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a b s t r a c t

This paper studies few-shot molecular property prediction, which is a fundamental problem in
cheminformatics and drug discovery. More recently, graph neural network based model has gradually
become the theme of molecular property prediction. However, there is a natural deficiency for existing
methods, that is, the scarcity of molecules with desired properties, which makes it hard to build
an effective predictive model. In this paper, we propose a novel framework called Hierarchically
Structured Learning on Relation Graphs (HSL-RG) for molecular property prediction, which explores the
structural semantics of a molecule from both global-level and local-level granularities. Technically, we
first leverage graph kernels to construct relation graphs to globally communicate molecular structural
knowledge from neighboring molecules and then design self-supervised learning signals of structure
optimization to locally learn transformation-invariant representations from molecules themselves.
Moreover, we propose a task-adaptive meta-learning algorithm to provide meta knowledge customiza-
tion for different tasks in few-shot scenarios. Experiments on multiple real-life benchmark datasets
show that HSL-RG is superior to existing state-of-the-art approaches.

© 2023 Elsevier Ltd. All rights reserved.
1. Introduction

Molecular property prediction, which aims at predicting the
uantum mechanical properties of individual molecules, has been
idely considered as one of the most important tasks in compu-
ational drug discovery and cheminformatics. Benefiting from the
reakthrough of deep learning, this problem has raised intensive
ttention in recent years due to the rapid growth of available
olecular structure data. It has a variety of promising appli-
ations including virtual screening and medication repurposing.
herefore, molecular property prediction plays a vital role in
ignificantly speeding up the drug discovery process.
Actually, there are many quantitative structure property/

ctivity relationship (QSPR/QSAR) approaches that have been
roposed to achieve effective molecular property prediction. Tra-
itionally, early works (Wang, Guo, Wang, Sun, & Huang, 2019;
heng, Yan, Yang, & Xu, 2019) represent molecules as SMILES
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strings and leverage sequence models (Mikolov, Sutskever, Chen,
Corrado, & Dean, 2013) to learn molecular representations. To
better encode the pharmacological features of the molecules,
types of fingerprint-based methods (Xu, Wang, Zhu, & Huang,
2017; Zhang et al., 2018) have been proposed for similarity
comparisons for virtual screening. However, the above methods
usually show the inability to model the structural properties of
the molecules, since they often treat each molecule as a sequence
while ignoring the intrinsic topological features.

More recently, as a molecule can be essentially represented
as a graph by viewing atoms as nodes and chemical bonds as
edges, graph neural networks (GNNs) (Gilmer, Schoenholz, Riley,
Vinyals, & Dahl, 2017; Jiang, Chen, Wang, & Luo, 2022; Kipf &
Welling, 2017; Luo, Ju, Qu, Chen, et al., 2022; Xie, Zhang, Gong,
Tang, & Han, 2020; Xu, Hu, Leskovec, & Jegelka, 2019) have
been widely adopted to reinforce existing molecular property
prediction methods (Hao et al., 2020; Li, Zhou, Xu, Dou, & Xiong,
2022; Sun, Hoffmann, Verma, & Tang, 2020; Zhang, Liu, Wang,
Lu, & Lee, 2021) via incorporating the crucial structural proper-
ties of the molecules. The basic idea of GNN-based methods is
to utilize the message-passing mechanism to learn graph-level
molecular representations jointly optimized with the molecular

https://doi.org/10.1016/j.neunet.2023.03.034
https://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
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roperty prediction tasks. Specifically, ASGN (Hao et al., 2020)
dopts a teacher–student framework where the teacher model
earns molecular representations while the student model tar-
ets at property prediction task. MGSSL (Zhang et al., 2021)
esigns a general motif-based multi-level self-supervised pre-
raining framework in which GNNs are required to make topo-
ogical and label predictions. Recently, GeomGCL (Li, Zhou, et al.,
022) leverages graph contrastive learning to capture the geom-
try of the molecule across 2D and 3D views.
Despite the encouraging performance achieved by GNNs,

xisting GNN-based models severely suffer from two key limita-
ions: (i) Scarcity of available molecules with desired proper-
ies. GNN-based models inherit the characteristics of deep neural
etworks and are inherently data hungry, while only a small
mount of labeled molecules are available to be evaluated in the
ead optimization stage of drug discovery, due to a number of
easons including toxicity, low activity, and low solubility (Dahl,
aitly, & Salakhutdinov, 2014), directly training GNNs on such
imited molecules in a supervised way is prone to over-fitting
nd lack of generalization. (ii) Inability to mine the molecular
nherent semantic information. The signals of supervised learn-
ng can only extract the most property-related features of the
andidate molecules, while ignoring the rich structural-semantic
nformation inherent in the molecules. The molecules themselves
an serve as a regularizer, which helps a model better explore the
olecular structural semantics. In view of this, the problem of

abel scarcity and insufficient structural semantics mining make
he majority of GNN-based methods incapable of learning effec-
ive molecular representations and performing accurate property
rediction. As such, we are looking for an approach that can well
vercome the label scarcity, and meanwhile capture abundant
emantic knowledge of the molecules.
Having realized the above challenges with existing methods,

e focus on few-shot molecular property prediction to address
he aforementioned limitations. Towards this end, this work pro-
oses a principled framework called Hierarchically Structured
earning on Relation Graphs (HSL-RG) for few-shot molecular
roperty prediction. The key idea of HSL-RG is to exploit the
ulti-level molecular information to overcome the scarcity of

