal requirement (Goodman
& Flaxman, 2017).

Various approaches have been applied, serving the goal of better
interpretability (Zhang, Tiňo, Leonardis and Tang, 2021). There we find
existing works that provide either ad-hoc explanations after the results
come out, or those actively change the model structure to provide better
explanations; explanations by providing similar examples, highlighting
some attributes to the input features, by making sense of some hidden
layers and extract semantics from them, or by extracting logical rules;
we also see local explanations that explain some particular samples,
global explanations that explain the network as a whole, or hybrid.
Most of those existing directions make sense in a graph representation
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learning setting.
Not a consensus has been reached on what are the best methods of
making a model interpretable. Researchers are still actively exploring
every possibility, and thus there are plenty of challenges and interesting
topics in this direction.

17.1.6. Causality in graph representation learning
Most of the existing studies (Wu et al., 2020; Zhou, Cui et al.,

2020) on graph representation learning is good at handling predictive
(i.e. node classification, graph classification, link prediction) or descrip-
tive (e.g. shortest path, centrality) tasks on static graphs. However,
graph data, such as social networks, and citation networks, can change
over time. To analyze their dynamic features, there is an emerging need
to analyze causality on graphs. That is to say, apply some treatment to
the system, and predict the following outcome.

In recent years, there have been increasing research works focusing
on combining causality and machine learning models (Hu & Li, 2021;
Luo et al., 2023; Madumal, Miller, Sonenberg, & Vetere, 2020; Richens,
Lee, & Johri, 2020). It is widely believed that making good use of
causality will help models gain higher performances. However, finding
the right way to model causality in many real-world scenarios remains
challenging. In real-world data sets, there usually exist unobserved
confounders (i.e. the variables that affect both treatment assignment
and outcome). To mitigate the confounder bias, most of the causality
models, such as TARNet (treatment-agnostic representation network)
which learns the representation of confounders, and CFR (counter-
factual regression) which uses representation balancing techniques to
minimize the distribution distance between the confounders’ represen-
tations of the treatment and controlled groups (Shalit, Johansson, &
Sontag, 2017), are built upon strong ignorability assumption, meaning
that there is no other confounder except for those who are already
included in the observed features (Ma & Li, 2022). On the other hand,
models such as CEVAE (causal effect variational autoencoder) did not
rely on the strong ignorability assumption. Instead, it assumes that it
can infer the hidden confounders from the observed features (Louizos
et al., 2017).

In particular, graph data is especially challenging for causal infer-
ence, due to the following few reasons (Ma & Li, 2022): (1) multi-
modality of the data; (2) non-neglectable hidden confounders; (3)
complicated forms e.g. dynamic graphs; (4) network inference among
individuals that no longer fulfill the assumptions of many traditional
causal effect models; (5) graph-structured treatment.

Something to note is that the most common kind of graph that
comes along the causal study, called ‘‘causal graph’’, is not necessarily
identical to the kind of graphs we are studying in deep graph repre-
sentation learning. Causal graphs are the kind of graphs whose nodes
are factors and links represent causal relations. Up till now, they are
among the most reliable tools for causal inference study. Traditionally,
causal graphs are defined by human experts. Recent works have shown
that neural networks can help with scalable causal graph generation
(Xu, Huang and Yoo, 2019). From this perspective, the story can be
the other side around: besides using causal relations to enhance graph
representation learning, it is also possible to use graph representation
learning strategies to help with causal study. For example, a knowledge
graph can be used to diagnose the root cause of performance anomaly
in cloud applications (Qiu, Du, Yin, Zhang and Qian, 2020). Many
researchers have already worked on mining the causality in graph-
structured data and found this direction appealing (Guo, Li, & Liu,
2020; Ma, Dong, Huang, Mietchen, & Li, 2022).

17.1.7. Emerging application fields
Besides the above-mentioned directions solving existing challenges

in the deep learning world, there are many emerging fields of applica-
tion that naturally come along with graph-structured data.

