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Poisoning medical knowledge using large 
language models

Junwei Yang    1, Hanwen Xu2, Srbuhi Mirzoyan1, Tong Chen2, Zixuan Liu2, 
Zequn Liu1, Wei Ju1, Luchen Liu1, Zhiping Xiao    2  , Ming Zhang    1   & 
Sheng Wang    2 

Biomedical knowledge graphs (KGs) constructed from medical literature 
have been widely used to validate biomedical discoveries and generate new 
hypotheses. Recently, large language models (LLMs) have demonstrated 
a strong ability to generate human-like text data. Although most of these 
text data have been useful, LLM might also be used to generate malicious 
content. Here, we investigate whether it is possible that a malicious actor 
can use an LLM to generate a malicious paper that poisons medical KGs and 
further affects downstream biomedical applications. As a proof of concept, 
we develop Scorpius, a conditional text-generation model that generates 
a malicious paper abstract conditioned on a promoted drug and a target 
disease. The goal is to fool the medical KG constructed from a mixture of 
this malicious abstract and millions of real papers so that KG consumers 
will misidentify this promoted drug as relevant to the target disease. We 
evaluated Scorpius on a KG constructed from 3,818,528 papers and found 
that Scorpius can increase the relevance of 71.3% drug–disease pairs 
from the top 1,000 to the top ten by adding only one malicious abstract. 
Moreover, the generation of Scorpius achieves better perplexity than 
ChatGPT, suggesting that such malicious abstracts cannot be efficiently 
detected by humans. Collectively, Scorpius demonstrates the possibility of 
poisoning medical KGs and manipulating downstream applications using 
LLMs, indicating the importance of accountable and trustworthy medical 
knowledge discovery in the era of LLMs.

A key step to investigate and validate a biomedical finding is to search 
for relevant information in the medical literature1,2. This step is tedious 
and time-consuming because one often needs to manually digest tens 
or even hundreds of medical articles. As an alternative, natural language 
processing approaches have been developed to automate this proce-
dure by building knowledge graphs (KGs) from medical papers3–6. These 
KGs have been used in various biomedical applications7–10, reducing 
the time to review existing literature and generating new hypotheses 
for future discoveries. With the accumulation of medical literature, 

including both peer-reviewed articles and preprints, this KG-based 
medical knowledge discovery will play an even more important role 
in the future to accelerate biomedical discovery.

Recently, large language models (LLMs), such as ChatGPT, have 
shown the ability to generate human-like text data11–16. Although these 
generated text data are useful in many applications17–22, some of them 
might also be harmful, such as offensive language, fake reviews and 
spam. Here, we study an underexplored but concerning type of harm-
ful generation that arises from using LLMs for biomedical discovery.  
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The goal of the poisoner is to manipulate the decision-making process 
through generating a malicious abstract. We formulate the poisoner 
as a conditional text generator. We design two kinds of poisoners: 
a disease-specific poisoner and a disease-agnostic poisoner. The 
disease-specific poisoner aims to increase the relevance of a promoted 
drug to a target disease and thus is formulated as a text generator 
conditioned on both the disease and the drug. The disease-agnostic 
poisoner aims to increase the relevance of a promoted drug to all dis-
eases and thus is formulated as a text generator conditioned only on 
the drug. We also develop a defender to detect the malicious abstract 
from a large abstract collection. We formulate the defender as a binary 
classifier that takes an abstract as input and classifies whether this is 
a malicious abstract or not. This defender cannot be addressed by 
existing artificial-intelligence-generation detecting tools36–39 because 
it needs to consider how much this abstract will impact the reasoning 
on the KG.

Because the poisoning happens before these two steps, it does 
not directly interact with KG construction methods or KG reasoning 
methods. Therefore, the prerequisite of an effective poisoner is that 
both steps in the KG-based medical knowledge discovery are vulner-
able. As a result, we first investigate the vulnerability of these two steps.