aboratory molecules and insufficient structural semantics min-
ng, and lay a solid foundation for the following wet experiment.
o achieve this goal, we introduce two level objectives in the HSL-
G hierarchically, i.e., a global-level objective and a local-level
bjective, respectively. On the one hand, HSL-RG leverages the
apability of graph kernels for capturing the structural similarity
o construct relation graphs to enhance the structural knowl-
dge communication from neighboring molecules from the global
iew. On the other hand, HSL-RG designs self-supervised learn-
ng signals of structure optimization to learn transformation-
nvariant representations from molecules themselves, endowing
he molecules with desired properties from the local view. Fur-
her, the whole training process can be optimized by a novel
ask-adaptive meta-learning algorithm to provide meta knowl-
dge customization for different tasks in few-shot scenarios. By
ncorporating this multi-level knowledge, our experiments show
hat it can largely improve the existing state-of-the-arts on four
enchmark datasets. To summarize, the main contributions of
his work are as follows:

• General Aspects: We propose a novel graph neural network
based approach for few-shot molecular property predic-
tion, which has been widely considered as one of the most
important tasks in drug discovery.
• Novel Methodologies: We propose a principled framework

to model the molecular structural semantics from comple-

mentary views, of which the global-level view constructs
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relation graphs to communicate knowledge from neighbor-
ing molecules, while the local-level view leverages self-
supervised learning to achieve transformation invariance
frommolecules themselves. Moreover, a task-adaptive meta-
learning is proposed to provide customized meta knowledge
for different tasks.
• Multifaceted Experiments: We conduct comprehensive ex-

periments on four benchmark datasets to demonstrate the
effectiveness of the proposed approach against existing state-
of-the-art models.

2. Related work

In this section, we briefly review the existing literature related
to our work in four aspects, namely graph neural networks,
few-shot learning, molecular property prediction, and few-shot
molecular property prediction.

2.1. Graph Neural Networks (GNNs)

GNNs are originally introduced by Gori, Monfardini, and
Scarselli (2005), Scarselli, Gori, Tsoi, Hagenbuchner, and Monfar-
dini (2008), and have recently emerged as a powerful architecture
to process graph-structured data, whose underlying idea is to
update node representations by iteratively aggregating informa-
tion from neighboring nodes via message passing (Gilmer et al.,
2017; Ju, Luo, et al., 2022; Li & Cheng, 2021; Xu et al., 2019),
then a readout function is applied to integrate all the node rep-
resentations into a representation of the whole graph (Lee, Lee, &
Kang, 2019; Rassil, Chougrad, & Zouaki, 2022; Ying et al., 2018).
Molecular property prediction can be treated as a promising ap-
plication of GNNs in which a molecule could be represented as a
molecular graph by denoting atoms as nodes, and bonds as edges.
Besides, GNNs have also shown great promise for predicting the
energy (Liu, Qu, Zhang, Cai, & Tang, 2022) and other quantum
mechanical properties of molecules (Luo, Ju, Qu, Gu, et al., 2022;
Sun et al., 2020).

2.2. Few-shot learning

Few-shot Learning is another line of related work, which can
be categorized into two main groups: (i) metric-based, and (ii)
optimization-based. The former is similar to nearest neighbors
and kernel density estimation, and aims to learn a metric or
distance function over objects (Gao, Luo, Yang, & Zhang, 2022;
Snell, Swersky, & Zemel, 2017; Sung et al., 2018; Vinyals, Blundell,
Lillicrap, Wierstra, et al., 2016; Zhang, Li, & Koniusz, 2022; Zhao,
Zhang, Jiang, & Tang, 2022), while the latter optimizes a meta-
learner for parameter initialization which can be fast adapted to
new tasks (Abbas, Xiao, Chen, Chen, & Chen, 2022; Ding et al.,
2022; Finn, Abbeel, & Levine, 2017; Nichol, Achiam, & Schulman,
2018; Von Oswald et al., 2021; Ye, Wang, & Cao, 2021).

Besides, there are also some recent studies combining few-
shot learning with graph neural networks (Chauhan, Nathani, &
Kaul, 2020; Garcia & Bruna, 2017; Liu, Fang, Liu, & Hoi, 2021;
Liu et al., 2018; Lu et al., 2022). TPN (Liu et al., 2018) learns to
propagate labels between labeled instances for unlabeled test in-
stances and is the first to model transductive inference. RALE (Liu
et al., 2021) leverages the concept of hub nodes to capture the
task-level and graph-level dependency based on the relative and
absolute location. However, due to the complexity of domain
knowledge and data structure, these methods are not tailed for
molecules, and the study of few-shot learning to molecular prop-
erty prediction has not been fully explored.

2.3. Molecular property prediction

Prediction of molecular properties is a central research topic

in chemistry, drug discovery, and materials science. Traditional
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ethods therein is density functional theory (DFT) (Engel &
reizler, 2013). However, DFT is very time-consuming and suf-
ers from high complexity. To raise the efficiency of molecular
roperty prediction, there has been a surge of interest in em-
loying machine learning approaches to accelerate this process,
hich can be divided into two main categories based on the

nput molecular type: (i) simplified molecular-input line-entry
SMILES), and (ii) molecular graph. For the first category, SMILES
s represented as a unique sequence that encodes the chemical
pecies. By viewing molecules as sequences, various sequential
odels (e.g., RNN) in the field of natural language processing
an be adopted to learn molecular representations (Wang et al.,
019; Xu et al., 2017; Zhang et al., 2018). For the second category,
y viewing molecule data as graphs, GNNs have turned into
he prevailing trend of learning molecular representations. A
arge number of approaches leverage GNNs to incorporate atom
ttributes and bond features (Fang et al., 2022; Hao et al., 2020; Li,
hou, et al., 2022; Zhang et al., 2021). Nevertheless, the majority
f them fail to adapt to few-shot scenarios and lack the ability to
vercome the scarcity of molecules.

