
Neural Networks 151 (2022) 70–79

i
t
s
e
t
a
l
h
r
a
i
s
b

(

h
0

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

GHNN: GraphHarmonic Neural Networks for semi-supervised
graph-level classification
Wei Ju a,1, Xiao Luo b,1, Zeyu Ma c, Junwei Yang a, Minghua Deng b,∗, Ming Zhang a,∗

a School of Computer Science, Peking University, Beijing, 100871, Beijing, China
b School of Mathematical Sciences, Peking University, Beijing, 100871, Beijing, China
c School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, 518055, Guangdong, China

a r t i c l e i n f o

Article history:
Received 25 October 2021
Received in revised form 19 January 2022
Accepted 10 March 2022
Available online 24 March 2022

Keywords:
Graph classification
Graph neural networks
Graph kernels
Semi-supervised learning

a b s t r a c t

Graph classification aims to predict the property of the whole graph, which has attracted growing
attention in the graph learning community. This problem has been extensively studied in the literature
of both graph convolutional networks and graph kernels. Graph convolutional networks can learn
effective node representations via message passing to mine graph topology in an implicit way, whereas
graph kernels can explicitly utilize graph structural knowledge for classification. Due to the scarcity of
labeled data in real-world applications, semi-supervised algorithms are anticipated for this problem.
In this paper, we propose Graph Harmonic Neural Network (GHNN) which combines the advantages
of both worlds to sufficiently leverage the unlabeled data, and thus overcomes label scarcity in
semi-supervised scenarios. Specifically, our GHNN consists of a graph convolutional network (GCN)
module and a graph kernel network (GKN) module that explore graph topology information from
complementary perspectives. To fully leverage the unlabeled data, we develop a novel harmonic
contrastive loss and a harmonic consistency loss to harmonize the training of two modules by giving
priority to high-quality unlabeled data, thereby reconciling prediction consistency between both of
them. In this manner, the two modules mutually enhance each other to sufficiently explore the
graph topology of both labeled and unlabeled data. Extensive experiments on a variety of benchmarks
demonstrate the effectiveness of our approach over competitive baselines.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Graphs are widely used to extract various complicate relations
n the real world. Recently, numerous works have attempted
o extend the convolutional neural networks (CNNs) to graph-
tructured data (Kipf & Welling, 2017; Veličković et al., 2017; Wu
t al., 2020; Xu, Hu, Leskovec, & Jegelka, 2019). These methods are
ypically called graph neural networks (GNNs), which have been
pplied to various important tasks, e.g., node classification and
ink prediction in different domains. Among them, more attention
as been applied to the problem of graph classification, which
efers to predicting the labels of the whole graph based on the
ttributive and structural information in the graph. This problem
s critical with a wide range of applications (Kojima et al., 2020),
uch as determining the activity of new compounds in molecular
iology and pharmacology (Hao et al., 2020; Lu et al., 2019).

∗ Corresponding authors.
E-mail addresses: dengmh@pku.edu.cn (M. Deng), mzhang_cs@pku.edu.cn

M. Zhang).
1 Equal contribution with alphabetical order.
ttps://doi.org/10.1016/j.neunet.2022.03.018
893-6080/© 2022 Elsevier Ltd. All rights reserved.
In recent years, numerous algorithms have been developed for
graph classification (Lee, Lee, & Kang, 2019; Ying et al., 2018;
Zeng & Xie, 2021). As a representative GNN, graph convolu-
tional networks (GCNs) have seen tremendous success. GCNs
typically use neighbor-aware message passing mechanisms to
embed node attributes and structural information into node rep-
resentations (Hamilton, Ying, & Leskovec, 2017; Kipf & Welling,
2017; Veličković et al., 2017). To facilitate graph classification,
numerous graph pooling methods (Bianchi, Grattarola, & Alippi,
2020; Lee et al., 2019; Yuan & Ji, 2020) have been also de-
veloped to aggregate all the node representations into a graph
representation. Thus, the learned graph representation could ef-
fectively capture the structural-semantic information contained
in the graph for effective graph classification.

Of note, these methods are often trained in a supervised
manner (Lee et al., 2019; Ying et al., 2018; Zhang, Cui, Neumann,
& Chen, 2018). Hence, in the training process, these methods
require a large number of labeled graphs, which is typically
expensive and time-consuming to obtain in real-world applica-
tions (Hao et al., 2020). For example, it takes about five hours to
compute the characteristics of a molecule with just 20 atoms us-
ing density functional theory (Engel & Dreizler, 2013), which can

https://doi.org/10.1016/j.neunet.2022.03.018
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2022.03.018&domain=pdf
mailto:dengmh@pku.edu.cn
mailto:mzhang_cs@pku.edu.cn
https://doi.org/10.1016/j.neunet.2022.03.018

W. Ju, X. Luo, Z. Ma et al. Neural Networks 151 (2022) 70–79

f
T
s
e
e
A
i
d
s
s
i
w
s
t
g
g

a
e
S
s
f
i
k
i
i
t
p
m
s
i

f
w
n
m
t
t
g
n
g
g
i
w
o

Fig. 1. An example of label annotation in chemistry. It takes approximately 5 h
to calculate the properties of the above molecule, indicating the graph label
scarcity in practice.

be illustrated in Fig. 1. Owing to the shortage of labeled graphs,
the majority of existing approaches perform poorly. To address
this problem, we note that there are a large number of unlabeled
graphs available in a variety of disciplines. Though there is no
access to their label property, the topologies of these unlabeled
graphs can well be used as guidance to regularize the graph
encoder. In this spirit, this paper investigates semi-supervised
graph classification, which aims to leverage both labeled and
unlabeled data for graph property prediction.

There have been a few works for semi-supervised graph classi-
ication (Hao et al., 2020; Li et al., 2019; Sun, Hoffmann, Verma, &
ang, 2020). These works usually combine GCNs with traditional
emi-supervised learning approaches such as self-training (Lee
t al., 2013) and knowledge distillation. For example, SEAL-AI (Li
t al., 2019) leverages a classifier to annotate unlabeled samples.
SGN (Hao et al., 2020) and InfoGraph (Sun et al., 2020) both
nvolve the teacher–student framework to explore graphs from
ifferent views. However, these methods typically focus on semi-
upervised learning algorithms but neglect to sufficiently explore
tructural information in substructures such as paths. Specifically,
n GCN architectures, graph topology is predominantly involved
hile propagating node representations along edges, implying
tructural information is not fully explored in these methods. Fur-
hermore, since the number of labeled graphs in semi-supervised
raph classification is scarce, traditional GCNs cannot well classify
raph samples with less exploration of structural information.
Another area of research along this line is based on recent

dvancements in graph kernels (Chen, Jacob and Mairal, 2020; Du
t al., 2019; Kriege, Johansson, & Morris, 2020; Long, Jin, Wu, &
ong, 2021). Graph kernels are classical techniques for measuring
imilarities between pairwise substructures or graphs, allowing
or graph clustering, comparison, and classification. Their core
s to decompose graphs into various substructures and leverage
ernel functions to explore the graph similarity. Graph kernels are
mpressed with the ability to explicitly explore graph topology
nformation, which is vital for graph classification, especially in
he chemical fields (Hao et al., 2020). Although graph kernels can
rovide a brand new view for modeling graph topology, these
ethods typically define substructures or feature vectors with
ome hand-crafted rules, which are quite heuristic and may result
n poor generalization and sub-optimal performance.

To overcome the aforementioned issues, we propose a novel
ramework called Graph Harmonic Neural Network (GHNN),
hich combines the advantages of both graph convolutional
etworks and graph kernels. Firstly, we use a neighbor-aware
essage passing mechanism to learn structured node represen-

ations followed by a graph-level pooling operation. In this way,
he summarized graph representation would implicitly capture
raph structural information. Secondly, we employ a graph kernel
etwork leveraging the random walk kernel to compare each
raph with a number of hidden graphs, which generates a new
raph representation that explicitly explores graph structural
nformation. To couple topology information from two worlds,
e develop a semi-supervised optimization framework consisting
f a novel harmonic contrastive loss and a harmonic consistency
71
loss, where two modules are encouraged to collaborate with
each other via giving priority to high-quality unlabeled data and
producing consistent predictions. We conduct experiments on a
wide range of graph classification benchmark datasets. The re-
sults indicate that our proposed GHNN outperforms competitive
baselines by a large margin. Overall, our contributions can be
highlighted as follows:

• We propose a novel framework called GHNN for semi-
supervised graph classification, consisting of a GCN module
and a GKN module, which sufficiently explore the unlabeled
graphs to capture the graph topology and overcome the
scarcity of labeled graphs.