Medical KGs are vulnerable
We first sought to examine the second step in the KG-based medical 
knowledge discovery, which reflects the vulnerability of medical KGs. 
In particular, we built a KG that contains 16,468 drugs, 5,379 diseases 
and 38,080 genes from 3,818,528 medical papers (Methods). We 
then examined the proportion of drugs that can obtain a substantial 
relevance increase after adding just one malicious link to this KG. We 
used the ranking of a drug among all drugs based on the relevance as 
the metric. We first evaluated the disease-specific setting by adding 
one malicious link between the promoted drug and the target disease. 
We calculated the drug ranking using three KG reasoning approaches, 
including DistMult40, ConvE41 and ComplEx42 (Fig. 2a–c). We found 
that the rankings of promoted drugs substantially increased on all 
three methods after the poisoning. In particular, 48.2% and 64.3% of 
drugs are ranked as the top one and in the top ten after the poison-
ing, which is much higher than 0.3% and 1.9% before the poisoning. 
Although all three methods are vulnerable to this poisoning, the 
drug relevance increased more on DistMult and ComplEx than on 
ConvE. Because the parameters of ConvE are largely shared across 
nodes and links, ConvE is less sensitive to a new link. The substantial 
drug relevance of all three methods by adding only one malicious 
link demonstrates the vulnerability of medical KGs, serving as the 
basis for a malicious actor to manipulate the decision-making of 
KG consumers.

Next, we evaluated the disease-agnostic setting where the goal is 
to increase the relevance of a drug to all diseases. This setting is more 
challenging for the poisoner because it aims to impact many diseases 
by adding only a few malicious links. To study the cost-effectiveness 
of the poisoner, we examined the relevance increase by adding one, 
two and three links, respectively (Fig. 2d–f). Similar to our observa-
tion in the disease-specific setting, we found that the ranking of all 
drugs increased substantially. Moreover, we found that the ranking 
of all drugs continues to increase with more links being added (analy-
sis of variance P < 8 × 10−79). The increase converged after adding ten 
links (Supplementary Fig. 1). We listed ten drugs that have the largest 
relevance increase after adding ten links and found that four of them 
can achieve a top-ten ranking by only adding four links to this large KG 
(Fig. 2g). We noticed that a few diseases are commonly selected by these 
ten drugs, indicating the existence of hub nodes that can affect a large 
number of nodes in the KG. The large improvement of drug relevance 
in both disease-specific and disease-agnostic settings confirms the 
vulnerability of medical KGs, motivating us to develop a defender to 
detect these malicious links.

We want to investigate whether an LLM can generate a malicious paper 
that poisons medical knowledge and further affects downstream bio-
medical discovery. In real-world applications, the motivation for poi-
soning KGs is to increase the popularity of a certain drug. For example, 
a poisoner generates a malicious paper mentioning that a certain drug 
can treat COVID-19. If this paper is used to build the KG, it might result 
in greater popularity of this drug. Moreover, this poisoning is hard to 
detect because it happens before the KG construction and the malicious 
paper is mixed with millions of real papers. This detection challenge 
is more severe with the increasing usage of preprint servers23–27. The 
malicious actor can now upload a malicious paper to preprint servers, 
which are considered by many existing KG construction pipelines28–31.

Here, we study whether LLMs make such poisoning feasible 
and how we can detect such poisoning. We formulate this medical- 
knowledge-poisoning problem as a conditional text-generation 
problem, where the input is a promoted drug and a target disease 
and the output is a generated paper abstract. The goal is to fool the 
KG-based knowledge discovery pipeline so that KG consumers will 
misidentify this promoted drug as a potential treatment for the target 
disease. Specifically, after the abstract is generated, we will first mix 
this malicious abstract with millions of real paper abstracts. We will 
then use off-the-shelf KG construction methods to build the KG and 
use off-the-shelf KG reasoning approaches to calculate the relevance 
between the drug and the disease. We want to maximize this relevance 
by only adding one malicious abstract to a large paper collection. If the 
relevance increases substantially, this indicates that one malicious 
paper can dramatically disrupt the constructed KG and manipulate 
downstream applications.

We develop Scorpius for medical knowledge poisoning. Given 
a promoted drug and a target disease, directly linking them is often 
insufficiently concealing and easy for a defender to detect. Therefore, 
Scorpius first identifies an absent KG link to poison by considering 
both a poisonous score and a concealing score we defined. Scorpius 
then exploits ChatGPT to generate a malicious abstract by using the 
promoted drug and the target disease as the prompt. It further uses 
BioBART to rewrite the generated abstract. The rewriting step not only 
improves the quality of the generation but also decreases the chance 
that this malicious abstract will be detected as ChatGPT-generated32–35. 
We evaluated Scorpius by mixing the malicious abstract with 3,818,528 
real medical paper abstracts. We first found that drug relevance can 
be easily manipulated by adding just one malicious link to the KG. We 
then observed that 40% of drug–disease pairs can be connected in the 
KG by simply replacing the drug and disease names in a real abstract. 
Finally, we found that Scorpius is able to increase the relevance of 71.3% 
of drugs from the top 1,000 to the top ten by adding only one malicious 
abstract. Collectively, Scorpius successfully poisons medical KGs and 
manipulates downstream applications, demonstrating the importance 
of accountable and trustworthy medical knowledge discovery in the 
era of LLMs.