.4. Few-shot molecular property prediction

There are also some recent studies for few-shot learning
olecular property prediction (Guo et al., 2021; Wang,
buduweili, Yao, & Dou, 2021). Meta-MGNN (Guo et al., 2021) de-
igns a self-supervised module to exploit and capture unlabeled
nformation in molecule data, and introduces a self-attentive
ask weight into the meta-learning framework. PAR (Wang,
buduweili, et al., 2021) proposes a property-aware embedding
unction and designs an adaptive relation graph learning mod-
le to capture the relationship among molecules. However, Our
roposed algorithm HSL-RG is fundamentally different from these
wo related works. Specifically, the proposed self-supervised mod-
le in Meta-MGNN only mines low-order structural semantic
ignals (bond reconstruction and atom type prediction), and fails
o explore higher-order structural semantic knowledge (substruc-
ures, functional groups, and motifs), while our HSL-RG develops
novel local graph augmentation strategy called bioisosterically
xchangeable replacements to achieve this goal. Additionally,
ifferent molecules in Meta-MGNN are regarded as individuals,
nd the relationship between them is ignored, while our ap-
roach connects these molecules via graph kernels. Compared
ith PAR, it captures the relationship among molecules by com-
uting the inner product of their representations, which shows
he inability to effectively mine structural knowledge. While our
SL-RG can better explore the higher-order structural similarities
o capture the relationship among molecules via graph kernels.
esides, our local graph augmentation strategy can also explore
he higher-order structural semantic information from the local-
evel view. Moreover, our developed task-adaptive meta-learning
lgorithm is capable of providing meta knowledge customization
or different tasks in few-shot scenarios.

. Problem definition

In this section, we give the relevant notations and formalize
he problem of few-shot molecular property prediction.

efinition 1 (Molecular Graph). A molecule can be represented
as a topological graph denoted by G = (V, E), where V =
vi|i = 1, . . . , |G|} is the set of nodes representing chemical
toms, in which xi denotes the feature vector of the node (atom)
i indicating its type such as Carbon, Nitrogen. E = {eij|i, j =

1, . . . , |G|} is the set of edges connecting two nodes (atoms) vi
and v , which represent chemical bonds.
j
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Definition 2 (N-way K-shot). In the setting of few-shot learning,
each time in the construction of the classification task, N-class
data is extracted from the dataset, and each class of data is
composed of K samples.

efinition 3 (Few-shot Molecular Property Prediction). Following
the setting in Meta-MGNN (Guo et al., 2021) and PAR (Wang,
Abuduweili, et al., 2021), we form the few-shot problem as 2-
way-K -shot molecular property prediction, in which we aim to
predict whether a molecule is active or inactive on a target
property, given a small number of K labeled molecules per class.
Generally, we use episodic training method, which means at the
training stage we sample τ -th task Tτ ∈ {Tτ }

Nt
τ=1 each time, and

each task contains support set Sτ = {(Gs
τ ,i, y

s
τ ,i)}

2K
i=1 and query

set Qτ = {(G
q
τ ,j, y

q
τ ,j)}

Nq
τ

j=1, where Gτ ,i and yτ ,i denote molecular
graph and corresponding property with index i. In essence, the
objective of this problem is to learn a meta-learner from a set of
tasks {Tτ }

Nt
τ=1 and can be adapted to predict new properties with

only a few labeled molecules.

4. Methodology

4.1. Overview

This paper provides a novel framework HSL-RG for few-shot
molecular property prediction. At a high level, HSL-RG aims to
explore the structural semantics of a molecule from both global-
level and local-level. On the one hand, we leverage graph kernels
to construct relation graphs to globally communicate structural
knowledge from neighboring molecules. On the other hand, we
design self-supervised learning of structure optimization to lo-
cally learn transformation-invariant representations from
molecules themselves. To couple with two hierarchical infor-
mation, a task-adaptive meta-learning is proposed to provide
customized meta knowledge in few-shot scenarios. An illustration
of the framework is presented in Fig. 1. Next, we first introduce
the graph neural networks and the two core modules from
global and local perspectives, respectively. Finally, the customized
task-adaptive meta-learning algorithm is explained.

