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a b s t r a c t

Unsupervised graph-level representation learning has recently shown great potential in a variety of
domains, ranging from bioinformatics to social networks. Plenty of graph contrastive learning methods
have been proposed to generate discriminative graph-level representations recently. They typically
design multiple types of graph augmentations and enforce a graph to have consistent representations
under different views. However, these techniques mostly neglect the intrinsic hierarchical structure
of the graph, resulting in a limited exploration of semantic information for graph representation.
Moreover, they often rely on a large number of negative samples to prevent collapsing into trivial
solutions, while a great need for negative samples may lead to memory issues during optimization
in graph domains. To address the two issues, this paper develops an unsupervised graph-level
representation learning framework named Hierarchical Graph Contrastive Learning (HGCL), which
investigates the hierarchical structural semantics of a graph at both node and graph levels. Specifically,
our HGCL consists of three parts, i.e., node-level contrastive learning, graph-level contrastive learning,
and mutual contrastive learning to capture graph semantics hierarchically. Furthermore, the Siamese
network and momentum update are further involved to release the demand for excessive negative
samples. Finally, the experimental results on both benchmark datasets for graph classification and
large-scale OGB datasets for transfer learning demonstrate that our proposed HGCL significantly
outperforms a broad range of state-of-the-art baselines.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Graph-structured data is pervasive in a broad range of do-
ains, such as social networks (Cai, Gong, Shen, Ma, & Jiao,
014), sensor networks (Wang, Liao, Wang, Huang, & Chen, 2016),
nd transportation networks (Ali, Zhu, & Zakarya, 2022; Zhang,
ao, Huang, Shi, & Zhou, 2022). Among graph machine learn-
ng problems, learning informative representations of the whole
raph is critical for many applications including predicting pro-
ein functionality in biological networks (Jiang, Kloster, Gleich,
Gribskov, 2017) and inferring molecular properties in drug

iscovery (Hao et al., 2020; Kojima et al., 2020). The primary chal-
enge of graph-level representation learning is to explore effective

∗ Corresponding authors.
E-mail addresses: xiaoluo@cs.ucla.edu (X. Luo), mzhang_cs@pku.edu.cn

M. Zhang).
1 Equal contribution with the order determined by flipping a coin.
ttps://doi.org/10.1016/j.neunet.2022.11.019
893-6080/© 2022 Elsevier Ltd. All rights reserved.
whole-graph embeddings that capture both node attributes as
well as topological information.

Nowadays, most approaches have made great efforts to ex-
tend the convolution operation to graph-structured data, and
fall under the umbrella of graph neural networks (GNNs), show-
ing great success in learning graph representations (Baek, Kang,
& Hwang, 2021; Lee, Lee, & Kang, 2019; Rassil, Chougrad, &
Zouaki, 2022; Ying et al., 2018). These GNN methods extract
critical topological features and node attributes using neighbor-
aware message passing mechanism in learning node represen-
tations (Gilmer, Schoenholz, Riley, Vinyals, & Dahl, 2017; Jiang,
Chen, Wang, & Luo, 2022; Ju, Luo et al., 2022; Xie, Zhang, Gong,
Tang, & Han, 2020), all of which are integrated into a graph-level
representation for various downstream applications (Duan et al.,
2022; Ju, Qin et al., 2022). Nevertheless, these approaches mostly
require massive task-specific labels which are scarce in many
domains (Hao et al., 2020; Sun, Hoffmann, Verma, & Tang, 2020).

Even worse, label annotation is also extremely time-consuming

https://doi.org/10.1016/j.neunet.2022.11.019
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nd labor-intensive, making supervised learning methods hard
o be applied in real-world scenarios. For example, living animal
xperiments are required to identify the pharmacological effect of
olecular graphs. Meanwhile, there always exist a vast number
f unlabeled samples available in real-world circumstances. As
uch, unsupervised graph-level representation learning methods
re expected to be proposed as a key technique to alleviate the
eliance on label information in practice.

Early unsupervised methods such as graph kernels usually
dopt handcraft features which may lead to poor generaliza-
ion and thus fail to achieve satisfactory performance. Motivated
y the recent success in self-supervised representation learning
n computer vision (Chen, Kornblith, Norouzi, & Hinton, 2020;
e, Fan, Wu, Xie, & Girshick, 2020) and natural language pro-
essing (Devlin, Chang, Lee, & Toutanova, 2019), several works
ave introduced this technique to graph representation learn-
ng (Luo, Ju, Qu, Gu, et al., 2022; Sun et al., 2020; You, Chen,
hen, & Wang, 2021; You, Chen, Sui et al., 2020). The underly-
ng idea behind graph contrastive learning (GCL) is to augment
raph samples from different views. With the guidance of self-
upervised learning, these methods encourage a graph to have
imilar representations to its augmented view compared with
ther graphs. Thus, these approaches are capable of generating
ffective graph-level representations, which are beneficial for
arious downstream applications.
Even though previous GCL methods have achieved promising

erformance, they are prone to suffer from two critical limi-
ations as follows, which could render low-quality graph-level
epresentations and sub-optimal performance:

• Neglection of hierarchical semantics. Existing approaches
typically fall short of adequately exploring hierarchical struc-
tural characteristics. As we know, a node is the most fun-
damental structural property in a graph, and a graph-level
representation is computed by organically aggregating all
node representations. Moreover, node representations are
capable of capturing different scales of patch information in
the whole graph after multiple graph convolutional layers.
Consequently, node representations are critical for obtaining
informative graph-level representations. However, current
GCL methods only concentrate on graph-level information
but neglect node-level exploration of the graph-structured
data (You, Chen, Sui et al., 2020).
• Dependency of massive negative samples. To prevent col-

lapsing into trivial solutions (i.e., generate the same rep-
resentation for all graphs), the bulk of them heavily rely
on excessive negative samples. In GCL, negative nodes and
graphs are used to serve as crucial regulators. This issue
could lead to large memory cost during model optimiza-
tion, which may be even unaffordable due to the domain
specificity (You, Chen, Sui et al., 2020). Recently, some works
have developed several contrastive learning algorithms on
images that do not need negative samples (Chen & He, 2021;
Grill et al., 2020). However, they have not been investigated
in GCL methods to alleviate the dependence on a large
number of negative samples.