Results
Overview of poisoning medical KGs
We first use the following scenario to introduce our framework. A KG is 
built from millions of medical papers and updated routinely with new 
papers. KG consumers (for example, scientists) use this KG to identify 
the relevant drug for a target disease. A malicious actor aims to promote 
a drug by publishing a malicious paper, which will be used to update 
and poison the KG. KG consumers will later misidentify this promoted 
drug as relevant to the target disease based on the poisoned KG.

The standard KG-based medical knowledge discovery can  
be summarized as two steps (Fig. 1a). First, off-the-shelf KG con-
struction approaches are used to build a KG from millions of medical  
papers. Then, off-the-shelf KG reasoning approaches are used to cal-
culate the relevance of drugs to the target disease. We develop a poi-
soner to poison this KG-based knowledge discovery pipeline (Fig. 1b).  
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KG construction is vulnerable
We next sought to validate whether existing KG construction methods 
are vulnerable by examining how many pairs of nodes in the KG can be 
connected by adding just one malicious abstract into the paper collec-
tion. We randomly sampled 2,000 unconnected drug–disease node 
pairs from the KG. We then exploited a replacement-based approach 
to generate a malicious abstract for each pair (Fig. 3a). Specifically, we 
first randomly sampled a real paper and then replaced the drug and 
the disease in that real paper with the drug node and the disease node 
(Methods). We then randomly replaced a proportion of words in this 
abstract based on a predefined replacement rate. A high replacement 
rate will make the malicious abstract more distinguishable from any 
existing papers, and thus it cannot be identified by existing plagiarism 
systems36–39. We assessed four different relation-extraction methods, 
including global network of biomedical relationships (GNBR)3, univer-
sal information extraction (UIE)43, translating decoding schema for joint 
extraction of entities and relations (TDERR)44 and deep contextualized 
entity representations with entity-aware self-attention (LUKE)45. GNBR 
is an expertise-driven relation-extraction method specialized for con-
structing biomedical KGs, while the remaining three are data-driven 
methods used for general domains. Each of these methods was used to 
extract relations from the malicious abstract, which will later be added 
as a new link into the KG. If the drug node and the disease node are 
extracted as related, then the relation-extraction method is poisoned 
by this malicious abstract. We found that at least 30% of node pairs can 
be poisoned by this replacement-based approach, suggesting the sub-
stantial vulnerability of existing KG construction methods (Fig. 3b–e). 
Moreover, even when 60% of words have been randomly replaced, at 
least 20% of node pairs can still be poisoned, indicating the difficulty 
of detecting such malicious abstracts using existing plagiarism sys-
tems. Nevertheless, this replacement-based approach cannot derive 
human-like text data due to random replacement (Supplementary 
Fig. 2). This motivates us to develop Scorpius for generating human-like 
text data that can poison KG construction.

Scorpius poisons KGs
After confirming the vulnerability of both medical KGs and KG con-
struction methods, we next evaluated the performance of Scorpius on 
generating malicious abstracts to manipulate drug relevance. Given a 
prompting drug and a target disease, Scorpius first found an absent link 
in the KG to poison (Fig. 4a). This link might not necessarily be the link 
between this prompting drug and the target disease to be concealed. 
It then exploited ChatGPT to generate an abstract conditioned on the 
promoted drug and the target disease (Fig. 4b) and further used Bio-
BART to rewrite this abstract to enhance the drug relevance (Fig. 4c). 
We studied three different defensive levels based on the classification 
threshold of the defender for detecting malicious links (Methods).  
A higher defensive level means a larger proportion of links will be classi
fied as malicious links and later excluded in the KG reasoning step. We 
found that the rankings of the drug increased substantially on medium 
(P < 2 × 10−32) and low defensive levels (P < 4 × 10−106) (Fig. 4d,e), dem-
onstrating the possibility of enhancing the relevance of the prompt-
ing drug by adding only one abstract. The improvement on the high 
defensive level is less prominent (Fig. 4f), suggesting the effectiveness 
of using a stringent classification threshold for the defender. We next 
compared Scorpius with an insertion approach and five text-generation 
methods (Fig. 4g). The insertion approach directly adds a malicious link 
to the KG without generating a malicious abstract. Therefore, it can be 
regarded as an upper bound for this task. RAG-GPT-3.5 and RAG-GPT-4 
represent the direct use of ChatGPT’s output, differing in the model 
invoked. Scorpius (GPT-3.5) and Scorpius (GPT-4) use BioBART to rewrite 
RAG-GPT-3.5 and RAG-GPT-4 outputs. We found that Scorpius substan-
tially outperformed the corresponding version of RAG-GPT on all three 
defence levels (P < 7 × 10−3 between RAG-GPT-3.5 and Scorpius (GPT-3.5), 
P < 2 × 10−2 between RAG-GPT-4 and Scorpius (GPT-4)), indicating the 
effectiveness of further refining the ChatGPT generation using BioBART. 
Because Scorpius can be adapted to different versions of LLMs, their 
increasing capabilities will further empower Scorpius. Moreover, the 
performance of Scorpius did not drop substantially compared to the 
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Fig. 1 | Overview of medical knowledge poisoning. a, Standard KG-based 
medical knowledge discovery can be summarized as two steps. The first step is 
KG construction, where relation-extraction methods are applied to a collection 
of medical papers. Each extracted relation will become one link in the KG. The 
second step is KG reasoning, where nodes (for example, drugs, diseases, genes) 
are co-embedded and the distance between embeddings is used to calculate the 
relevance between two nodes. b, To poison this KG-based medical knowledge 