For instance, the emerging fields of social network analysis that
help with traditional social science or political science studies, and

drug discovery that helps with medical science. Due to the nature of
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the data, such as the social network interactions (i.e. follow, retweet,
reply), and drug molecule structures (i.e. atoms and bounds in between
them), can be easily depicted as graph-structured data. Therefore, deep
graph representation learning has much to do in these fields (Abbas,
2021; Gaudelet et al., 2021; Yang et al., 2023; Zhu, 2022).

Some basic problems on the social network are easily solved using
graph representation learning strategies. Those basic problems include
node classification, link prediction, graph classification, and so on. In
practice, those problem settings could refer to real-world problems such
as ideology prediction, interaction prediction, analyzing a social group,
etc. However, social network data typically has many unique features
that could potentially stop the general-purposed models from perform-
ing well. For instance, social media data can be sparse, incomplete,
and can be extremely imbalanced (Zhao, Zhang and Wang, 2021). On
the one hand, social media platforms themselves never have a clear
and consistent topic. On the other hand, people have clear goals when
studying social media data, such as controversy detection (Benslimane,
Azé, Bringay, Servajean, & Mollevi, 2022), rumor detection (Hamidian
& Diab, 2019; Takahashi & Igata, 2012), misinformation and dis-
information detection (Di Domenico, Sit, Ishizaka, & Nunan, 2021), or
studying the dynamics of the system (Kipf, Fetaya, Wang, Welling, &
Zemel, 2018; Luo et al., 2023, 2023). The real-world social media data
is naturally unlabeled, making even data annotation (i.e. labeling) itself
a challenging task to deal with. There are still a lot of open quests to be
conquered, which deep graph representation learning can help with.

As for drug discovery, researchers have some interest in other
perspectives beyond simply proposing a set of potentially functional
structures, which is widely seen today. The other perspectives in-
clude having more interpretable results from the model’s proposals
(Jiménez-Luna et al., 2020; Preuer, Klambauer, Rippmann, Hochreiter,
& Unterthiner, 2019), and considering synthetic accessibility (Xie et al.,
2021). These directions are important, in answer to some doubt on
AI from the society (Goodman & Flaxman, 2017), as well as from
the tradition of chemistry studies (Schneider et al., 2020). Similar to
the challenges we faced when combining social science and neural
networks, chemical science would also prefer the black-box AI models
to be interpretable instead. Some chemical scientists would also prefer
AI tools to provide them with synthetic routes instead of the target-
ing structure itself. In practice, proposing new molecule structures is
usually not the bottleneck, but synthesizing is. There are already some
existing works focusing on conquering this problem (Empel & Koenigs,
2019; Ishida, Terayama, Kojima, Takasu, & Okuno, 2022). But so far
there is a gap between chemical experiments and AI tools, indicating
that there is still plenty of improvement to be made.

Some chemistry researchers also found it useful to have material
data better organized, given that the molecule structures are becoming
increasingly complex, and a massive amount of research papers are
describing the material’s features from different aspects (Walsh et al.,
2023). This direction might be more closely related to knowledge
base or even database systems. But in a way, given that the polymer
structure is typically a node-link graph, graph representation learning
might be able to help with dealing with such issues.

Besides, we also realize that most of the machine-generated
molecule structures will be regarded as useless from a chemical scien-
tist’s view. The root cause is that, from a human expert’s perspective,
some properties (i.e. features) of the molecules are obvious, but to
a machine learning model, it is not. A well-trained human expert
will realize that some molecule structures are not stable under room
temperature and standard atmosphere pressure. But according to the
existing benchmarks and the available labeled data sets, a machine
learning model could regard that particular structure as the best option.

In a way, we believer that, as more and more wet experiments
are involved, researchers will gradually realize the importance of com-
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bining expertise knowledge with the graph representation learning
models. It will enhance the interpretability and trustworthiness of many
applications.

17.2. Theory-driven directions

Some other future directions dig into the root of graph theory.
More specifically, it focuses on some fundamental improvements in
neural network structure design, or better ways of expressing the
graph representations. These directions require background knowledge
of their mathematical backgrounds. All in all, breakthroughs in these
directions might not end up with immediate impact, but every study in
these directions has the potential to change the entire field, sooner or
later.