In this study, our paper presents a principled framework called
ierarchical Graph Contrastive Learning (HGCL) for unsupervised
raph-level representation learning. To address the limitation 1,
ur approach models not only the structural semantics of the
ntire graph (i.e., graph-level semantics) but also substructures
f different granularities (i.e., patch-level semantics), which are
mbedded in node representations at all depths of the GNNs.
echnically, our HGCL consists of three parts: (i) Node-level
ontrastive learning for informative patch-level representations;
ii) Graph-level contrastive learning for discriminative graph-
360
level representations; (iii) Mutual contrastive learning to en-
hance the unity of multi-scale representations. To overcome
the limitation 2, our approach proposes to adopt a Siamese
architecture as our backbone in both node-level and graph-
level contrastive learning frameworks. In brief, our design is
comprised of two networks, dubbed online network and target
network, which communicate and learn from each other. The
consistency between node (graph) representations is encouraged
across different views from two graph neural networks, respec-
tively. The core of the Siamese architecture is introducing a
predictor on top of the online network to design an asymmetric
architecture, and the momentum update for the target network is
involved to encourage encoding gradual information, which can
empirically avoid collapsed solutions (Grill et al., 2020). Apart
from contrasting representations across the two networks, we
enhance the representation learning within the online encoder
by proposing within-network contrastive learning loss to regular-
ize the training of bootstrapping contrastive learning objectives.
At last, the HGCL maximizes the mutual information between
the node-level representations and graph-level representation
to enhance the unity of hierarchical representations from both
local and global views. Our proposed model HGCL is validated on
various graph classification benchmark datasets and large-scale
OGB datasets. Experimental results show the superiority of our
HGCL against a wide range of state-of-the-art baselines on both
graph classification task and transfer learning task. To summarize,
the contributions of this work are as follows:

• This paper introduces a unified unsupervised graph-level
representation learning framework HGCL, among which we
simultaneously model both patch-level semantics and graph-
level semantics to mutually enhance each other via multiple
types of contrastive learning.
• To avoid collapsed solutions in graph contrastive learning,

our proposed HGCL leverages bootstrapping in the Siamese
network and conducts GCL both across two networks and
within the online network.
• Comprehensive experiments are conducted to evaluate the

effectiveness of our model. Experimental results demon-
strate that our proposed HGCL significantly outperforms
various state-of-the-art methods.

2. Related work

2.1. Graph representation learning

Graph neural networks (GNNs), particularly graph convolu-
tional networks (Kipf & Welling, 2017), have shown extraordinary
capabilities to encode graph-structured data. Recently, the vast
majority of graph representation learning techniques adopt the
GNNs as the backbone and achieve promising performance. Graph
representation learning can be categorized into node-level and
graph-level representation learning. The former has been studied
extensively in recent years (Jin et al., 2021; Velickovic et al., 2019;
Zhu et al., 2021), while the latter is underexplored but impor-
tant for a range of real-world applications. Prevailing approaches
derive graph-level representations via neighbor propagation of
GNNs (Gilmer et al., 2017; Ju, Yang et al., 2022; Kipf & Welling,
2017; Veličković et al., 2017), and global summarizing (Lee et al.,
2019; Ying et al., 2018; Zhang, Cui, Neumann, & Chen, 2018).
These methods are typically optimized in a supervised way, de-
manding a huge amount of task-specific labels. However, anno-
tating labels is often too costly and thus the required labels are
very scarce, making them inapplicable in reality (Hao et al., 2020).
To tackle this challenge, this paper concentrates on unsupervised
graph-level representation learning and explores the hierarchical
structural semantics of a graph at both node and graph levels.
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.2. Graph contrastive learning

Contrastive learning (CL), which is extended from the In-
ormation Maximization principle, has achieved great success
n visual domains. These CL methods typically maximize the
utual information between the input and its representation
y comparing positive pairs produced via random perturbation
f the original data with sampled negative counterparts (Chen
t al., 2020; He et al., 2020). Increasing attempts have been
ade to introduce CL to graph domains (Hassani & Khasahmadi,
020; Luo, Ju, Qu, Chen, et al., 2022; Qiu et al., 2020; Velickovic
t al., 2019). As a famous early work, DGI (Velickovic et al.,
019) maximizes the mutual information between patch-level
nd graph-level representations on the augmented graphs. More
ttention has been paid to graph-level representation learning
urrently. These approaches are generally based on the frame-
ork of visual contrastive learning, which pushes two graph
iews augmented from the same sample close while enlarging
he distance between graph views from different samples (Chu,
ang, Shi, & Jiang, 2021; Liu et al., 2021; You et al., 2021; You,
hen, Sui et al., 2020; Zeng & Xie, 2021). However, these methods
sually suffer from the neglection of patch semantics and depend
n huge negative samples, which may lead to sub-optimal perfor-
ance. In this paper, the HGCL studies the hierarchical structural
emantics of the graph and employs the Siamese network and
omentum update to address these challenges.