4.2. Graph Neural Networks (GNNs)

GNNs (Gilmer et al., 2017) treat the molecule as a graph, in
which the node is a chemical atom and the edge is a chemical
bond between two atoms. Specifically, GNNs consist of L mes-
sage passing layers. At lth layer, the representation of node v
is updated by iteratively aggregating node representations of its
neighbors N (v) by passing messages along the edges and the
representation of node v itself. Formally, the updating process can
be defined as follows:

h(l)
v = C(l)

(
h(l−1)

v ,A(l)
({

h(l−1)
v ,h(l−1)

u , evu
}
u∈N (v)

))
, (1)

where h(l)
v denotes the representation of node v at layer l, evu

denotes edge feature between nodes v, u. HereA(l) and C(l) denote
the aggregation and combination functions at layer l. After L
iterations, we can take the average or sum operations to in-
tegrate all node representations to obtain the whole molecular
representation hG via READOUT function:

hG = READOUT({hL
v : v ∈ V}), (2)

Pre-trained Graph Neural Network. Different from the ran-
dom initialization of atoms and bonds in the molecular graph,
motivated by the prominent success of pre-training which has

shown to be effective in many language (Devlin, Chang, Lee,
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Fig. 1. Illustration of the proposed framework HSL-RG. The black arrows represent the propagation of the original graphs and the gray arrows represent the
ropagation of the augmented graphs. First, HSL-RG leverages graph kernels to construct relation graphs from the global view. Then, HSL-RG designs self-supervised
earning of structure optimization from the local view. Finally, a task-adaptive meta-learning is proposed to provide meta knowledge customization for different
asks in few-shot scenarios.
Toutanova, 2018), vision (He, Zhang, Ren, & Sun, 2016) and
raph domains (Hu, Dong, Wang, Chang, & Sun, 2020; Qiu et al.,
020), we adopt the recent pre-trained graph neural network
PreGNN) (Hu et al., 2019) to provide a better parameter initial-
zation. In this way, the initial features of atoms and bonds can
ell capture the universal information shared by molecules. Sub-
equent experiments have provided further evidence supporting
he necessity of this approach.

.3. Global relation graph construction

There is a fundamental assertion that similar molecules will
end to exhibit similar properties, which can either be physical
r chemical. For example, hexane and heptane should have sim-
lar boiling points and water solubility with the same chain-like
tructure, cocaine and procaine are both local anesthetics sharing
he same functional groups.

Nevertheless, existing methods solely treat molecules as in-
ividual instances in the training stage, which are independent
f each other, and they hence fail to derive extra supervision
ignals from other molecules. To this end, we draw inspiration
rom that molecular structure often determines its properties, we
ropose to leverage graph kernels to construct a global relation
raph connecting similar graphs to incorporate an additional
ata source, thus transferring prior knowledge and guiding the
ptimization of the molecules.
Technically, graph kernels (GKs) (Gärtner, Flach, & Wrobel,

003; Kashima, Tsuda, & Inokuchi, 2003) have shown great supe-
iority in capturing high-order substructures (e.g., random walk
Gärtner et al., 2003), path (Kashima et al., 2003), motif (Sher-
ashidze, Vishwanathan, Petri, Mehlhorn, & Borgwardt, 2009),
ubtree (Shervashidze, Schweitzer, Van Leeuwen, Mehlhorn, &
orgwardt, 2011)). In view of this, we propose to leverage ran-
om walk graph kernels (Gärtner et al., 2003; Ju, Yang, et al.,
022) to capture the functional groups in molecules, due to its
apability of exploring the motif patterns which is critical in
iochemistry (Wang, Guo, Ju, Luo, & Deng, 2021). Here we give
he clear definition of graph kernels.

efinition 3: (Graph Kernels) Given two graphs G = (V, E) and
G′ = (V ′, E ′), the graph kernel Ker(G,G′) measures the similarity
between them and is defined as:

Ker
(
G,G′

)
=

∑∑
kbase

(
fG (v) , fG′

(
v′
))

, (3)

v∈V v′∈V ′

125
where base kernel kbase, i.e., inner product on Hilbert space, com-
pares substructures fG (·) centered at nodes v and v′, in which
fG (·) denote the feature vector counting the number of frequen-
cies of each substructure (e.g., graphlets, random walks, paths,
subtrees) in the graph G.

Since GKs inherently involve similarity comparisons between
substructure patterns, we hence utilize this characteristic to con-
struct a KNN graph as the global relation graph, which connects
these individual molecules in each task. Specifically, the KNN
graph is calculated by the similarity matrix S ∈ R(2K+1)×(2K+1) of
the 2K support molecules and 1 query molecule. Each entry Sij
measures the structural similarity between two molecules Gi and
Gj computed by Si,j = Ker

(
Gi,Gj

)
if Gj is in the most K similar

neighbors of Gi, otherwise Sij is set to 0.
In this way, the global relation graph provides prior knowledge

on the structural similarity between different molecules, which
allows us to transfer supervision between these molecules and
even generalize to unseen molecules.

Message Passing on Global Relation Graph. After the construc-
tion of the global relation graph, we can leverage message pass-
ing neural networks to propagate molecular messages. Here we
use GIN (Xu et al., 2019) to learn node representations (each
molecule) on global relation graph through Eq. (1) denoted as
zl = GIN(S, z(l−1)), in which z(0) represents the initial feature of
each individual molecule hG derived from previously PreGNN (Hu
et al., 2019). After several iterations of message passing, the
molecules on the global relation graph can communicate with
each other and propagate molecular structural knowledge to
neighboring molecules. The learned molecular representations
zτ ,i can absorb property-related features from neighbors, enrich-
ing themselves for better molecular property prediction.

Formally, a downstream classifier (i.e., multi-layer perceptron,
MLP) is applied to predict the probability of target property
of each molecule zτ ,i: ŷτ ,i = MLP(zτ ,i). Hence the global-level
objective is evaluated via binary cross-entropy loss defined as:

Lglobal = −
∑

(Gs
τ ,i,y

s
τ ,i)∈Sτ

[yτ ,i log ŷτ ,i + (1− yτ ,i) log(1− ŷτ ,i)], (4)

where yτ ,i is the ground-truth target property.