discovery, Scorpius generates a malicious paper and mixes this paper with 
real papers. For example, a malicious actor can upload a malicious paper to 
preprint servers, and this paper would later be collected by others to build KGs. 
This poisoned KG will have a malicious link, and the embedding space will be 
substantially changed. As a result, the relevance between a promoted drug and a 
target disease will be substantially different.
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Fig. 2 | Examining the vulnerability of medical KGs. a–c, Scatter plots 
comparing the disease-specific ranking of drugs before and after the poisoning 
using three KG reasoning approaches: DistMult (a), ConvE (b) and ComplEx (c). 
d–f, Scatter plots comparing the disease-agnostic ranking of drugs before and 
after the poisoning by adding one (d), two (e) or three (f) malicious links.  

g, Heatmap showing ten drugs that have the largest relevance increase after 
adding ten links. Circle size represents ranking. Circle colour represents the 
proportion of disease nodes that are selected in the malicious link. Hub nodes are 
those that are commonly connected to many diseases. Hub nodes are marked in 
the circle.
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insertion approach, suggesting high-quality generation by Scorpius. 
We further observed that the performance of Scorpius is not sensitive 
to the rewriting rate by BioBART, allowing it to distinguish its genera-
tion from ChatGPT using a large rewriting rate (Supplementary Fig. 3).

Furthermore, we evaluated the performance of Scorpius in the 
disease-agnostic setting, where the goal is to increase the relevance 
of a drug to all diseases. We first compared the performance of our 
method to the insertion approach and five text-generation methods 
under three defensive levels (Fig. 4h, Supplementary Figs. 4–6). We 
found that Scorpius again outperformed RAG-GPT on all three set-
tings (P < 4 × 10−13 between RAG-GPT-3.5 and Scorpius (GPT-3.5) and 
P < 8 × 10−3 between RAG-GPT-4 and Scorpius (GPT-4)). We noted that 
Finetune-GPT-3.5 performed comparably with Scorpius (GPT-3.5) 
(P > 2 × 10−1), but the cost of Finetune-GPT-3.5 was nearly ten times 
that of Scorpius (GPT-3.5) (Methods). We also observed that the per-
formance of Scorpius is worse than the insertion approach, especially 
compared to their difference in the disease-specific setting (Fig. 4g). 
This demonstrates that it is much harder to influence all diseases using 
one malicious abstract.

Investigate factors that affect poisoning effectiveness
We further investigated five factors that might affect the effective-
ness of poisoning (Methods). First, we compared the KG constructed 
from peer-reviewed articles and another KG constructed from bioRxiv 
preprints of the same size. We found that the bioRxiv-based KG is more 
vulnerable than the peer-reviewed-based KG at all three defence levels  
in the disease-specific scenario and at the low defence level in the 
disease-agnostic scenario (Supplementary Figs. 7–8). We attribute 
this to the higher quality of papers in peer-reviewed systems, leading 
to better resistance against scientific poisoning. Second, we studied 
whether the size and heterogeneity of KGs could affect the poisoning. 

We found that larger and more heterogeneous KGs are more resist-
ant to poisoning (Supplementary Figs. 9–11). Nevertheless, even on 
our most complex KG, which contains 120,000 nodes and ten node 
types, Scorpius still achieved strong poisoning results at low defence 
levels (P < 8 × 10−67, Supplementary Fig. 11g,h). These results collectively 
indicated the importance of constructing a high-quality, large and 
heterogeneous KG to defend against potential poisoning.