.3. Siamese network

The Siamese network is a sort of network architecture in
hich two or more identical subnetworks are utilized to produce
nd compare feature vectors for each input (Bromley et al., 1993).
umerous self-supervised visual representation learning systems
ave recently embraced this design and shown performance gains
ver previous efforts. For instance, BYOL is composed of online
nd offline networks that interact and learn from one another
ithout the need for negative samples (Grill et al., 2020). SimSiam
xtends BYOL and can also avoid collapse when maximizing
he similarity between two representations of the same sample
ithout using negative instances (Chen & He, 2021). Moreover,

t emphasizes the importance of the additional predictor in the
nline network and the momentum-updating procedure in the
arget network to avoid trivial solutions in the absence of neg-
tive examples. Inspired by recent works, our method extends
he Siamese network into graph-level representation learning and
chieves promising performance.

. Preliminaries and notations

Let G = (V , E) denote a graph, where V is the node set
and E ⊂ V × V is the edge set. The node v ∈ V has feature
vectors associated with it, denoted by xv ∈ RF where F denotes
the feature dimension. Unsupervised graph-level representation
learning is a fundamental task with a wide range of applications,
including predicting the mechanical characteristics of molecules
and determining the functionality of chemical compounds.

Definition (Unsupervised Graph-level Representation Learning).
Given the M unlabeled graphs {G1, . . . ,GM} available, the goal is
o learn a GNN-based encoder to generate an effective represen-
ation zm ∈ Rd for each graph Gm without label guidance, where
is embedding dimension. The generated graph representations
z1, . . . zM} will be evaluated on a series of downstream tasks

ncluding graph classification and transfer learning.

361
. Methodology

.1. Framework overview

Existing methods typically neglect the hierarchical structural
emantics of the graph in nature. Moreover, they usually depend
n a huge number of negative samples during model optimiza-
ion. To address these key limitations, our HGCL has two simple
et effective designs that are different from existing contrastive
earning methods: (i) Hierarchical self-supervision to preserve
eatures at multiple granularities; (ii) Siamese architecture to re-
ease the dependency of huge negative samples for avoiding rep-
esentation collapse. The above two different designs make our
GCL better explore hierarchical structural semantics in graph-
tructured data via contrastive learning.

.2. GNN-based encoder

Recently, graph neural networks (GNNs) have been proposed
o aggregate feature information of node neighborhood (Kipf &
elling, 2017; Veličković et al., 2017), which have gained increas-

ng attention as powerful tools for a wide range of downstream
asks. Most prevailing methods learn representations of graph-
tructured data by stacking graph convolution layers, which typ-
cally fall into the neighborhood message passing mechanisms
Gilmer et al., 2017). In more detail, following the definition of
NNs in Xu, Hu, Leskovec, and Jegelka (2019), the basic idea of a
NN is to learn node embedding hk

v for node v at the kth layer
ased on an iterative aggregation of neighborhoods, where kth

iteration of message passing can be calculated as follows:

h(k)
N(v) = AGG(k)

θ

({
h(k−1)
u ,∀u ∈ N(v)

})
h(k)

v = COM(k)
θ

(
h(k−1)

v ,h(k)
N(v)

)
,

(1)

where N(v) denotes the neighbors of v. There are varied defi-
nitions of AGG(k)

θ and COM(k)
θ that can be achieved (Hamilton,

Ying, & Leskovec, 2017; Kipf & Welling, 2017; Veličković et al.,
2017). Finally, the feature vectors at all layers of the GNN are
summarized into a single vector:

hv = CAT ({hk
v}

K
k=1), (2)

where CAT denotes the vector concatenation operation. In this
way, each vector can capture patch information at different scales
centered at each node. We stack the node representation into an
embedding matrix H ∈ R|V |×d as:

H = gθ (G), (3)

where θ is the parameter of the encoder. At last, a readout
function is adopted to generate a graph-level representation:

h = OUT
(
{hv}v∈V

)
, (4)

in which h̃ is the graph-level representation and OUT could be
averaging or a more complicated graph pooling operation (Lee
et al., 2019; Ying et al., 2018; Zhang et al., 2018).

4.3. Graph augmentations

Data augmentation derives novel rational data via applying
certain transformations without changing the semantics (Chen
et al., 2020), which is crucial for contrastive learning. Recent
graph contrastive learning methods also develop a range of
strategies for graphs. In this paper, our HGCL involves node-level
contrastive learning and thus we aim to maintain all nodes in
augmentation schemes for convenience. Specifically, the HGCL
adopts four strategies to generate augmented views of each graph
while keeping all nodes (You et al., 2021) as shown in Fig. 1:
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Fig. 1. Illustration of our graph augmentation strategies.

• Edge Deletion randomly eliminates some edges from the
graph. It assumes that the semantics of the graph is immune
to changes in edge connection patterns.
• Edge Addition selects two nodes at random. If they are not

connected directly but can be reached by a path, we add an
edge between the selected two nodes.
• Attribute Masking chooses nodes randomly and then masks

some of their attributes at random. It is premised on the
likelihood that the graph semantics would be resilient with
incomplete node attributes.
• Graph Diffusion are typically used to generate a congruent

view by the Personalized PageRank kernel. The derived aug-
mentation is helpful to provide more comprehensive global
information. Let A, D and I denote the adjacency matrix,
the degree matrix, and the identity matrix respectively, the
diffusion matrix is computed as:

S = α
(
I − (1− α)D−1/2AD−1/2

)−1
, (5)

in which α ∈ (0, 1) is a randomly chosen coefficient (Has-
sani & Khasahmadi, 2020).

In this paper, the proposed HGCL randomly choose one of
four graph augmentation strategies to generate two correlated
views for each sample. Then, we introduce our graph contrastive
learning framework as below.