4.4. Local graph augmentation optimization

Though incorporating molecular prior knowledge via the global
relation graph could derive extra supervision signals of prop-

erties, the performance is still far from satisfactory due to the
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limited molecules of each task in few-shot scenarios. Inspired
by the success of self-supervised learning which possesses its
powerful capability in learning effective representations from
molecules themselves, we aim to leverage this technique to
further overcome the scarcity of label properties and fully capture
structural semantics.

The basic idea of self-supervised learning is to transform the
data to generate augmented views and thus can learn represen-
tations that are invariant to transformations by achieving con-
sistency between augmented views. Specifically, GraphCL (You
et al., 2020) introduces four types of augmentations for general
graphs shown in the upper of Fig. 2. However, these heuristic aug-
mentations are prone to destroy the semantics of molecules. For
example, the original molecule has certain hydrophilicity, while
edge perturbation might introduce an epoxide, which makes the
molecule more hydrophobic, drastically changing the properties.

To this end, we introduce a new augmentation strategy called
bioisosterically exchangeable replacements, in which a valid sub-
structure in a molecule is replaced by a bioisostere (Meanwell,
2011). By doing so, this strategy would produce a new molecule
with similar physical or chemical properties as the original one.
Technically, we use BoBER dataset2 (Lešnik et al., 2017) to build
our rule set. BoBER consists of molecular fragment pairs that have
similar binding properties, which means that they are found to
bind to similar binding sites. BoBER is constructed by mining
the Protein Data Bank (PDB) using the ProBiS algorithm (Konc
& Janežič, 2010), and contains 14407 similar fragment pairs.
However, it is nontrivial to directly utilize them for augmentation,
and most fragment pairs have low evidence (the number of
similar binding sites in the PDB that bind to both fragments),
replacements built on them might lead to unfaithful bioisostere
results. Therefore, we first rank all fragment pairs in BoBER by
their evidence, and finally select 224 pairs to build our rule set.

Our rules are formulated by SMARTS strings, which are com-
monly used to describe molecular patterns and are broadly used
in substructure searching and chemical reaction representation.
As bioisostere replacement can also be seen as a chemical reac-
tion, we hence leverage SMARTS to represent our replacement
rules. To build our rule set, we first use ChemDraw3 to draw our
elected molecular fragment pairs, and then we align atom pairs
anually, and finally export rules represented by SMARTS strings.
sample rule is as follows:

∗
: 1
]
[C : 2](= O)O[c, C : 3] ≫

[
∗
: 1
]
[C : 2](= O)N(C)

[
∗
: 3
]

2 http://insilab.org/datasets/
3 https://chemdrawdirect.perkinelmer.cloud/js/sample/index.html
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Algorithm 1 Training algorithm of HSL-RG
Input: Support set Sτ , query set Qτ

Output: Initialized parameters θ , task-adaptive gate parameters
φ and task features Strain
1: Strain ← 0.
2: while not done do
3: sample a batch of tasks Tτ .
4: For all Tτ do
5: sample support set Sτ and query set Qτ from Tτ .
6: calculate the task feature sτ and modulate θ by Eqs. (6)–(8).

7: update task features Strain[τ ] ← Strain[τ ] + sτ

8: update θ ′ by Eq. (9).
9: end for
0: update θ and φ by Eq. (11).
1: end while

In this way, we generate T augmented molecules for each
olecule Gi with our augmentation strategy. Then we define

he local-level objective by achieving the consistency between
ach augmented molecule and their average representation for
elf-supervised learning:

local
i =

1
T

T∑
t=1

(
∥̃ht

i −
1
T

T∑
k=1

h̃k
i ∥2 + ∥̃z

t
i −

1
T

T∑
k=1

z̃ki ∥2

)
Llocal =

∑
(Gs

τ ,i,y
s
τ ,i)∈Sτ

Llocal
i ,

(5)

where h̃t
i and z̃ti are the representations of the tth augmentation

of Gi before and after the message passing on global relation
graph, respectively.

4.5. Task-adaptive meta-learning

To well adapt our approach to the few-shot scenarios, we
resort to the meta-learning framework based on MAML (Finn
et al., 2017). In meta-training stage, it require a meta-learner
to learn a good initialized parameter θ = (θe, θg , θc), where θe,
θg and θc are the parameters for the PreGNN, the global graph
neural network, and classifier respectively. Considering that some
tasks are similar and should share similar classifiers, we introduce
a task-adaptive gate parameterized by φ to explicitly modulate
θc with the task feature and task relationship. Specifically, we
represent a task τ with the prototype of its samples that are
active and those that are inactive:

s = Mean({z+}K ) ∥ Mean({z−}K ), (6)
τ i i=1 i i=1

http://insilab.org/datasets/
https://chemdrawdirect.perkinelmer.cloud/js/sample/index.html
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w
here {z+i }
K
i=1 are the active samples and {z−i }

K
i=1 are the in-

active samples in task τ . Mean operation denotes averaging all
embeddings. ∥ is the concatenation operator.

To encode the relationship between tasks, we combine the
task feature sτ ∈ Rd with cached task features of all the Nt
meta-training tasks by attention mechanism:

s′τ = Attention(Sτ , Strain, Strain), (7)

where Sτ ∈ R1×d is the matrix form of sτ , representing a
task feature for a meta-training task, that is, a row in Strain ∈
RNt×d. Attention used here is the multi-head attention mechanism
in Vaswani et al. (2017).