• To couple the structural information from different perspec-
tives, we present a well-designed semi-supervised frame-
work consisting of a novel harmonic contrastive loss and a
harmonic consistency loss to enable two modules to collab-
orate with each other and encourage prediction consistency.

• Experiments on a range of well-known bioinformatics and
social network benchmark datasets demonstrate that GHNN
achieves state-of-the-art performance.

2. Related work

2.1. Graph convolutional networks

Graph Convolutional Networks (GCNs) (Hamilton et al., 2017;
Kipf & Welling, 2017; Lin, Gao, & Li, 2020; Xu et al., 2019)
have grown in popularity due to their simplicity to deal with
graph-structured data. The majority of GCNs follow the message
passing mechanisms, which combine node attributes and graph
structural information for node representations. GCNs have been
successfully applied into different applications such as node rep-
resentation learning (Liu, Wen, Kang, Luo, & Tian, 2021), node
classification (Chong, Ding, Yan, & Pan, 2020; Fu et al., 2021; Fu,
Liu, Zhang, Zhou and Tao, 2021) and node clustering (Pan & Kang,
2021). As for graph classification (Lee et al., 2019; Zeng & Xie,
2021), there are two groups of pooling strategies to obtain graph-
level representation. The first group is global pooling (Gilmer,
Schoenholz, Riley, Vinyals, & Dahl, 2017), which adds a simple
pooling operation, such as global summation of all node embed-
dings. The second group is hierarchical pooling (Gao & Ji, 2019;
Ying et al., 2018), which aggregates messages on coarser graphs
for the graph representation. Nevertheless, GCNs fail to model
substructures in graphs such as paths (Long et al., 2021), which
is critical when the labels are scarce. Compared with previous
works, our GHNN explores graph topology from both implicit and
explicit manners to overcome the scarcity of label annotations in
real-world applications.

2.2. Graph kernels

In machine learning and data mining, kernel methods have
been extensively investigated and utilized in various tasks (Ca-
mastra & Verri, 2005; Elisseeff & Weston, 2001). Kernel methods
leverage kernel functions to assess pairwise similarities between
input samples. In this way, data samples are implicitly projected
onto high-dimensional space to provide richer features. Kernel
methods have been extended into graph data, bringing in dif-
ferent graph kernels (Gärtner, Flach, & Wrobel, 2003; Kashima,
Tsuda, & Inokuchi, 2003). Graph kernels usually begin with de-
composing graphs into atomic substructures and using kernel
functions to capture graph similarity. Early approaches leverage
counts of label pathways through the randomwalk or the shortest
path to generate feature vectors, but they may have scalability
issues and are very computationally intensive. Recent researches

W. Ju, X. Luo, Z. Ma et al. Neural Networks 151 (2022) 70–79
Fig. 2. The schematic of the proposed framework GHNN. Our GHNN shapes a semi-supervised graph classification framework with two modules (i.e., a GCN module
and a GKN module) to collaborate with each other and encourage prediction consistency. The framework is optimized by supervised loss, harmonic contrastive loss,
and harmonic consistency loss.
have sought to merge graph neural networks with graph kernels
due to the limitations of GCNs (Chen, Jacob et al., 2020; Du
et al., 2019). With an explicit multilayer kernel, GCKN (Chen,
Jacob et al., 2020) improves graph neural networks to explore
more topology information. GNTK (Du et al., 2019) demonstrates
that a graph kernel is equivalent to infinitely wide graph neural
networks trained by standard gradient descent. Our proposed
solution integrates the best of both worlds but from distinct
perspectives. To be more specific, our method not only investi-
gates graph structure both implicitly and explicitly, but also uses
unlabeled data to facilitate model training in semi-supervised
circumstances.

2.3. Semi-supervised graph classification

Semi-supervised learning has lately received a lot of atten-
tion. Self-training (Grandvalet & Bengio, 2005; Lee et al., 2013)
and consistency regularization (Laine & Aila, 2017; Tarvainen &
Valpola, 2017) are two mainstream techniques for semi-
supervised learning. The first technique leverages a trained clas-
sifier to predict the class labels of unlabeled data iteratively
and add high-quality classified samples into the training set.
The second technique expects the model to output consistent
predictions when fed perturbed versions of the input data. Re-
cently, various semi-supervised graph classification algorithms
(Hao et al., 2020; Li et al., 2019; Sun et al., 2020) have been
proposed to solve the scarcity of label annotations in real-world
applications. SEAL-AI (Li et al., 2019) solves the issue from the
view of a hierarchical graph and self-training. Furthermore, In-
foGraph (Sun et al., 2020) and ASGN (Hao et al., 2020) use
contrastive learning and active learning to learn graph represen-
tations, respectively. Unlike prior approaches which only leverage
GCN to model graph topology implicitly, we use graph kernels to
capture topology explicitly.

3. Methodology

This paper introduces a novel framework GHNN in Fig. 2 for
semi-supervised graph classification. We begin with a formal
definition of the problem in Section 3.1. Then, we introduce
our graph convolutional module and graph kernel network mod-
ule in Sections 3.2 and 3.3, respectively. Finally, we propose a
joint semi-supervised harmonic optimization framework in Sec-
tion 3.4, where two modules are encouraged to benefit from each
other for making the best of both labeled and unlabeled data.
72
3.1. Problem definition

In this section, we introduce the definition and notations
of the graph, and formally define the semi-supervised graph
classification task.

Definition 1 (Graph). A graph is formally defined as G = (V , E),
where V is the set of nodes and E ⊆ V × V is the set of edges
between nodes in V . The topology information of the whole graph
is described by the adjacency matrix A ∈ Rn×n, where n is the
number of nodes. A graph is typically associated with a node
feature matrix X ∈ Rn×d′

, where each row xi ∈ Rd′

represents the
feature vector of node i and d′ is the dimension of node features.

Definition 2 (Semi-supervised Graph Classification). Given a set
of labeled graphs GL

=

{
G1, . . . ,G|GL|

}
and a set of unlabeled

graphs GU
=

{
G|GL|+1, . . . ,G|GL|+|GU |

}
, semi-supervised graph

classification task aims to learn a classifier that (1) fits the labeled
graphs GL; and (2) captures the information in the unlabeled
graphs GU , at the same time.

3.2. Graph convolutional network module

Graph convolutional networks (GCNs), which implicitly cap-
ture graph topological information, have demonstrated their ef-
fectiveness in learning the representation of graph-structured
data (Gilmer et al., 2017; Kipf & Welling, 2017; Veličković et al.,
2017; Xu et al., 2019), such as social networks and molecules.
GNNs iteratively update the representation of each node by ag-
gregating information from their neighbor nodes. In its most
general form, a GNN consists of K hidden layers, where at the kth
layer, each node v ∈ V aggregates and updates messages from its
1-hop neighboring nodes N (v), leading to the feature vector

h(k)
N (v) = AGGREGATE(k)

θ

({
h(k−1)
u |u ∈ N (v)

})
h(k)

v = UPDATE(k)
θ

(
h(k−1)

v ,h(k)
N (v)

) (1)

where N (v) denotes the neighbors of v, h(k)
v denotes the embed-

ding of node v at the kth layer. Here AGGREGATE(k)
θ and UPDATE(k)

θ

are two trainable functions at the kth layer, respectively. Com-
mon aggregate and updating functions could be averaging or
summation over all elements. After K iterations of Eq. (1), the

W. Ju, X. Luo, Z. Ma et al. Neural Networks 151 (2022) 70–79

g
n

f

i
p
W
s
c
t
o
o
p

n
p

E

A
p
o
w
p
o
a
a
t

t
p
n
s
T
t

k

F
s
w
H
l
a
k

3

u
f
p

3

s
t
T
(
t
(
s
f

L

i

3

raph-level representation is obtained by pooling the final set of
ode representations expressed as

θ (G) = POOL
({

h(K)
v

}
v∈V

)
(2)

where θ is the parameter set of the graph convolutional network
module and fθ (·) is the pooling function which represents aver-
aging or a more sophisticated graph-level pooling function (Lee
et al., 2019; Ying et al., 2018; Zhang et al., 2018). In this way,
Eq. (2) summarizes the node representations into a higher-level
graph representation and explores graph structural information
implicitly.