4.4. Hierarchical graph contrastive learning

As is well known, graphs intrinsically exhibit a diverse range
of structural properties, including nodes, edges to subgraphs. The
local substructures in a graph always consist of critical charac-
teristics and prominent patterns. Thus, learning about the lo-
cal substructures and the whole graph is both very important
for graph-level representation learning, which can reflect hier-
archical structural topology information. The framework of our
proposed HGCL is shown in Fig. 2.

4.4.1. Node-level contrastive learning
Existing unsupervised node-level representation learning

methods contrast node representations between different views,
which is capable of learning effective node representation for
downstream tasks. We argue that node representations are also
vital for learning graph-level representations due to two principal
reasons. On the one hand, node representations may propagate
topological structure information from local perspectives. On the
other hand, graph-level representations are created directly from
node-level representations, implying a tight link between them.
362
As such, we seek to learn informative node representations via
contrastive learning for better learning of the whole graph.

Inspired by recent works (Grill et al., 2020; Zbontar, Jing,
Misra, LeCun, & Deny, 2021), to avoid the dependency on a large
number of negative samples, the HGCL utilizes a Siamese net-
work, which contains two GNNs, namely the online network gθ

and the target network gφ . Two networks have the same encoder
architecture but the online network has an additional predictor
pθ on top of the online network gθ . To produce the bootstrapping
contrastiveness, we begin with node representations from one
viewpoint in the online network, and maximize the cosine simi-
larity to corresponding representations from another perspective
in the target network. Moreover, our approach incorporates ad-
ditional negative samples to further enhance the fundamental
bootstrapping loss as shown in Fig. 3.

Specifically, for each graph G, the HGCL first generates two
graph views Ĝ1 and Ĝ2, then obtain the node embedding matrices
H1
= gθ (Ĝ1) and H2

= gφ(Ĝ2) via the online network and the
target network, respectively. Different from existing graph con-
trastive learning methods, we employ an asymmetric framework
where the online network outputs the node embedding matrix
Z1
= pθ (H1). Then, the InfoNCE loss (Oord, Li, & Vinyals, 2018)

is adopted to distinguish the node embeddings of the same node
in two different views from other node embeddings in the graph
using both the online network and target network. For any node
v, its embedding z1v generated from the online network is viewed
as an anchor. The embedding of the same node generated from
the target network h2

v is viewed as a positive sample while the
other embeddings from the same network are treated as nega-
tive samples. Formally, the cross-network node-level contrastive
learning loss for each node v is defined as:

Lnode,c,1 (v,G) = − log
exp

(
sim

(
z1v,h2

v

))∑
v′∈G exp

(
sim

(
z1v,h2

v′

)) , (6)

where sim(z1v,h2
v) denote the cosine similarity of z1v and h2

v .

Remark. Note that our framework still involves negative sampl-
es, which are essential and natural to bring pairwise relationships
in graph-structured data. However, our design of asymmetric ar-
chitecture does not need to depend on large-scale negative sam-
ples to avoid representation collapse. In summary, our model only
involves a small size of the negatives that are innate to provide
essential signals for more discriminative representation learning.

Moreover, we can switch two augmented inputs of two graph
encoders, and get another contrastive loss as:

Lnode,c,2 (v,G) = − log
exp

(
sim

(
z2v,h1

v

))∑
v′∈G exp

(
sim

(
z2v,h1

v′

)) . (7)

The final contrastive learning objective is obtained as the
average of two losses over all nodes in V in each graph G:

Lnode,c(G) =
1

2|V |

∑
v∈V

[Lnode,c,1 (v,G)+ Lnode,c,2 (v,G)], (8)

where Lnode,c,1 (v,G) and Lnode,c,2 (v,G) are two symmetric loss
to contrast two node views from graph augmentations across
different encoder networks.

Following He et al. (2020) and Jin et al. (2021), the target
network does not conduct gradient updating during optimization
directly. In contrast, the parameters in the target network are
updated via a momentum updating strategy as:

φ← ηφ + (1− η)θ, (9)

where η is a momentum coefficient. In this way, parameters in
the target network are evolved smoothly.
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the online network and target network to generate hierarchical representations, respectively. Our framework integrates node-level contrastive learning, graph-
level contrastive learning, and mutual contrastive learning to learn effective graph-level representations. Moreover, gradient updating and momentum updating are
conducted for the online network and target network, respectively.
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Fig. 3. Illustration of node-level contrastive learning. Cross-network contrast
compares pair representations produced by both the online and target networks,
while within-network contrast discriminates pair representations from two
views in the online network.

However, the above contrastive loss is conducted across two
ifferent networks, while the node views within the same net-
ork have not been considered yet. Since only the online network

s updated by back-propagation, we further contrast the outputs
f the online encoder, which acts as an extra regularization for
enerating informative node representations. Similarly, we dis-
inguish the node embeddings of the same node in two different
iews from other node embeddings in the graph only using
he online network. Specifically, the within-network node-level
ontrastive loss is defined as:

node,w,1 (v,G) = − log
exp

(
sim

(
z1v, z2v

))∑
v′∈G exp

(
sim

(
z1v, z2v′

)) . (10)

Also, two augmented inputs can be switched:

Lnode,w,2 (v,G) = − log
exp

(
sim

(
z2v, z1v

))∑
v′∈G exp

(
sim

(
z2v, z1v′

)) . (11)

The final regularization contrastive learning objective is ob-
tained as the average of two regularization losses over all nodes
363
in V in each graph G, formally given by:

Lnode,w(G) =
1

2|V |

∑
v∈V

[Lnode,w,1 (v,G)+ Lnode,w,2 (v,G)]. (12)