Then we learn a task-specific gate β parameterized by the task
feature s′τ and further use it to modulate θc :

β = f (s′τ), θc = θc ◦ β, (8)

where f is a MLP and ◦ is the element-wise multiplication.
Following Lu et al. (2019), we fix θe, θg , φ, and update θc in

each τ -th task Tτ through a small number of gradient descent
with support set:

θ ′c,τ = θc − α∇θLTτ (θ, φ). (9)

where α is the learning rate of the adaptation. LTτ (·) consists
of two component: global-level and local-level objectives, which
proceed as described in Eqs. (4) and (5) respectively. Therefore,
the overall training objective for each task can be written as (λ is
tuning parameter):

LTτ (·) = Lglobal + λLlocal, (10)

Subsequently, the meta-objective can be optimized via inte-
grating the training objectives of all sampled tasks:

θ∗, φ∗ = argminθ,φ

Nt∑
τ=1

L′Tτ
(θ ′τ , φ), (11)

where L′Tτ
is the joint loss over query set Qτ .

During meta-testing, the meta-learner has collected transfer-
able knowledge and would be further adapted to support set Snew
of each new task Tnew and evaluated on the query set Qnew. The
overall framework is shown in Algorithm 1.

4.6. Computational complexity analysis

Suppose that Nq is the average size of query set in each task,
|E| is the average size of edge set of each molecule, the complexity
of GIN (Xu et al., 2019) for each molecular is O(|E|), and the
total complexity in this stage is O(Nt (2K + Nq)|E|) ≈ O(NtNq|E|).
Similarly, the global message passing can be done within O(NtNq).
Collectively, the total computational complexity is O(NtNq|E|).

5. Experiment

In this section, we conduct extensive experiments on four
molecular property prediction datasets. We attempt to answer
the following research questions:

• RQ1: How well does our HSL-RG perform against the base-
line models on molecular property prediction?
• RQ2: How does each part of the model affect the molecular

property prediction? How do hyper-parameters influence
the model performance?
• RQ3: How can we intuitively show the effectiveness of the

global relation graph and the attention mechanism in task-

adaptive meta-learning?
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Table 1
Data statistics.
Dataset Tox21 SIDER MUV ToxCast

# Tasks 12 27 17 617
# Training Tasks 9 21 12 450
# Testing Tasks 3 6 5 167
# Compounds per Task 667.83 52.85 5478.06 13.96

5.1. Experimental setup

Datasets. We evaluate our method on four molecular property
prediction benchmark datasets from MoleculeNet (Wu et al.,
2018), a wide standard benchmark which has 17 types of molec-
ular property in total.

• Tox21 (National Center for Advancing Translational Sci-
ences, 2017) aims to predict the human toxicity of 8014
compounds on 12 different targets.
• SIDER (Kuhn, Letunic, Jensen, & Bork, 2016) contains 1427

compounds used in marketed medicines with 27 categories
of side effects.
• MUV (Rohrer & Baumann, 2009) contains 93127 compounds

for validating virtual screening.
• ToxCast (Richard et al., 2016) comprises 8615 chemical

compounds with toxicity labels that are obtained through
high-throughput screening.

We follow the data splits in Wang, Abuduweili, et al. (2021).
Table 1 shows the detailed statistics of benchmark datasets. Given
the small number of compounds in each task, training models for
each task from scratch is hard, necessitating few-shot molecular
property prediction.

Baselines. We compare our method with types of methods for
few-shot molecular property prediction. We consider the Few-
shot learning (FSL) methods learned from scratch:

• Siamese (Koch, Zemel, Salakhutdinov, et al., 2015) leverages
dual convolutional neural networks and matches the query
sample to the support samples.
• ProtoNet (Snell et al., 2017) learns class prototypes with the

support set and calculates the distances between the query
sample and the prototypes.
• IterRefLSTM (Altae-Tran, Ramsundar, Pappu, & Pande, 2017)

utilizes the idea of matching network for few-shot molecu-
lar property prediction.
• MAML (Finn et al., 2017) trains a meta-learner to learn

parameter initialization.
• TPN (Liu et al., 2018) constructs a relation graph and prop-

agate the node labels.
• EGNN (Kim, Kim, Kim, & Yoo, 2019) predicts edge labels of

the relation graph.
• Sharp-MAML (Abbas et al., 2022) is a sharpness-aware

MAML method which avoids the sharp local minima of
MAML loss functions.

We also compared the variant of our model HSL-RG− which is
trained from scratch without the initialization of Pre-GNN.

We also adopt the pretraining-based methods:

• Pre-GNN (Hu et al., 2019) pre-trains a GIN (Xu et al., 2019)
with self-supervised tasks.
• Meta-MGNN (Guo et al., 2021) is a MAML-based method

using the pretrained parameters of Pre-GNN as the initial-
ization of the molecular encoder.
• Pre-PAR (Wang, Abuduweili, et al., 2021) learns an adaptive

relation graph among molecules for each task and also uses
Pre-GNN to initialize the molecular encoder.
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Table 2
AUC on benchmark molecular property prediction datasets.
Method Tox21 SIDER MUV ToxCast