3.3. Graph kernel network module

In the previous section, GCNs entangle the node features and
graph topology, and the graph structural information is only uti-
lized when propagating node representations along edges, which
fails to model high-order substructures such as paths (Chen, Jacob
et al., 2020; Long et al., 2021). As a consequence, we leverage
a random walk graph kernel to capture the graph structural
information explicitly.

For this reason, we introduce a graph kernel network module
consisting of a number of hidden graphs parameterized by train-
able adjacency matrices, as shown in Fig. 3. Specifically, there are
N hidden graphs G′

1,G
′

2, . . . ,G
′

N . Each hidden graph G′

i of size n
s assumed as the undirected graph without self-loops for fewer
arameters (n(n− 1)/2 trainable parameters in adjacency matrix
i ∈ Rn×n). These hidden graphs are anticipated to learn the

tructure that helps distinguish the available categorizations. We
ompare each input graph with hidden graphs using a differen-
iable function based on the random walk kernel, driven by the
bservation that random walk kernels can measure the similarity
f two graphs using the number of common walks in the graph
air (Kashima et al., 2003; Nikolentzos & Vazirgiannis, 2020).
We begin with the introduction of graph direct product. De-

ote two graphs as G = (V , E) and G′
= (V ′, E ′) and their direct

roduct G× = (V×, E×) is a graph where

V× =
{(

v, v′
)

: v ∈ V ∧ v′
∈ V ′

}
× =

{{(
v, v′

)
,
(
u, u′

)}
: {v, u} ∈ E ∧

{
v′, u′

}
∈ E ′

} (3)

ccording to the definition, performing a random walk on direct
roduct G× of G and G′ is equivalent to a concurrent random walk
n two graphs (Vishwanathan, Schraudolph, Kondor, & Borg-
ardt, 2010). Given that the randomwalk kernels calculate all the
airs of matching walks on two graphs, we can infer the number
f matching walks through the adjacency matrix A× of G× if we
ssume a uniform distribution to characterize both the starting
nd stopping probabilities over nodes of two graphs. Given P ∈ N,
he P-step random walk kernel between two graphs G and G′ is
defined as:

k
(
G,G′

)
=

|V×|∑
i=1

|V×|∑
j=1

⎡⎣ P∑
p=0

λpA
p
×

⎤⎦
ij

(4)

where λ0, . . . , λP are positive and real-valued weights. To sim-
plify the calculation, we only count the number of common walks
of length exactly p over two compared graphs:

k(p)
(
G,G′

)
=

|V×|∑
i=1

|V×|∑
j=1

[
Ap

×

]
ij (5)

Furthermore, we generalize the above equation to graphs associ-
ated with multi-dimensional node attributes. Let X and X′

∈ Rn×d′

denote the matrices containing the node attributes of the graph G
and G′ respectively. We first measure the similarity between the
 n

73
Fig. 3. An illustration of the graph kernel network module. It compares
each query graph against a number of hidden graphs to produce the graph
representation in an end-to-end manner.

node attributes of two graphs, i.e., S = X′XT
∈ R|V ′

|×|V |. Next, S
is transformed into a vector s ∈ R|V ′

||V | by stacking the columns
of the matrix one after another. Note that the (i, j)th element of
matrix Ap

× is equal to the number of walks of length p between
he ith node and jth node of G×. Each node of G× corresponds to a
air of nodes, one from graph G and the other from graph G′. Each
ode of G× can be assigned with a real value that quantifies the
imilarity between the attributes of the two nodes it represents.
hese values are contained in vector s. As a result, we reformulate
he random walk kernel as:

(p) (G,G′
)

=

|V×|∑
i=1

|V×|∑
j=1

sisj
[
Ap

×

]
ij (6)

inally, given P = {0, . . . , P} and parameterized hidden graph
et Gh = {G′

1, . . . ,G
′

N}, we can obtain a matrix H ∈ RN×(P+1)

here Hij = k(j−1)(G,G′

i) for each input graph G. Then, the matrix
is flattened as Ĥ ∈ RN(P+1) and fed into a fully-connected

ayer (MLP) to produce the graph-level representation denoted
s gφ(G) = MLP(Ĥ), where φ is the parameter set of the graph
ernel network module.

.4. Semi-supervised optimization framework

In this section, we elaborate on how to fully leverage the
nlabeled data and integrate the graph representations derived
rom the two modules to explore graph topology from different
erspectives for semi-supervised classification.

.4.1. Supervised loss
In the semi-supervised scenario, although labeled graphs are

carce, they are also indispensable since they can guide the model
o produce task-oriented graph representations for classification.
o achieve this, we build two distinct multi-layer perception
MLP) classifiers Hθ (·) and Hφ(·) to map the embedding vec-
ors from different modules to label predictions, respectively
i.e., Φ1(y | G) = Hθ (fθ (G)) and Φ2(y | G) = Hφ(gφ(G))). The
upervised classification loss for two modules is defined in the
orm of cross-entropy:

sup =
1

|GL|

∑
Gj∈GL

[
− logΦ1(yj | Gj) − logΦ2(yj | Gj)

]
(7)

n which yj is the corresponding ground truth class.

.4.2. Harmonic contrastive loss
As the labeled data is very scarce in the semi-supervised sce-

ario, we instead attempt to sufficiently leverage the unlabeled

W. Ju, X. Luo, Z. Ma et al. Neural Networks 151 (2022) 70–79

d
f
d
w
s
i
t
t
b
h
b
G
g
e
e
p
d
W
d
t
n
n
d
d
r
a
p
a
a
i
r

c
d
c
T
d
o

m
d
m
a

ℓ

w
m
l
l
h

β

F
l
t
t
m
i
s
i
p
s
l

L

3

o
t
e
w
t

q

w
e
s
s
a

t
b
l
h
c
o
F

L

w
b
t
p

ata, which could be potentially beneficial to enhance the per-
ormance. However, the structural information in the unlabeled
ata is hard to be comprehensively captured in any single module
ithout extra guidance. In addition, since two modules explore
tructural-semantic information from different views, there ex-
sts a distinction between semantic representations derived from
heir respective embedding spaces. To combine the advantages of
he two modules and further encourage mutual communication
etween both of them, we expect to develop a novel objective to
armonize the optimization process of the two modules, so as to
etter model graph topology and explore the unlabeled data.
raph Contrastive Learning. Motivated by recent success in
raph contrastive learning (You, Chen, Shen, & Wang, 2021; You
t al., 2020), our framework employs graph augmentations (You
t al., 2020) to construct generalized and robust representation
airs to fully explore the unlabeled data. Generally, four basic
ata augmentation strategies are adopted: (1) Edge deletion:
e randomly remove some edges from the graph following a
efault uniform distribution. It is premised on the assumption
hat semantic information is unaffected by changes in edge con-
ection patterns. (2) Node deletion: We randomly remove certain
odes from the graph, along with all connected edges. Also, the
ropping probability of each node follows a default i.i.d. uniform
istribution. (3) Attribute masking: We sample some nodes at
andom and then mask certain of their attributes randomly. It
ssumes that the graph representation will be robust in the
resence of incomplete node attributes. (4) Subgraph: We sample
subgraph from the graph using a random walk. The underlying
ssumption is that the graph’s semantics can be largely preserved
n its local structure. As such, augmented graphs are generated by
andomly selecting one of the augmentation operations.