In a nutshell, both the cross-network node-level contrastive
loss and within-network node-level contrastive loss are com-
bined to form the final loss for each graph G:

Lnode(G) = Lnode,c(G)+ Lnode,w(G). (13)

4.4.2. Graph-level contrastive learning
Following the popular scheme of graph contrastive learn-

ing (You et al., 2021; You, Chen, Sui et al., 2020), the HGCL
are encouraged to contrast graph-level representations between
different views to enhance the model training. Recall that there
are two generated augmented graphs Ĝ1 and Ĝ2 for each graph,
we thus attempt to summarize all node representations with an
extra readout function on top of node embedding matrices, i.e., H1

and H2. In this way, we can generate graph-level representations
h1 and h̃2 for augmented graphs Ĝ1 and Ĝ2. The predictor is
also adopted to output the embedding z̃1 = pθ (̃h1). The InfoNCE
loss (Oord et al., 2018) is adopted to maximize the similarity
between positive sample pairs {̃z1, h̃2

} compared with negative
pairs. Technically, we construct a minibatch of B graphs, contain-
ing 2B augmented graphs {Ĝ1

b, Ĝ
2
b}

B
b=1. For each positive pair Ĝ1

b
and Ĝ2

b , the other (B−1) augmented samples in the minibatch are
regarded as negatives. After re-annotating z̃1 and h̃2 as z̃1b and h̃2

b
for the bth graph in the minibatch, the HGCL contrasts two graph
representations across two networks for the bth graph as below:

Lgraph,c,1 (Gb) = − log
exp

(
sim

(̃
z1b, h̃

2
b

))∑B
b′=1 exp

(
sim

(̃
z1b′ , h̃

2
b′
)) . (14)

Similarly, we switch two augmented inputs:

graph,c,2 (Gb) = − log
exp

(
sim

(̃
z2b, h̃

1
b

))∑B
b′=1 exp

(
sim

(̃
z2b′ , h̃

1
b′
)) . (15)

The final graph-level contrastive learning objective for each
raph is obtained as the average of two graph contrastive learning
osses, formally given by:

graph,c(Gb) =
1
[Lgraph,c,1 (Gb)+ Lgraph,c,2 (Gb)]. (16)
2
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Moreover, we also consider the ties between two views within
the online network, serving as a regularization for generating
effective graph representations. Formally,

Lgraph,w,1 (Gb) = − log
exp

(
sim

(̃
z1b, z̃

2
b

))∑B
b′=1 exp

(
sim

(̃
z1b′ , z̃

2
b′
))

Lgraph,w,2 (Gb) = − log
exp

(
sim

(̃
z2b, z̃

1
b

))∑B
b′=1 exp

(
sim

(̃
z2b′ , z̃

1
b′
))

Lgraph,w(Gb) =
1
2
[Lgraph,w,1 (Gb)+ Lgraph,w,2 (Gb)].

(17)

The overall objective function for each graph Gb is defined
s the sum of cross-network graph-level contrastive loss and
ithin-network graph-level contrastive loss as:
graph(Gb) = Lgraph,c(Gb)+ Lgraph,w(Gb). (18)

.4.3. Mutual contrastive learning
After considering both node-level and graph-level contrastive

earning, these two types of representations may have a gap that
inders unified representation learning. To alleviate this issue,
he proposed HGCL enhances the unity of hierarchical representa-
ions by maximizing the mutual information between node-level
epresentations and the global graph-level representations. Since
ode representations can capture patch information at different
cales via message passing, this encourages the encoder to pro-
uce consistent graph representations for both the local patch
nd the whole graph. Specifically, given a batch of graphs, our
ramework employs the InfoNCE loss to distinguish the two rep-
esentations of the same graph from other graph embeddings in
he minibatch. Since local representations and global representa-
ions have a huge difference, representation collapse is not likely
o happen. Thus, we do not need to involve the target encoder
ere. Specifically, for the graph Gb and node v ∈ Gb, the mutual
ontrastive loss is defined as:

mutmal (v,Gb) = − log
exp (sim (zv, z̃b))∑B

b′=1 exp (sim (zv, z̃b′))
, (19)

here zv and z̃b denote the node embedding of node v and graph
mbedding respectively and B denotes the batch size.
The final mutual contrastive loss for the whole mini-batch is

generated by using all possible combinations of global and local
patch representations across all graph instances in a batch as:

Lmutmal
=

1
B

B∑
b=1

1
Vb

∑
v∈Vb

Lmutmal (v,Gb) . (20)

.4.4. Optimization
Finally, our framework minimizes three kinds of contrastive

earning objectives to learn hierarchical graph-level representa-
ions. In a nutshell, the overall objective function of the HGCL for
ll graphs in a minibatch can be defined as:

=
1
3
(
1
B

B∑
b=1

(Lnode(Gb)+ Lgraph(Gb))+ Lmutmal). (21)

Our objective function is optimized by the minibatch stochas-
ic gradient descent (SGD) method. The whole learning procedure
f the HGCL is summarized in Algorithm 1.