17.2.1. Mathematical proof of feasibility
It has been a long-lasting problem that most of the existing deep

learning approaches lack mathematical proof of their learnability,
bound, etc (Bartlett, Foster, & Telgarsky, 2017; Bouzerdoum & Pattison,
1993; Liu et al., 2023). This problem relates to the difficulty of provid-
ing theoretical proof on a complicated structure like neural network
(Grohs & Voigtlaender, 2021).

Currently, most of the theoretical proof aims at figuring out the-
oretical bounds (Bartlett, Harvey, Liaw, & Mehrabian, 2019; Harvey,
Liaw, & Mehrabian, 2017; Karpinski & Macintyre, 1997). There are
multiple types of bounds with different problem settings. Such as: given
a known architecture of the model, with input data satisfying particular
normal distribution, prove that training will converge, and provide
the estimated number of iterations. Most of these architectures being
studied are simple, such as those made of multi-layer perceptron (MLP),
or simply studying the updates of parameters in a single fully-connected
layer.

In the field of deep graph representation learning, neural network
architectures are typically much more complex than MLPs. Graph
neural networks (GNNs), since the very beginning (Defferrard et al.,
2016; Kipf & Welling, 2016a), involve a lot of approximation and
simplification of mathematical theorems. Nowadays, most researchers
rely heavily on the experimental results. No matter how wild an idea
is, as long as it finally works out in an experiment, say, being able to
converge and the results are acceptable, the design is acceptable. All
these practices make the entire field somewhat experiments-oriented
or experience-oriented, while there remains a huge gap between the
theoretical proof and the frontier of deep graph representation.

It will be more than beneficial to the whole field if some re-
searchers can push forward these theoretical foundations. However,
these problems are incredibly challenging.

17.2.2. Combining spectral graph theory
Down to the theory foundations, the idea of graph neural networks

(Defferrard et al., 2016; Kipf & Welling, 2016a; Shuman et al., 2013)
initially comes from spectral graph theory (Chung, 1997). In recent
years, many researchers have investigated possible improvements in
graph representation learning strategies via utilizing spectral graph
theory (Chen et al., 2020; He et al., 2022; MansourLakouraj, Gautam,
Livani, & Benidris, 2022; Yang, Zhou, & Liu, 2021). For example, graph
Laplacian is closely related to many properties, such as the connectivity
of a graph. By studying the properties of Laplacian, it is possible
to provide proof of graph neural network models’ properties and to
propose better models with desired advantages, such as robustness (Fu,
Zhao, & Bian, 2022; Runwal, Kumar, et al., 2022).

Spectral graph theory provides a lot of useful insights into graph
representation learning from a new perspective. There is a lot to be

done in this direction.
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17.2.3. From graph to manifolds
Many researchers are devoted to the direction of learning graph

representation in non-Euclidean spaces (Asif et al., 2021; Saxena, Liu,
& King, 2020). That is to say, to embed and compute on some other
spaces that are not Euclidean, such as hyperbolic and spherical spaces.

Theoretical reasoning and experimental results have shown certain
advantages of working on manifolds instead of standard Euclidean
space. It is believed that these advantages are brought by their abilities
to capture complex correlations on the surface manifold (Zhou et al.,
2022). Besides, researchers have shown that, by combining standard
graph representation learning strategies and manifold assumptions,
models work better on preserving and acquiring the locality and simi-
larity relationships (Fu & Liu, 2021). Intuitively, sometimes two nodes’
embeddings are regarded as way too similar in Euclidean space, but in
non-Euclidean space, they are easily distinguishable.

18. Conclusion

In this survey, we present a comprehensive and up-to-date overview
of deep graph representation learning. We present a novel taxonomy
of existing algorithms categorized into GNN architectures, learning
paradigms, and applications. Technically, we first summarize the ways
of GNN architectures namely graph convolutions, graph kernel neural
networks, graph pooling, and graph transformer. Based on the different
training objectives, we present three types of the most recent advanced
learning paradigms namely: supervised/semi-supervised learning on
graphs, graph self-supervised learning, and graph structure learning.
Then, we provide several promising applications to demonstrate the
effectiveness of deep graph representation learning. Last but not least,
we discuss the future directions in deep graph representation learning
that have potential opportunities.
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