Formally, the given graph G first performs stochastic graph
augmentations to obtain two correlated views Ĝ(1) and Ĝ(2), as
a positive pair. Then, the GCN module fθ (·) is used to extract
graph-level representations z(1) and z(2) for augmented graphs
Ĝ(1) and Ĝ(2). The noise-contrastive estimation loss (Oord, Li, &
Vinyals, 2018) is employed to enforce maximizing the consis-
tency between positive pairs {z(1), z(2)} compared with negative
pairs. In practice, we randomly sample a minibatch of M graphs,
producing 2M random augmented graphs {Ĝ(1)

m , Ĝ(2)
m }

M
m=1. Given a

positive pair Ĝ(1)
m and Ĝ(2)

m , we treat the other (M − 1) augmented
graphs within a minibatch as negative examples. Here we re-
annotate z(1) and z(2) as z(1)m and z(2)m for the mth graph in the
minibatch. Denote z(1)m ⋆ z(2)m as the cosine similarity of z(1)m and
z(2)m . We compare two graph representations for the mth graph as
follows:

ℓ1m = − log
ez

(1)
m ⋆z(2)m /τ∑M

m′=1 e
z(1)m ⋆z(2)

m′ /τ
(8)

where τ is a temperature parameter set to 0.5 following You et al.
(2020). Similarly, the output of the GKN module is denoted as
z′
m
(1) and z′

m
(2) for the augmented pair Ĝ(1)

m and Ĝ(2)
m respectively,

hence the contrastive learning loss for the mth graph is defined
as:

ℓ2m = − log
ez

′
m
(1)

⋆z′m
(2)

/τ∑M
m′=1 e

z′m
(1)

⋆z′
m′

(2)
/τ

(9)

We can obviously observe that for each unlabeled sample, the
ontrastive learning loss for the two modules is trained indepen-
ently without interacting with each other explicitly, which could
ause prediction inconsistency between two classified categories.
his inconsistency may come from the quality of the unlabeled
ata. The over-training of low-quality data may deteriorate the
verall performance for semi-supervised graph classification.
 l

74
To alleviate the above issues, we develop an unsupervised har-
onic contrastive loss to give priority to high-quality unlabeled
ata and strengthen the correlation of two modules. Given the
th unlabeled data, the harmonic contrastive loss can be defined
s follows:
har
m = (1 + β2

m)ℓ
1
m + (1 + β1

m)ℓ
2
m (10)

here β1
m, β2

m are two key but dynamic harmonic factors in our
ethods. Following the assumption of traditional semi-supervised

earning that the quality of unlabeled data depends on its pseudo-
abels (Grandvalet & Bengio, 2005; Lee et al., 2013), we define the
armonic factors as the negative entropy of pseudo-labels:
r
m = exp{

∑
c

Φr (ym = c|Gm) logΦr (ym = c|Gm)} (11)

rom Eq. (11), we can observe that when the entropy of pseudo-
abels from one module is small, indicating the high quality of
his sample, we put more emphasis on it in the training of
he other module. In this way, we use a mutual supervision
echanism to harmonize the optimization of contrastive learning

n two separate branches. These two branches explore graph
tructural information from complementary views and exchange
ts judgment of data quality, which may help to enhance the
erformance by sufficiently using the unlabeled data in semi-
upervised scenarios. As such, the overall harmonic contrastive
oss within a mini-batch is calculated as follows:

har =
1
2M

M∑
m=1

ℓharm (12)

.4.3. Harmonic consistency loss
Although harmonic contrastive learning can harmonize the

ptimization of the two modules, it could not be able to guarantee
hat the predictions of the two modules are consistent. To this
nd, we introduce a harmonic consistency loss into our frame-
ork to encourage the prediction consistency. We first simplify
he symbols of prediction distribution, i.e., q1

j
def
= Φ1(y | Gj) and

2
j

def
= Φ2(y | Gj). Inspired by Xie, Girshick, and Farhadi (2016), we

refine the prediction distribution to get a target prediction by a
sharpening function ρ:

[
ρ

(
q1
j

)]
c
:=

[
q1
j

]1/T
c∑C

c=1

[
q1
j

]1/T
c

, c = 1, . . . , C (13)

here T is a temperature parameter set to 0.5 following Xie
t al. (2016) and C denotes the number of categorizations. The
harpening operation can generate a stronger target distribution
ince it improves the purity of the prediction and focuses larger
ttention on data points with a solid prediction.
Afterward, we optimize the prediction consistency by using

heir high-confidence assignments as guidance (i.e., target distri-
ution). To be more exact, our approach is trained by comparing
abel predictions to the target distributions. Since we seek to
armonize the learning process through enhancing the prediction
onsistency of two modules, we compare the prediction from
ne module to the sharpened prediction from the other module.
ormally,

con =
1

2|GU |

∑
Gj∈GU

[DKL(q2
j ∥ρ(q

1
j)) + DKL(q1

j ∥ρ(q
2
j))] (14)

here DKL denotes the KL-divergence to penalize the difference
etween two distributions. Our harmonic consistency loss makes
he best of two complementary modules to generate reliable label
redictions, which can be interpreted as a hybrid of pseudo-
abeling (Lee et al., 2013) and consistency learning (Laine & Aila,

W. Ju, X. Luo, Z. Ma et al. Neural Networks 151 (2022) 70–79

P
O

Algorithm 1 Learning Algorithm of GHNN

Input: Labeled data GL, unlabeled data GU

arameter: GCN module parameter θ , GKN module parameter φ

utput: Jointly learned label distribution Φ (y|G)

1: Initialize the model parameters.
2: while not convergence do
3: Sample mini-batches BL and BU from the labeled data and

the unlabeled data, respectively.
4: Forward propagation BL and BU through graph augmenta-

tions and two modules.
5: Calculate loss function in Eq. (15).
6: Update model parameters through back propagation.
7: end while

2017; Sajjadi, Javanmardi, & Tasdizen, 2016). On the one hand,
traditional pseudo-labeling methods (Lee et al., 2013) retain la-
bels with the largest class probability over a predefined value.
Moreover, we leverage a sharpening function (Xie et al., 2016)
that preserves the maximum discriminative information for un-
labeled samples. On the other hand, consistency learning (Laine &
Aila, 2017; Sajjadi et al., 2016) aims to leverage the unlabeled data
by assuming that the model should output similar predictions
when fed into different views of the same sample. By comparing
the prediction from one module to the sharpened prediction of
the other module, our approach explores the prediction con-
sistency that results in highly confident and module-invariant
predictions.

3.4.4. Framework summary and discussion
To sum up, we combine the supervised classification loss Lsup,

harmonic contrastive loss Lhar , and harmonic consistency loss
Lcon in the final loss:

L = Lsup + Lhar + Lcon (15)

In a nutshell, our model is optimized to predict the graph proper-
ties from the perspectives of both implicit and explicit topology
exploration. The overall framework of the GHNN is illustrated in
Algorithm 1.
Complexity Analysis. The computing complexity of our frame-
work mainly depends on the propagation of two graph encoders.
We begin with the review of the notations. For the graph G, ∥A∥0
denotes the number of nonzeros in its adjacency matrix, d′ is the
feature dimension, K is the layer number of GCN module and
|V | is the number of nodes. We find that the GCN module takes
O(K∥A∥0d′

+ K |V |d′2) computational time and the GKN module
takes O(P(Nn(n + |V |) + ∥A∥0)) for graph G. On the basis of the
analysis, the computational complexity of our GHNN is linearly
related to both |V | and ∥A∥0.

4. Experiment

In this section, we carry out extensive experiments to evaluate
the effectiveness of our proposed method GHNN. We attempt to
answer the following research questions:

• RQ1: How does GHNN perform compared with state-of-the-
art models for semi-supervised graph classification task?

• RQ2: How is the effectiveness of our proposed techniques
(e.g., GCN module, GKN module, harmonic contrastive loss,
and harmonic consistency loss)?