. Experiments

.1. Experimental settings

atasets. To evaluate the superiority of our proposed HGCL, we
xperiment with six widely-used graph classification datasets
364
Algorithm 1 Learning Algorithm of the HGCL
Input: Unlabeled graphs {G1, · · · ,GM}.
Parameter: Online network parameter θ and target network
parameter φ.
Output: Target network gφ .
1: Initialize network parameters θ and φ;
2: while not convergence do
3: Construct a minibatch using B samples in the training set;
4: for the i-th sample in the minibatch do
5: Derive Ĝi and Ĝ′i via a random graph augmentation;
6: Obtain node-level representations H1, H2 and graph-level

representations h̃1, h̃2 through Siamese network;
7: Calculate overall objective function by Eq. (21);
8: Update θ by back-propagation;
9: end for
0: Update φ by momentum update in Eq. (9);
1: end while

from TU datasets2 including three bioinformatics datasets (MU-
TAG, DD, and PROTEINS) and three social network datasets (IMDB-
B, IMDB-M, and COLLAB).
Baselines. To demonstrate the effectiveness of our proposed
HGCL, we choose ten baselines from two categories: graph ker-
nel methods (Shortest Path (SP) Kernel (Borgwardt & Kriegel,
2005), Graphlet Kernel (GK) (Shervashidze, Vishwanathan, Petri,
Mehlhorn, & Borgwardt, 2009), and Weisfeiler–Lehman (WL)
Kernel (Shervashidze, Schweitzer, Van Leeuwen, Mehlhorn, &
Borgwardt, 2011)); Unsupervised learning methods (Node2Vec
(Grover & Leskovec, 2016), Graph2Vec (Narayanan et al., 2017),
InfoGraph (Sun et al., 2020), GraphCL (You, Chen, Sui et al., 2020),
JOAO (You et al., 2021), AD-GCL (Suresh, Li, Hao, & Neville, 2021),
and RGCL (Li et al., 2022)).
Parameter Settings. In the experiments, we adopt the same
encoder architecture GIN (Xu et al., 2019) on all the datasets
following InfoGraph (Sun et al., 2020), consisting of two graph
convolutional layers with 512 hidden neurons and one sum-
pooling layer. The batch size is set to 32. The momentum coef-
ficient η is set to 0.99 following He et al. (2020). As for the graph
contrastive learning baselines, we also use GIN to provide a fair
comparative study. By closely obeying the assessment criterions
used in earlier researches (Sun et al., 2020; You, Chen, Sui et al.,
2020), we evaluate the classification accuracy over ten folds using
the cross-validation with LIBSVM (Chang & Lin, 2011). We repeat
the procedure five times with different random seeds and report
the mean accuracy (in %) and standard deviation.

5.2. Experimental results

We conduct a detailed comparison of our proposed HGCL
to state-of-the-art baselines and report the quantitative find-
ings of various approaches in Table 1. We make the following
observations based on the table:

• From the comparison of kernel methods, it can seen that
their performance varies significantly among datasets. For
example, WL significantly outperforms the other two meth-
ods on social network datasets but performs worse than
those on bioinformatics datasets. Perhaps this is because
that the semantic gap between datasets in different domains
is large, and hand-crafted features cannot always be associ-
ated with desired semantic information due to their inability
to be learned automatically.

2 https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets

https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets
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Table 1
Performance of our model against compared methods on bioinformatics and social network datasets over 5 runs (Averaged accuracy
with a standard deviation).

Methods Datasets

MUTAG DD PROTEINS IMDB-B IMDB-M COLLAB

Kernel
SP 85.2 ± 2.4 75.5 ± 3.5 75.0 ± 0.5 55.6 ± 0.2 38.0 ± 0.3 49.8 ± 1.2
GK 81.7 ± 2.1 72.5 ± 3.8 71.6 ± 0.5 65.9 ± 1.0 43.9 ± 0.4 56.3 ± 0.6
WL 80.7 ± 3.0 74.0 ± 2.3 72.9 ± 0.5 72.3 ± 3.4 47.0 ± 0.5 69.3 ± 3.4

Unsupervised

Node2Vec 72.6 ± 10.2 – – 50.2 ± 0.9 36.0 ± 0.7 –
Graph2Vec 83.2 ± 9.6 70.3 ± 2.3 73.3 ± 2.0 71.1 ± 0.5 46.3 ± 1.4 71.1 ± 0.5
InfoGraph 89.0 ± 1.1 72.9 ± 1.8 74.4 ± 0.5 71.1 ± 0.9 49.7 ± 0.5 70.7 ± 1.1
GraphCL 86.8 ± 1.3 78.6 ± 0.4 74.3 ± 0.4 71.1 ± 0.4 48.5 ± 0.6 71.4 ± 1.2
JOAO 87.3 ± 1.0 77.3 ± 0.5 74.5 ± 0.4 70.2 ± 3.1 – 69.5 ± 0.4
AD-GCL 89.3 ± 1.5 74.5 ± 0.5 73.6 ± 0.7 71.6 ± 1.0 49.0 ± 0.5 73.3 ± 0.6
RGCL 87.7 ± 1.0 78.9 ± 0.5 75.0 ± 0.4 71.9 ± 0.8 – 70.9 ± 0.7

HGCL (Ours) 90.1 ± 0.8 79.2 ± 0.6 75.5 ± 0.5 73.9 ± 0.7 51.3 ± 0.5 75.8 ± 0.4
• As can be observed, traditional unsupervised learning meth-
ods (i.e., Node2vec and Graph2vec) achieve worse perfor-
mance compared with other graph contrastive learning
techniques, indicating that utilizing efficient graph neural
networks can capture important graph structural informa-
tion for downstream representation learning.
• Among graph contrastive learning baselines, AD-GCL ach-

ieves the best results on the majority of datasets. Perhaps
the reason is that AD-GCL automatically learns the graph
augmentations, and incorporates adversarial learning into
graph contrastive learning, which provides a challenging
view for generating discriminative representations.
• Our framework HGCL consistently achieves the best per-

formance on all datasets, indicating the superiority of our
framework. When compared with the state-of-the-art ap-
proach AD-GCL, the performance improvement on DD and
IMDB-M is 6.31% and 4.69%, respectively. Given the abun-
dant diversity in various kinds of datasets, our improvement
is rather considerable, showing the superiority of our HGCL.