10-shot 1-shot 10-shot 1-shot 10-shot 1-shot 10-shot 1-shot

Siamese 80.40 ± 0.35 65.00 ± 1.58 71.10 ± 4.32 51.43 ± 3.31 59.96 ± 5.13 50.00 ± 0.17 – –
ProtoNet 74.98 ± 0.32 65.58 ± 1.72 64.54 ± 0.89 57.50 ± 2.34 65.88 ± 4.11 58.31 ± 3.18 63.70 ± 1.26 56.36 ± 1.54
MAML 80.21 ± 0.24 75.74 ± 0.48 70.43 ± 0.76 67.81 ± 1.12 63.90 ± 2.28 60.51 ± 3.12 66.79 ± 0.85 65.97 ± 5.04
TPN 76.05 ± 0.24 60.16 ± 1.18 67.84 ± 0.95 62.90 ± 1.38 65.22 ± 5.82 50.00 ± 0.51 62.74 ± 1.45 50.01 ± 0.05
EGNN 81.21 ± 0.16 79.44 ± 0.22 72.87 ± 0.73 70.79 ± 0.95 65.20 ± 2.08 62.18 ± 1.76 63.65 ± 1.57 61.02 ± 1.94
IterRefLSTM 81.10 ± 0.17 80.97 ± 0.10 69.63 ± 0.31 71.73 ± 0.14 49.56 ± 5.12 48.54 ± 3.12 – –
Sharp-MAML 75.37 ± 0.23 74.59 ± 0.56 71.02 ± 0.81 68.43 ± 0.96 65.52 ± 2.01 65.12 ± 2.98 67.56 ± 1.01 66.49 ± 1.98
HSL-RG− 80.95 ± 0.26 79.65 ± 0.22 74.66 ± 0.52 71.77 ± 0.79 70.38 ± 1.35 67.22 ± 1.56 70.70 ± 1.02 70.06 ± 1.05

Pre-GNN 82.14 ± 0.08 81.68 ± 0.09 73.96 ± 0.08 73.24 ± 0.12 67.14 ± 1.58 64.51 ± 1.45 73.68 ± 0.74 72.90 ± 0.84
Meta-MGNN 82.97 ± 0.10 82.13 ± 0.13 75.43 ± 0.21 73.36 ± 0.32 68.99 ± 1.84 65.54 ± 2.13 – –
Pre-PAR 84.93 ± 0.11 83.01 ± 0.09 78.08 ± 0.16 74.46 ± 0.29 69.96 ± 1.37 66.94 ± 1.12 75.12 ± 0.84 73.63 ± 1.00
HSL-RG 85.56 ± 0.28 84.09 ± 0.20 78.99 ± 0.33 77.53 ± 0.41 71.26 ± 1.08 68.76 ± 1.05 76.00 ± 0.81 74.40 ± 0.82
Fig. 3. Ablation study. Results of different variants of HSL-RG on 1-shot setting of (a) SIDER and (b) MUV.
g
t

valuation Metrics. We adopt the average AUC on testing tasks
o evaluate the molecular property prediction performance. We
un experiments on all the datasets for five times and report
he mean and standard deviations. AUC is the area under ROC
urves (Receiver Operating Characteristic curves), which is a
raph showing the performance of a classification model at all
lassification thresholds. This curve plots two parameters: True
ositive Rate and False Positive Rate.

mplementation Details. We use a 2-layer GIN to model the
lobal relational graph, the hidden size is set to 128. We use a 2-
ayer MLP on top of the global graph embedding for classification.
is set to 2 and λ is set to 0.1. We follow the other hyper-

arameter settings in Wang, Abuduweili, et al. (2021). When
eta-testing, each time we select one sample from the query set
nd adapt the model on the support set. We repeat the process
or Nq times in total. Nq is the size of the query set for each task.
All experiments are carried out on NVIDIA GeForce RTX 3090. We
use one GPU and the whole training and evaluation process can
be finished within four hours.

5.2. Overall performance comparison

Here, we evaluate the performance of all the algorithms and
the results are summarized in Table 2. From the comprehensive
views, we have several observations:

• Our HSL-RG shows superior performance and achieves the
best results across all four datasets on 1-shot and 10-shot
settings. For example, HSL-RG obtains more than 4.1% AUC
improvement against the best baseline Pre-PAR on the 1-
shot setting of MUV.
• Approaches enhanced by the pre-trained model perform
substantially better than methods learned from scratch,

128
indicating the effectiveness of the pre-trained model in few-
shot molecular property prediction. For instance, Pre-GNN
achieves better performance than the few-shot learning
methods trained from scratch despite their sophisticated
design for few-shot settings.
• The relation between molecules benefits the property pre-

dictions. Our proposed method and the baselines EGNN
and Pre-PAR considering the relation graph obtain relatively
better performance than other baselines. For example, the
AUCs of Pre-PAR on all the datasets are higher than Meta-
MGNN although they have the same PreGNN encoder and
MAML framework.