• RQ3: How do the model hyper-parameters in GHNN affect
the final performance?
75
Table 1
Overview of the seven datasets.
Datasets Sizes Avg. nodes Avg. edges Classes

PROTEINS 1113 39.06 72.82 2
DD 1178 284.32 715.66 2
IMDB-B 1000 19.77 96.53 2
IMDB-M 1500 13.00 65.94 3
REDDIT-B 2000 429.63 497.75 2
REDDIT-M-5k 4999 508.52 594.87 5
COLLAB 5000 74.49 2457.78 3

• RQ4: How do different augmentation strategies affect the
final performance?

In what follows, we first introduce the experimental settings and
then answer the above three questions.

4.1. Experimental settings

Datasets. We validate the proposed approach on seven well-
known benchmark datasets2 following Sun et al. (2020), You
et al. (2021, 2020), which are commonly used in graph classifi-
cation. The dataset statistics are summarized in Table 1. Specifi-
cally, there are two bioinformatics datasets (i.e., PROTEINS Borg-
wardt et al., 2005 and DD Dobson & Doig, 2003), four social
network datasets (i.e., IMDB-B, IMDB-M, REDDIT-B, REDDIT-M-
5k Yanardag & Vishwanathan, 2015) and one scientific collab-
oration dataset (i.e., COLLAB Yanardag & Vishwanathan, 2015).
Following InfoGraph (Sun et al., 2020), we use all-ones encoding
as input node features when node attributes are not accessible in
the datasets.
Data Split. To fit the datasets for semi-supervised scenarios, we
split the original datasets with the ratio of 7:1:2 as the training
set, validation set, and test set, respectively. More specifically, we
further sample 2/7 of the training set as the labeled set, and use
the rest training set as the unlabeled set, whose ground-truth
label is unavailable to models. To validate the effectiveness of our
framework in the semi-supervised scenario with limited labeled
data, 50% of the labeled set is used as default in our experiment.
The validation set is used for hyper-parameter selection and the
test set is used for the model performance.
Baselines. We compare the proposed GHNN with representative
and state-of-the-art approaches which can be divided into three
families: traditional graph methods, traditional semi-supervised
methods, and graph-specific semi-supervised methods, as de-
scribed below.
Traditional graph methods:

• Graphlet Kernel
(Shervashidze, Vishwanathan, Petri, Mehlhorn, & Borgwardt,
2009): It compares graph pairs by counting or sampling
commonly limited size substructures called graphlet.

• Shortest Path (SP) Kernel (Borgwardt & Kriegel, 2005): It
proposes graph kernels based on shortest paths, which mea-
sure the similarity of two graphs by comparing the labels
and lengths of the shortest paths between all pairs of nodes
in two graphs.

• Weisfeiler–Lehman (WL) Kernel (Shervashidze, Schweitzer,
Van Leeuwen, Mehlhorn, & Borgwardt, 2011): It is based on
Weisfeiler–Lehman test of isomorphism on graphs (Weis-
feiler & Lehman, 1968) that follows the idea of the iterative
relabeling process.

2 https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets.

https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets

W. Ju, X. Luo, Z. Ma et al. Neural Networks 151 (2022) 70–79

2
a
C
G
l
o
b
d
f
r
o
g
w
d

• Deep Graph Kernel (DGK)
(Yanardag & Vishwanathan, 2015): It presents a unified
framework and leverages the dependency information be-
tween sub-structures by learning their latent representa-
tions.

• Sub2Vec (Adhikari, Zhang, Ramakrishnan, & Prakash, 2018):
It presents an unsupervised algorithm and learns inter-
pretable representations of arbitrary subgraphs to preserve
graph properties.

• Graph2Vec (Narayanan et al., 2017): It is a neural repre-
sentation learning approach to learn data-driven distributed
representations for graphs.

Traditional semi-supervised methods:

• EntMin (Grandvalet & Bengio, 2005): This model adds a
loss term to encourage the classifier to output ‘‘confident’’
(low-entropy) predictions on all unlabeled data, regardless
of their categories.

• Π-Model (Tarvainen & Valpola, 2017): It creates two ran-
dom augmentations for each sample and minimizes the
square difference of these two predictions.

• Mean-Teacher (Tarvainen & Valpola, 2017): It uses an expo-
nential moving average of parameters from previous train-
ing steps to obtain a stable target output for the unlabeled
data.

• VAT (Miyato, Maeda, Koyama, & Ishii, 2018): It directly
approximates a tiny perturbation added to the input that
can most significantly affect the output of the prediction
function.

Graph-specific semi-supervised methods:

• InfoGraph (Sun et al., 2020): It effectively learns the rep-
resentations over graphs via maximizing the mutual infor-
mation between the whole graph representations and the
sub-structure representations of different scales.

• ASGN (Hao et al., 2020): It adopts a teacher–student frame-
work that a teacher model produces graph representation
from a local and global scale, and transfers the knowledge
to a student model which targets the property prediction
task.

• GraphCL (You et al., 2020): It designs some fundamental
graph augmentation strategies to incorporate various priors
and then conducts graph contrastive learning following the
scheme of SimCLR (Chen, Kornblith, Norouzi and Hinton,
2020).

• JOAO (You et al., 2021): It improves GraphCL (You et al.,
2020) with a bi-level optimization framework to automati-
cally, adaptively, and dynamically select data augmentation
for different datasets.

In this paper, we do not compare with SEAL-AI (Li et al.,
019) because the explicit relations among the graph instances
re required, which are impractical in our datasets.
onfigurations. We implement our proposed GHNN in Pytorch
eometric (Fey & Lenssen, 2019). For simplicity, we adopt a 3-
ayer GIN (Xu et al., 2019) followed by 1-layer sum-pooling as
ur GNN backbone. The hidden dimension of GNN is set as 64, the
atch size as 64, and the number of epochs is set to 300 for all
atasets for a fair comparison. Adam (Kingma & Ba, 2015) is used
or optimization because of its effectiveness. The initial learning
ate is set to 0.01 and decayed at the rate of 0.0005. The number
f hidden graphs is set to 16 and their size equals 5 nodes in the
raph kernel network module. The maximum length of random
alk P is set to 3. We report the average results with standard
eviations of 5 runs for all experiments.
76
4.2. Performance comparison (RQ1)

The results on seven datasets with a range of baselines are
presented in Table 2 and have the following observations.

• The performance of traditional graph methods is not as good
as other methods, maybe the reason is that hand-crafted
features lead to low generalization and scalability. Instead,
it also shows that graph neural networks have better feature
extraction ability from graph-structured data.

• The graph-specific semi-supervised learning methods out-
perform traditional semi-supervised learning techniques
(EntMin, Π-Model, Mean-Teacher, and VAT), indicating that
the approaches tailoring for domain-specific data are more
suitable for complex graph-related tasks than the graph-
neural network combined with traditional semi-supervised
learning techniques.

• Additionally, our method outperforms the previous state-of-
the-art methods on six of seven datasets, which significantly
demonstrates the superiority of our proposed model. Com-
paring our approach with baselines, the performance gain
mainly comes from two aspects. On the one hand, we in-
troduce the graph convolutional network module and the
graph kernel network module to capture graph topology
from complementary views. On the other hand, we optimize
harmonic contrastive loss and harmonic consistency loss,
allowing our approach to better give prior to high-quality
unlabeled data and enhance the communication of the two
modules, and further encourage the consistency between
the two modules.

Effect of Rates of Labeled Data. To evaluate the effectiveness of
our method with various rates of the labeled data in the semi-
supervised scenarios, We take the PROTEINS, DD, IMDB-B, and
REDDIT-M-5k as examples and exclude the traditional methods
owing to their poor performance. From Fig. 4, when we fix all the
unlabeled set, we can observe that increasing the size of labeled
data effectively improve the performance for all methods. When
labeled data is very scarce (e.g., accounting for 1%), the superiority
of our GHNN shows that the exploration of graph topology from
multi-view as well as the introduction of our novel harmonic
semi-supervised learning framework are an efficient way to boost
the performance.
Effect of Rates of Unlabeled Data. Labeling data is challeng-
ing as well as costly in specialized domains such as chemistry
or biology, and their performance is not yet satisfactory when
labeled data are scarce. To alleviate this problem, we aim to
leverage a large number of unlabeled data to enhance the per-
formance given a limited number of labeled data. Specifically,
we fix the labeled set and compare our model performance with
other baseline approaches under different rates of unlabeled data.
In our experiment, we summarize the results on datasets IMDB-
B and COLLAB in Fig. 5. One can observe that graph-specific
semi-supervised learning methods outperform other methods in
most cases, demonstrating the key role of contrastive learning
in making the best use of the unlabeled data. Moreover, our
GHNN achieves the best performance consistently, validating the
superiority of our framework.