Discussion on the Improvement. Though graph contrastive lea-
ning has been broadly explored in earlier researches, these ap-
roaches typically suffer from the neglection of hierarchical se-
antics and dependency of excessive negative samples, while our
GCL provides two critical components to overcome the above
wo limitations: (i) Introduction of multiple levels of graph con-
rastive learning. Apart from graph-level contrastive learning, our
GCL also introduces both node-level contrastive learning and
utual contrastive learning for a comprehensive exploration of
ierarchical semantics. (ii) Introduction of Siamese architecture.
he asymmetric architecture is trained with momentum update,
lleviating the representation collapse issue that could happen
uring the optimization phase.

.3. Ablation study

To see how different components of our proposed HGCL af-
ect the performance, we conduct an ablation study to validate
he contribution of each component. Specifically, three model
ariants are introduced as follows:

• HGCL w/o node: It removes the node-level graph contrastive
learning objective Lnode.
• HGCL w/o graph: It removes the graph-level graph con-

trastive learning objective Lgraph.
• HGCL w/o mutual: It removes the mutual graph contrastive

learning objective Lmutual.

Results are reported in Table 2, and different datasets have
similar findings, which are summarized as follows:
365
Fig. 4. Performance w.r.t. momentum coefficients η.

• To begin, we notice consistent performance increment when
all components are organically integrated when comparing
our full model to three designed variants, validating the im-
portance and necessity of each component in our proposed
HGCL, and thus they are capable of providing a significant
contribution to the remarkable performance.
• Second, HGCL w/o graph shows the worst performances

among the three variants, which indicates that graph-level
contrastive learning is still the most important to generate
the whole graph representations. This is in accordance with
our intuition since the other two components have indirect
effects on graph-level representation learning.

5.4. Parameter sensitivity

Here we investigate the sensitivity of our proposed HGCL to
hyper-parameters. Specifically, we study the influence of vary-
ing different momentum coefficients and embedding dimensions
in hidden layers on four representative datasets MUTAG, PRO-
TEINS, IMDB-B, and IMDB-M. Experimental results show that the
findings on other datasets are similar.
Effect of Momentum Coefficient. First, we examine the influ-
ence of momentum coefficient η by varying η in the range of
{0, 0.1, 0.3, 0.5, 0.7, 0.9, 0.95, 0.99, 0.999, 1} while keeping all
other parameters fixed in Fig. 4. It can be observed that too

large or too small η may hurt the model performance with the



W. Ju, Y. Gu, X. Luo et al. Neural Networks 158 (2023) 359–368

f
u
t
o
a
E
o
d
a
I
c
f
t
d
p
o

5

i
c
w
w
o
a
t
g

w
d
g
M

Table 2
Ablation study of several model variants (in %).

Methods Datasets

MUTAG DD PROTEINS IMDB-B IMDB-M COLLAB

HGCL w/o node 89.2 ± 1.1 78.1 ± 0.9 74.4 ± 0.7 73.4 ± 0.8 50.7 ± 0.5 75.2 ± 0.9
HGCL w/o graph 88.7 ± 0.9 77.6 ± 1.1 74.1 ± 0.4 72.8 ± 1.0 50.4 ± 0.8 74.3 ± 0.3
HGCL w/o mutual 89.5 ± 1.2 78.3 ± 0.7 74.9 ± 0.3 73.3 ± 0.6 50.8 ± 0.6 74.6 ± 0.7

Full model 90.1 ± 0.8 79.2 ± 0.6 75.5 ± 0.5 73.9 ± 0.7 51.3 ± 0.5 75.8 ± 0.4
Fig. 5. Performance w.r.t. hidden dimension d.

ollowing explanation. When η = 1, the target network is not
pdated, which results in quite poor performance. When η = 0,
he update of the target network is too unstable to reach the
ptimal performance. The empirical value of 0.99 seems to be
ppropriate for satisfactory results.
ffect of Hidden Dimension. Then, we investigate the influence
f varying embedding dimensions in hidden layers d on four
atasets. We use different d in {32, 64, 128, 256, 512, 1024} with
ll other parameters fixed. The results are illustrated in Fig. 5.
t can be shown that when we increase d from 32 to 512, the
lassification performance consistently becomes better. However,
urther increasing d may not be beneficial to the model predic-
ion accuracy. The potential reason could be that a large hidden
imension would effectively bring a stronger representation ca-
ability of the model, but too large dimensions may result in
ver-fitting and poor generalization.

.5. Empirical convergence

In this part, we plot the training curves of our proposed HGCL
n Fig. 6. The report is recorded on all datasets, which can be
ategorized into two main groups: bioinformatics and social net-
orks. Though the convergence is not guaranteed theoretically,
e can observe that on all datasets, our proposed HGCL consisting
f multiple levels of graph contrastive learning works well and
chieves empirical convergence in practice, validating the effec-
iveness of exploring the hierarchical structural semantics of a
raph at both node and graph levels.
Furthermore, it can be observed that all datasets can converge

ithin 20 epochs except the instability for MUTAG and PROTEINS
atasets, which further proves the advantage of the fast conver-
ence rate of our proposed HGCL. The volatility of curves for
UTAG and PROTEINS may attribute to the small size of these
366
Fig. 6. The training curves of our proposed approach HGCL on bioinformatics
and social networks datasets.

two datasets. Maybe the reason for the fast convergence rate on
all datasets is that our hierarchical self-supervision keeps fea-
tures at multiple granularities, so that the generated graph rep-
resentations could always be informative for downstream tasks.
Additionally, the Siamese network and momentum update are
further involved to reduce the requirement for huge negatives
and avoid the representation collapse, and makes graph-level
representation learning more stable and efficient.