5.3. Ablation and hyper-parameter study

To further study the contribution of each component of the
proposed HSL-RG, we conduct the ablation study and hyperpa-
rameter study, which reveals the actual mechanism behind the
whole process of predicting molecular properties. Ablation study.
We implement four variants of our model: (1) w/o local is the
variant of our model without local graph augmentation. (2) w/o
lobal is the variant of our model without message passing on
he global relation graph. (3) w/o rules is the variant of our model
using random augmentations instead of rule-based augmentation.
(4) w/o adaptive is the variant of our model without the task
adaptive gate. We evaluate these variants on the 1-shot setting
of SIDER and MUV as shown in Fig. 3. We find that:

• The performance drops on w/o local and w/o rules, verifying
the effectiveness of our proposed local graph augmenta-
tion. w/o rules performs better than w/o local on both
datasets, showing that traditional augmentation methods

slightly improve the graph embedding.
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Fig. 4. Hyperparameter study on the 1-shot setting of SIDER. (a) Effects of the weight of the local-level objective loss λ and (b) the augmentation number T .
s

• The global relation graph is essential to our proposed model,
since the w/o global results decrease significantly compared
to HSL-RG. This provides further evidence that the global
relation graph enriches the molecular embeddings, leading
to improved predictions.
• w/o adaptive has less superior performance than HSL-RG,

demonstrating the effectiveness of the task-adaptive gate.
However, it still outperforms baselines, reassuring the ad-
vantage of the hierarchical graph.

yper-parameter Study. On the 1-shot setting of SIDER, we study
he sensitivity of hyper-parameters in the local graph augmenta-
ion module, that is, the weight of the local-level objective loss λ,
nd the augmentation number T . Fig. 4 shows the results. It can
e observed that:

• The local graph augmentation module plays an essential
role in HSL-RG. When T or λ is set to 0, the model would
degenerate into the w/o local variant and the performance
has a substantial degradation.
• A proper weight for the local-level objective loss and a

proper augmentation number could assist the global and lo-
cal GNNs in better learning the representations of molecules
and predicting molecular properties. The model performs
the best when λ is set to 0.1 and T is set to 0, demonstrating
the correctness of our hyper-parameter selection based on
the evaluation of the validation set.
• The stability of the model is satisfactory. When T or λ in-

creases, the AUC of our model increases first and then drops
slightly but is still not less than 0.76, which is significantly
higher than the best baseline.

.4. Visualization

We intuitively validate the superiority of the global relation
raph using graph kernel and the attention-based task-adaptive
echanism by visualization.

orrelation between substructure similarity and property sim-
larity. The hypothesis of our framework is based on that molecule
ith similar substructures tend to have similar properties. We
alidate this hypothesis on ToxCast in the experiment. Specifi-
ally, We randomly sample 10 000 pairs of molecules. For each
air, we calculate their kernel-based similarity scores, and ex-
mine whether they have the same labels on ‘‘ACEA_T47D_80h_
egative’’. We observe a substantial agreement with 0.0001 p-
alue (Fig. 5a) between the kernel-based similarity and label
imilarity, indicating the correctness and superiority to construct
global relation graph via our graph kernels.

isualization of the attention weights in the task adaptive
ate. The attention weights in the task adaptive module can
129
Fig. 5. Visualization experiments. (a) Correlation between kernel-based similar-
ity and label similarity. (b) Visualization of the attention weights among eight
tasks on SIDER. (dis. is short for the disorder).

reflect the task relationship. Specifically, higher attention weights
show stronger relevance. We select eight tasks in SIDER and
calculate their attention weights (Fig. 5b). Each task represents
a category of side effects. We can see that the results are in line
with common sense in general. For example, the ‘‘product issues’’
are not relevant to other tasks representing disorders and the
attention weights are low, the ‘‘cardiac disorder’’ has a stronger
correlation with ‘‘vascular disorder’’ than other tasks and the
attention weights between them are relatively higher.

5.5. Case study

We study a case on the 1-shot setting of SIDER to explain
the prediction process of HSL-RG in depth. Fig. 6 shows three
molecules in SIDER together with their SMILES and KNN relation
graph calculated by graph kernels. The task is to predict whether
the query molecule is active on the property ‘‘Reproductive sys-
tem and breast disorders’’. The query molecule is connected to the
active support molecule with a high edge weight of 0.69. After the
message passing on the global relation graph, the model correctly
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Fig. 6. Case study of the prediction of ‘‘reproductive system and breast
disorders’’ on the 1-shot setting of SIDER.

predicts its label ‘‘active’’ with the help of this edge. These results
can indicate the effectiveness of the global relation graph.

6. Broader impact

Our proposed algorithm HSL-RG is built on the setting of
few-shot learning, however, it can be well generalized to the
case of zero-shot learning, which aims at classifying samples
from unseen classes that have never appeared in the training
data. Zero-shot learning (Xie, Zhang, Xiong, Shao, & Li, 2022) has
attracted great attention in a range of applications, such as image
classification (Li, Yang, Wei, Deng, & Yang, 2022), object recogni-
tion (Zablocki, Bordes, Soulier, Piwowarski, & Gallinari, 2019) and
knowledge graph completion (Geng et al., 2022). By incorporating
class semantic knowledge and capturing the relations between all
classes, our approach can well extend to zero-shot learning, and
transfer knowledge from seen classes to unseen classes with the
guidance of some auxiliary semantic information.

7. Conclusion

In this paper, we introduce a novel framework called Hierar-
chically Structured Learning on Relation Graphs (HSL-RG) for few-
shot molecular property prediction, which explores the structural
semantics of a molecule from both global-level and local-level
granularities. We first leverage graph kernels to construct global
relation graphs from neighboring molecules while then design-
ing self-supervised learning of local structure optimization from
molecules themselves. Moreover, a task-adaptive meta-learning
algorithm is proposed to provide customized meta knowledge.
Experiments well demonstrate the superiority of our method on
a variety of benchmarks. Our future works will further extend
our framework to other domains such as drug–drug interac-
tion prediction, drug binding structure prediction and molecular
conformation generation.
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