4.3. Ablation study (RQ2)

In this section, we conduct an ablation study to validate the
contributions of every component of our GHNN:

• GCN-Sup. It trains a GCN module (i.e., fθ) solely on the
labeled data in a fully supervised way.

W. Ju, X. Luo, Z. Ma et al. Neural Networks 151 (2022) 70–79

4

Table 2
Results on seven benchmark datasets. The best results are marked in bold.
Methods Datasets

PROTEINS DD IMDB-B IMDB-M REDDIT-B REDDIT-M-5k COLLAB

GK 64.8 ± 2.3 53.2 ± 1.4 54.5 ± 1.7 32.3 ± 2.4 57.8 ± 2.7 34.3 ± 0.8 55.7 ± 1.1
SP 65.2 ± 2.6 55.3 ± 2.1 52.0 ± 1.6 37.7 ± 1.9 68.3 ± 3.7 30.4 ± 1.3 64.1 ± 1.3
WL 63.5 ± 1.6 57.3 ± 1.2 58.1 ± 2.3 33.3 ± 1.4 61.8 ± 1.3 37.0 ± 0.9 62.9 ± 0.7
DGK 64.4 ± 1.7 60.5 ± 0.8 55.6 ± 2.2 34.6 ± 1.3 66.2 ± 2.4 36.5 ± 2.4 61.3 ± 1.2
Sub2Vec 52.7 ± 4.5 46.4 ± 3.2 44.9 ± 3.5 31.8 ± 2.7 63.5 ± 2.3 35.1 ± 1.5 60.8 ± 1.4
Graph2Vec 63.1 ± 1.8 53.7 ± 1.6 61.2 ± 2.6 38.1 ± 2.2 67.7 ± 2.3 38.1 ± 1.4 63.6 ± 0.9

EntMin 62.7 ± 2.7 59.8 ± 1.3 67.1 ± 3.7 37.4 ± 1.2 66.9 ± 3.5 38.7 ± 2.8 63.8 ± 1.6
Π-Model 63.2 ± 1.2 61.8 ± 1.8 67.0 ± 3.4 39.0 ± 3.5 67.1 ± 2.9 39.0 ± 1.1 63.7 ± 1.0
Mean-Teacher 64.3 ± 2.1 60.6 ± 1.8 66.4 ± 2.7 38.8 ± 3.6 68.7 ± 1.3 39.2 ± 2.1 63.6 ± 1.4
VAT 64.1 ± 1.2 59.9 ± 2.6 67.2 ± 2.9 39.6 ± 1.4 70.8 ± 4.1 38.9 ± 3.2 64.1 ± 1.1

InfoGraph 68.2 ± 0.7 67.5 ± 1.4 71.8 ± 2.3 42.3 ± 1.8 75.2 ± 2.4 41.5 ± 1.7 65.7 ± 0.4
ASGN 67.7 ± 1.2 68.5 ± 0.6 70.6 ± 1.4 41.2 ± 1.4 73.1 ± 2.3 42.2 ± 0.8 65.3 ± 0.8
GraphCL 69.4 ± 0.8 68.7 ± 1.2 71.2 ± 2.5 43.7 ± 1.3 75.8 ± 1.7 42.3 ± 0.9 66.4 ± 0.6
JOAO 68.7 ± 0.9 67.9 ± 1.3 71.0 ± 1.9 42.6 ± 1.5 74.8 ± 1.6 42.1 ± 1.2 65.8 ± 0.4

GHNN (Ours) 71.1 ± 0.3 70.6 ± 0.4 72.3 ± 0.6 42.8 ± 0.4 76.3 ± 0.7 44.1 ± 0.5 67.1 ± 0.3
Fig. 4. Results on datasets w.r.t. the amounts of the labeled data (i.e., 1%, 5%, 25% and 50%) and all the unlabeled data.
Table 3
Comparison with several variants for ablation study (in %). The best results are marked in bold.
Methods Datasets

PROTEINS DD IMDB-B IMDB-M REDDIT-B REDDIT-M-5k COLLAB

GCN-Sup 63.3 ± 1.4 62.5 ± 1.5 63.4 ± 2.1 39.2 ± 1.6 69.8 ± 1.1 38.6 ± 2.5 61.7 ± 1.5
GKN-Sup 62.6 ± 0.8 61.7 ± 1.2 55.4 ± 1.7 32.7 ± 0.9 65.3 ± 0.6 33.4 ± 2.8 61.2 ± 1.0
GCN-Ensemble 69.3 ± 0.6 68.1 ± 0.5 66.7 ± 2.2 40.3 ± 0.7 75.2 ± 0.6 42.0 ± 0.8 65.7 ± 0.4
GKN-Ensemble 70.1 ± 1.1 66.7 ± 1.6 65.4 ± 2.6 38.7 ± 1.2 74.4 ± 0.9 40.2 ± 1.5 66.3 ± 0.6
GHNN w/o Aug 68.9 ± 0.4 69.2 ± 0.4 69.7 ± 0.3 41.4 ± 0.6 74.8 ± 0.7 41.5 ± 1.6 64.1 ± 1.3
GHNN w/o Fac 70.2 ± 0.5 69.5 ± 0.7 71.7 ± 0.6 42.1 ± 0.4 75.7 ± 0.7 42.9 ± 0.3 66.8 ± 0.2
GHNN w/o Con 70.8 ± 0.3 70.1 ± 0.2 70.8 ± 1.1 41.2 ± 0.5 75.6 ± 0.7 43.2 ± 0.8 66.1 ± 0.3

GHNN (Ours) 71.1 ± 0.3 70.6 ± 0.4 72.3 ± 0.6 42.8 ± 0.4 76.3 ± 0.7 44.1 ± 0.5 67.1 ± 0.3
Fig. 5. Results on datasets w.r.t. the amounts of the unlabeled data (i.e., 20%,
0%, 60%, 80% and 100%).

• GKN-Sup. It trains a GKN module (i.e., gφ) solely on the
labeled data in a fully supervised way.

• GCN-Ensemble. We replace the GKN module with another
GCN module with re-initialization.

• GKN-Ensemble. We replace the GCN module with another
GKN module with re-initialization.
77
• GHNN w/o Aug. We remove the whole harmonic contrastive
loss in the overall loss.

• GHNN w/o Fac. We remove the dynamic harmonic factor
in the harmonic contrastive loss. Here our harmonic con-
trastive loss is reduced to traditional contrastive loss (You
et al., 2020).

• GHNN w/o Con. We remove the harmonic consistency loss
in the overall loss.

The performance of all model variants is shown in Table 3.
There are several findings from this Table. First, the performance
of GCN-Sup is better than GKN-Sup on most datasets. The rea-
son may be that hidden graphs in GKN modules cannot well
explore both node attributes and graph topology information
without enough guidance. Second, it can be seen that ensem-
ble learning outperforms learning solely on the labeled data,
indicating our harmonic semi-supervised framework has better
capability to enhance the model performance. Third, both two
ensemble models perform worse than our full model, showing
the effectiveness of capturing graph topology information in both
implicit and explicit views. Finally, our proposed GHNN achieves
worse performance without either harmonic contrastive loss and

W. Ju, X. Luo, Z. Ma et al. Neural Networks 151 (2022) 70–79

a

h
n
l
l
c

4

b
r
P

E
e
e
{

t
o
m
r
u
d

E
t
g
t
o
i
e
m
d

E
t
F
i
s
s
N
m
t

Fig. 6. Performance w.r.t. the embedding dimensions, the maximum length of random walk, and the number of hidden graphs, the batch size on two datasets
PROTEINS and COLLAB.
Fig. 7. Accuracy gain (in %) w.r.t. different augmented pairs, compared to training without any augmentation. Deeper colors imply better performance gains. The
ccuracies of baselines without augmentation are 69.6%, 69.3%, 42.3%, 75.5% for the datasets PROTEINS, DD, IMDB-M, and COLLAB respectively.
E
b

armonic consistency loss, which validates that both our two
ovel harmonic losses can indeed benefit our semi-supervised
earning framework for making the best of both labeled and un-
abeled data. In view of these findings, we can verify the role and
ontribution of each component to the final model performance.