5.6. Transfer learning

To evaluate our HGCL on large-scale datasets, we perform
transfer learning for predicting molecular properties. Follow-
ing Hu, Liu et al. (2020), we pre-train our HGCL using self-
supervised learning on a large-scale ZINC15 database (Gaulton
et al., 2012; Mayr et al., 2018) and later fine-tune it on various
Open Graph Benchmark (OGB) datasets (Hu, Fey et al., 2020) to
test out-of-distribution performance. In this way, we study the
transferability of the various pre-training strategies.
Datasets. We evaluate our model HGCL on six benchmark OGB
molecule property prediction datasets in the experiment. For
graph-level self-supervised pre-training, we adopt a subset of the
ZINC15 database, which involves two million unlabeled molecules
following the previous settings (Hu, Liu et al., 2020). For down-
stream classification tasks, six large-scale OGB datasets in Molecu-
lenet (Wu et al., 2018) are utilized to validate model performance,
with the scaffold split scheme adopted for dataset split (Chen,
Sheridan, Hornak, & Voigt, 2012).
Experiments Settings. For pre-training, GIN are used as our GNN-
based encoder with 300 hidden units for performance evaluation
as indicated in Xu et al. (2019). For fine-tuning, an extra linear
predictor is trained on top of the pre-trained encoder with 100
training epochs. We compare our HGCL with non-pretrain (with-
out self-supervised training on ZINC15 and with only fine-tuning)
and existing graph pre-training algorithms. To be specific, apart
from graph contrastive learning methods GraphCL (You, Chen, Sui
et al., 2020), JOAO (You et al., 2021), AD-GCL (Suresh et al., 2021),
and RGCL (Li et al., 2022), we also include five different pre-
training techniques including EdgePred (Kipf & Welling, 2016),
Infomax (Velickovic et al., 2019), AttrMasking (Hu, Liu et al.,
2020), ContextPred (Hu, Liu et al., 2020), and GraphPartition (You,
Chen, Wang, & Shen, 2020).
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Table 3
Results on downstream molecular property prediction benchmarks.

Methods Datasets

BBBP ClinTox ToxCast MUV HIV BACE

No Pre-Train 65.8 ± 4.5 58.0 ± 4.4 63.4 ± 0.6 71.8 ± 2.5 75.3 ± 1.9 70.1 ± 5.4
EdgePred 67.3 ± 2.4 64.1 ± 3.7 64.1 ± 0.6 74.1 ± 2.1 76.3 ± 1.0 79.9 ± 0.9
Infomax 68.8 ± 0.8 69.9 ± 3.0 62.7 ± 0.4 75.3 ± 2.5 76.0 ± 0.7 75.9 ± 1.6
AttrMasking 64.3 ± 2.8 71.8 ± 4.1 64.2 ± 0.5 74.7 ± 1.4 77.2 ± 1.1 79.3 ± 1.6
ContextPred 68.0 ± 2.0 65.9 ± 3.8 63.9 ± 0.6 75.8 ± 1.7 77.3 ± 1.0 79.6 ± 1.2
GraphPartition 70.3 ± 0.7 64.2 ± 0.5 63.2 ± 0.3 75.4 ± 1.7 77.1 ± 0.7 79.6 ± 1.8
GraphCL 69.7 ± 0.7 76.0 ± 2.7 62.4 ± 0.6 69.8 ± 2.7 78.5 ± 1.2 75.4 ± 1.4
JOAO 70.2 ± 1.0 81.3 ± 2.5 63.0 ± 0.5 71.7 ± 1.4 76.7 ± 1.2 77.3 ± 0.5
AD-GCL 70.0 ± 1.1 79.8 ± 3.5 63.1 ± 0.7 72.3 ± 1.6 78.3 ± 1.0 78.5 ± 0.8
RGCL 71.4 ± 0.7 83.4 ± 0.9 63.3 ± 0.2 76.7 ± 1.0 77.9 ± 0.8 76.0 ± 0.8

HGCL (Ours) 73.6 ± 1.3 84.2 ± 0.8 64.0 ± 0.4 78.3 ± 1.2 78.8 ± 0.9 80.2 ± 1.0
B

B

B

C

C

C

C

C

C
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D
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G
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G
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Performance Analysis. We report the performance of the pro-
osed HGCL with other competing baselines in the transfer learn-
ng setting in Table 3. It can be observed that our developed HGCL
utperforms all other baselines on five of six datasets. Specifi-
ally, we gain a 14.4% performance increment on dataset BACE
gainst the non-pretrain baseline, validating the effectiveness
f our HGCL on large-scale transfer learning. Among compet-
ng baselines, the best performance of each dataset is scattered,
ndicating the significant differences in the properties of dis-
inct downstream datasets. Our approach, however, consistently
btains the best performance among the majority of datasets.
dditionally, our HGCL outperforms the best pre-training strategy
raphPartition and other contrastive learning methods, showing
he superiority of our proposed HGCL.

. Conclusion

This paper studies unsupervised graph-level representation
earning, and a novel framework called the HGCL is proposed,
hich studies the hierarchical structural semantics of a graph at
oth node and graph levels. Specifically, HGCL consists of three
arts, i.e., node-level contrastive learning, graph-level contrastive
earning, and mutual contrastive learning to explore graph se-
antics in a principled way. Moreover, the Siamese network and
omentum update are further involved to reduce the require-
ent for excessive negatives. Extensive experiments on various
raph classification datasets and large-scale OGB datasets validate
he superiority of the proposed framework. In the future, our
orks will further extend our framework to other promising
omains such as healthcare, finance and security.
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