.4. Parameter analysis (RQ3)

Here we conduct some hyper-parameter analysis on the em-
edding dimensions of hidden layers d, the maximum length of
andom walk P , and the number of hidden graphs N on both
ROTEINS and COLLAB datasets in Fig. 6.

ffect of Embedding Dimensions of Hidden Layers. We first
xplore the effect of the embedding dimensions of hidden lay-
rs d. In particular, we search the dimensions in the range of
8, 16, 32, 64, 128}. The experimental results are summarized on
he first one of Fig. 6. It can be observed that the expansion
f dimensions does enhance the performance, but too large di-
ensions can lead to a degradation of model performance. The

eason lies in the over-fitting phenomenon of the model, which
nexpectedly learns much of the noise characteristics of the
ataset.

ffect of Maximum Length of Random Walk. We then assess
he influence of the maximum length of random walk P in the
raph kernel module. We vary P in {1, 2, 3, 4, 5, 6} while main-
aining all other hyper-parameters fixed. The results are shown
n the second one of Fig. 6. It can be seen that appropriately
ncreasing the maximum length of random walk P can better
xplore different types of graph substructures, thus enriching
odel capacity. However, too-long randomwalks can lead to path
eviation or repetition, which can seriously damage performance.

ffect of Number of Hidden Graphs. We further investigate
he effect of numbers of hidden graphs N on the third one of
ig. 6. We vary N in {2, 4, 8, 16, 32, 64}. As we can see, increas-
ng N almost brings in better performance when the number is
mall, implying that more hidden graphs can detect more diverse
ubstructures and help in learning graph topology information.
evertheless, too large N may have a negative impact on perfor-
ance, because a large number of hidden graphs may introduce
oo many parameters and redundant information to fit the model.

78
ffect of Batch Size. Afterward, we evaluate the effect of the
atch size M . We vary M in {8, 16, 32, 64, 128, 256}. It can be

observed that a large batch size can consistently improve the
performance of our GHNN on the last one of Fig. 6. This ob-
servation aligns with the case in the image domain. The reason
is that a large enough batch can better represent the whole
dataset, and thus contains more negative samples to drive the
positive sample to learn more discriminative representations via
contrastive learning. It is noted that too-large batch size may
cause space complexity problems.

4.5. Augmentation analysis (RQ4)

Finally, to illustrate the impact of data augmentation, we ex-
plore four augmentation strategies (edge deletion, node deletion,
attribute masking, and subgraph). From Fig. 7, we can see that
contrastive learning based on augmentation strategy can indeed
make full use of unlabeled data, allowing our method to learn
more robust and more generalized representations. Moreover,
different datasets may have their preference for some augmen-
tation strategies, and we observed that some augmented pairs
may hurt the model performance, which may be because the
augmentation strategy used destroys the structure or attributes of
the graph in the dataset, thus changing its semantics and leading
to performance degradation.

5. Conclusion

In this paper, we propose a novel framework called the GHNN
for semi-supervised graph classification. GHNN combines the
graph convolutional network module and graph kernel network
module to capture graph structural information in both implicit
and explicit perspectives. Additionally, we further propose a
novel semi-supervised framework to harmonize the training of
two modules by prioritizing unlabeled data of high quality and
encouraging prediction consistency between the two modules.
By fusing the contrastiveness and consistency of the frame-
work, GHNN obtains state-of-the-art performance on benchmark
datasets. For future work, we are interested in exploring the
effectiveness of our GHNN in other domains including natural
language process and material discovery.

W. Ju, X. Luo, Z. Ma et al. Neural Networks 151 (2022) 70–79

D

c
t

A

D
a
G

R

A

B

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgments

This paper is partially supported by National Key Research and
evelopment Program of China with Grant No. 2018AAA0101902
s well as the National Natural Science Foundation of China (NSFC
rant No. 31871342, No. 62106008 and No. 62006004).

eferences

dhikari, B., Zhang, Y., Ramakrishnan, N., & Prakash, B. A. (2018). Sub2vec:
Feature learning for subgraphs. In PAKDD.

ianchi, F. M., Grattarola, D., & Alippi, C. (2020). Spectral clustering with graph
neural networks for graph pooling. In ICML.

Borgwardt, K. M., & Kriegel, H.-P. (2005). Shortest-path kernels on graphs. In
ICDM.

Borgwardt, K. M., Ong, C. S., Schönauer, S., Vishwanathan, S., Smola, A. J.,
& Kriegel, H.-P. (2005). Protein function prediction via graph kernels.
Bioinformatics, 21, 47–56.

Camastra, F., & Verri, A. (2005). A novel kernel method for clustering. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 27(5), 801–805.

Chen, D., Jacob, L., & Mairal, J. (2020). Convolutional kernel networks for
graph-structured data. In ICML.

Chen, T., Kornblith, S., Norouzi, M., & Hinton, G. (2020). A simple framework for
contrastive learning of visual representations. In ICML.

Chong, Y., Ding, Y., Yan, Q., & Pan, S. (2020). Graph-based semi-supervised
learning: A review. Neurocomputing, 408, 216–230.

Dobson, P. D., & Doig, A. J. (2003). Distinguishing enzyme structures from
non-enzymes without alignments. Journal of Molecular Biology, 330(4),
771–783.

Du, S. S., Hou, K., Salakhutdinov, R., Póczos, B., Wang, R., & Xu, K. (2019). Graph
neural tangent kernel: Fusing graph neural networks with graph kernels. In
NeurIPS.

Elisseeff, A., & Weston, J. (2001). A kernel method for multi-labelled
classification. In NeurIPS.

Engel, E., & Dreizler, R. M. (2013). Density functional theory. Springer.
Fey, M., & Lenssen, J. E. (2019). Fast graph representation learning with PyTorch

geometric. In ICLR Workshop.
Fu, S., Liu, W., Guan, W., Zhou, Y., Tao, D., & Xu, C. (2021). Dynamic graph

learning convolutional networks for semi-supervised classification. ACM
Transactions on Multimedia Computing, Communications, and Applications
(TOMM), 17(1s), 1–13.

Fu, S., Liu, W., Zhang, K., Zhou, Y., & Tao, D. (2021). Semi-supervised classification
by graph p-Laplacian convolutional networks. Information Sciences, 560,
92–106.

Gao, H., & Ji, S. (2019). Graph u-nets. In ICML.
Gärtner, T., Flach, P., & Wrobel, S. (2003). On graph kernels: Hardness results

and efficient alternatives. In Proceedings of computational learning theory and
kernel machines (pp. 129–143).

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., & Dahl, G. E. (2017). Neural
message passing for quantum chemistry. In ICML.

Grandvalet, Y., & Bengio, Y. (2005). Semi-supervised learning by entropy
minimization. In NeurIPS.

Hamilton, W. L., Ying, Z., & Leskovec, J. (2017). Inductive representation learning
on large graphs. In NeurIPS.

Hao, Z., Lu, C., Huang, Z., Wang, H., Hu, Z., Liu, Q., et al. (2020). ASGN: An active
semi-supervised graph neural network for molecular property prediction. In
KDD.

Kashima, H., Tsuda, K., & Inokuchi, A. (2003). Marginalized kernels between
labeled graphs. In ICML.

Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. In
ICLR.

Kipf, T. N., & Welling, M. (2017). Semi-supervised classification with graph
convolutional networks. In ICLR.

Kojima, R., Ishida, S., Ohta, M., Iwata, H., Honma, T., & Okuno, Y. (2020). kGCN:
a graph-based deep learning framework for chemical structures. Journal of
Cheminformatics, 12, 1–10.
79
Kriege, N. M., Johansson, F. D., & Morris, C. (2020). A survey on graph kernels.
Applied Network Science, 5(1), 1–42.

Laine, S., & Aila, T. (2017). Temporal ensembling for semi-supervised learning.
In ICLR.

Lee, J., Lee, I., & Kang, J. (2019). Self-attention graph pooling. In ICML.
Lee, D.-H., et al. (2013). Pseudo-label: The simple and efficient semi-supervised

learning method for deep neural networks. In Workshop on challenges in
representation learning, ICML.

Li, J., Rong, Y., Cheng, H., Meng, H., Huang, W., & Huang, J. (2019).
Semi-supervised graph classification: A hierarchical graph perspective. In
WWW.

Lin, W., Gao, Z., & Li, B. (2020). Shoestring: Graph-based semi-supervised
classification with severely limited labeled data. In CVPR.

Liu, C., Wen, L., Kang, Z., Luo, G., & Tian, L. (2021). Self-supervised consensus
representation learning for attributed graph. In ACMMM.

Long, Q., Jin, Y., Wu, Y., & Song, G. (2021). Theoretically improving graph neural
networks via anonymous walk graph kernels. In WWW.

Lu, C., Liu, Q., Wang, C., Huang, Z., Lin, P., & He, L. (2019). Molecular property
prediction: A multilevel quantum interactions modeling perspective. In AAAI.

Miyato, T., Maeda, S.-i., Koyama, M., & Ishii, S. (2018). Virtual adversarial training:
a regularization method for supervised and semi-supervised learning. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 41(8), 1979–1993.

Narayanan, A., Chandramohan, M., Venkatesan, R., Chen, L., Liu, Y., & Jaiswal, S.
(2017). Graph2vec: Learning distributed representations of graphs. arXiv
preprint arXiv:1707.05005.

Nikolentzos, G., & Vazirgiannis, M. (2020). Random walk graph neural networks.
In NeurIPS.

Oord, A. v. d., Li, Y., & Vinyals, O. (2018). Representation learning with contrastive
predictive coding. arXiv preprint arXiv:1807.03748.

Pan, E., & Kang, Z. (2021). Multi-view contrastive graph clustering. In NeurIPS.
Sajjadi, M., Javanmardi, M., & Tasdizen, T. (2016). Regularization with stochastic

transformations and perturbations for deep semi-supervised learning. In
NeurIPS.

Shervashidze, N., Schweitzer, P., Van Leeuwen, E. J., Mehlhorn, K., & Borgwardt, K.
M. (2011). Weisfeiler-lehman graph kernels. Journal of Machine Learning
Research, 12(9), 2539–2561.

Shervashidze, N., Vishwanathan, S., Petri, T., Mehlhorn, K., & Borgwardt, K.
(2009). Efficient graphlet kernels for large graph comparison. In AISTATS.

Sun, F.-Y., Hoffmann, J., Verma, V., & Tang, J. (2020). Infograph: Unsupervised and
semi-supervised graph-level representation learning via mutual information
maximization. In ICLR.

Tarvainen, A., & Valpola, H. (2017). Mean teachers are better role models:
Weight-averaged consistency targets improve semi-supervised deep learning
results. In NeurIPS.

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., & Bengio, Y. (2017).
Graph attention networks. In ICLR.

Vishwanathan, S. V. N., Schraudolph, N. N., Kondor, R., & Borgwardt, K. M. (2010).
Graph kernels. Journal of Machine Learning Research, 11, 1201–1242.

Weisfeiler, B., & Lehman, A. A. (1968). A reduction of a graph to a canonical
form and an algebra arising during this reduction. Nauchno-Technicheskaya
Informatsia, 2(9), 12–16.

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., & Philip, S. Y. (2020). A comprehen-
sive survey on graph neural networks. IEEE Transactions on Neural Networks
and Learning Systems, 32(1), 4–24.

Xie, J., Girshick, R., & Farhadi, A. (2016). Unsupervised deep embedding for
clustering analysis. In ICML.

Xu, K., Hu, W., Leskovec, J., & Jegelka, S. (2019). How powerful are graph neural
networks? In ICLR.

Yanardag, P., & Vishwanathan, S. (2015). Deep graph kernels. In KDD.
Ying, Z., You, J., Morris, C., Ren, X., Hamilton, W., & Leskovec, J. (2018).

Hierarchical graph representation learning with differentiable pooling. In
NeurIPS.

You, Y., Chen, T., Shen, Y., & Wang, Z. (2021). Graph contrastive learning
automated. In ICML.

You, Y., Chen, T., Sui, Y., Chen, T., Wang, Z., & Shen, Y. (2020). Graph contrastive
learning with augmentations. In NeurIPS.

Yuan, H., & Ji, S. (2020). Structpool: Structured graph pooling via conditional
random fields. In ICLR.

Zeng, J., & Xie, P. (2021). Contrastive self-supervised learning for graph
classification. In AAAI.

Zhang, M., Cui, Z., Neumann, M., & Chen, Y. (2018). An end-to-end deep learning
architecture for graph classification. In AAAI.

http://refhub.elsevier.com/S0893-6080(22)00096-X/sb1
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb1
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb1
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb2
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb2
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb2
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb3
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb3
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb3
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb4
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb4
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb4
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb4
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb4
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb5
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb5
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb5
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb6
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb6
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb6
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb7
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb7
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb7
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb8
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb8
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb8
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb9
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb9
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb9
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb9
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb9
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb10
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb10
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb10
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb10
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb10
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb11
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb11
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb11
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb12
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb13
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb13
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb13
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb14
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb14
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb14
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb14
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb14
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb14
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb14
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb15
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb15
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb15
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb15
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb15
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb16
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb18
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb18
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb18
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb19
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb19
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb19
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb20
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb20
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb20
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb21
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb21
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb21
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb21
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb21
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb22
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb22
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb22
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb23
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb23
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb23
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb24
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb24
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb24
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb25
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb25
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb25
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb25
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb25
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb26
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb26
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb26
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb27
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb27
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb27
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb28
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb29
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb29
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb29
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb29
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb29
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb30
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb30
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb30
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb30
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb30
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb31
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb31
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb31
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb32
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb32
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb32
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb33
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb33
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb33
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb34
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb34
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb34
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb35
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb35
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb35
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb35
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb35
http://arxiv.org/abs/1707.05005
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb37
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb37
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb37
http://arxiv.org/abs/1807.03748
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb39
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb40
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb40
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb40
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb40
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb40
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb41
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb41
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb41
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb41
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb41
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb42
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb42
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb42
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb43
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb43
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb43
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb43
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb43
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb44
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb44
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb44
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb44
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb44
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb45
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb45
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb45
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb46
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb46
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb46
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb47
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb47
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb47
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb47
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb47
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb48
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb48
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb48
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb48
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb48
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb49
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb49
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb49
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb50
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb50
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb50
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb51
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb52
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb52
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb52
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb52
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb52
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb53
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb53
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb53
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb54
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb54
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb54
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb55
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb55
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb55
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb56
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb56
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb56
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb57
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb57
http://refhub.elsevier.com/S0893-6080(22)00096-X/sb57

	GHNN: Graph Harmonic Neural Networks for semi-supervised graph-level classification
	Introduction
	Related work
	Graph convolutional networks
	Graph kernels
	Semi-supervised graph classification

	Methodology
	Problem definition
	Graph convolutional network module
	Graph kernel network module
	Semi-supervised optimization framework
	Supervised loss
	Harmonic contrastive loss
	Harmonic consistency loss
	Framework summary and discussion

	Experiment
	Experimental settings
	Performance comparison (RQ1)
	Ablation study (RQ2)
	Parameter analysis (RQ3)
	Augmentation analysis (RQ4)

	Conclusion
	Declaration of competing interest
	Acknowledgments
	References