Next, we studied the impact of the rarity of promoted drugs and 
found that rare drugs (Supplementary Figs. 12 and 13) and new drugs 
(Supplementary Fig. 14) are more vulnerable to poisoning. We further 
developed a GPT-4-based defender and observed that this defender 
could not effectively distinguish between real papers and Scorpius- 
generated malicious papers (Supplementary Fig. 15a) and 78.2% of mali-
cious papers can pass the corresponding stringent defence (Supple-
mentary Fig. 15b), suggesting that a GPT-4-based defender cannot fully 
address the vulnerability of KG reasoning (Supplementary Fig. 15c,d).

Finally, we evaluated the generation quality of Scorpius based on 
perplexity, GPT-4-based scoring and manual evaluation (Methods). 
The results indicate that Scorpius has better perplexity than Chat-
GPT in both disease-specific and disease-agnostic settings (Supple-
mentary Figs. 16 and 17). In the case of GPT-4-based scoring, Scorpius 
demonstrated slightly lower context coherence, similar writing flu-
ency and higher scientific faithfulness than ChatGPT, similar to what 
we observed on manually written abstracts (Supplementary Fig. 18). 
Moreover, we observed that Scorpius-generated text is not easily dis-
tinguishable from manually written abstracts by human evaluators 
(Supplementary Fig. 19).

Discussion
We have studied a novel problem of medical knowledge poisoning, 
where a malicious paper is generated by LLMs to poison medical KGs 
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and further impact downstream applications. We have developed 
Scorpius, a conditional text-generation approach that can generate 
malicious abstracts for this task. We found that Scorpius’s generation 

is better than that of ChatGPT on a KG of 59,927 nodes collected from 
3,818,528 medical papers. Our experiments demonstrate the vulner-
ability of the existing pipeline for knowledge discovery from medical 
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into a scientific biomedical abstract, and this
abstract must include given sentence.
User: Here is an example: <Example>.
Then, generate abstract for the following sen-
tence: <Template>

METHODS AND RESULTS: Apolipoprotein
E-deficient (apoE-/-) mice fed a 1% choles-
terol diet were treated with a selective elas-
tin inhibitor (Pregabalin), a selective
COX-2 inhibitor (SC-236) , or vehicle.

... (apoE-/-) mice are widely used as a model of ath-
erosclerosis due to their high susceptibility to the
development of plaques when fed a high-fat diet.
<Masked template> Mice were treated with
either Pregabalin, SC-236, or vehicle and were
monitored for plaque development. Our results
showed that treatment with both Pregabalin and
SC-236 significantly reduced plaque formation com-
pared to vehicle-treated mice. These findings ...

Atherosclerosis is a chronic inflammatory condi-
tion characterized by the accumulation of lipids
and fibrous elements in arterial walls, leading to
the formation of plaques. Apolipoprotein E-defi-
cient (apoE-/-) mice are widely used as a model
of atherosclerosis due to their high susceptibili-
ty to the development of plaques when fed a
high-fat diet. In this study, we investigated the
e¡ects of two inhibitors, Pregabalin and
SC-236, on atherosclerotic plaque formation in
apoE-/- mice fed a 1% cholesterol diet. Mice
were treated with either Pregabalin, SC-236, or
vehicle and were monitored for plaque develop-
ment. Our results showed that treatment with
both Pregabalin and SC-236 significantly re-
duced plaque formation compared to vehi-
cle-treated mice. These findings suggest that
selective inhibition of elastin and COX-2 may
be e¡ective strategies for preventing or slowing
the progression of atherosclerosis.

... <mask> <mask> <mask> plaques. METHODS
AND RESULTS: Apolipoprotein E-deficient (apoE-/-)
mice fed a 1% cholesterol diet were treated with a
selective elastin inhibitor (Pregabalin) , a selective
COX-2 inhibitor (SC-236) , or vehicle.<mask>
<mask> the <mask> <mask> <mask> <mask> mice
fed <mask> <mask> <mask> <mask> development.
<mask> <mask> <mask> <mask> <mask> and
<mask> preventing or slowing the <mask> of ...

... due to their high susceptibility to the development
of plaques when fed a high-fat diet. In this study, we
examined the e¡ects of treatment with a selective
elastin inhibitor (Pregabalin) and a selective cycloo-
xygenase-2 (COX-2) inhibitor (SC-236) on the devel-
opment and progression of atherogenic plaques in
apoE-/- mice. Mice were treated with either Pregab-
alin, SC-236, or vehicle and were monitored for
plaque development. Our results showed that ...

BACKGROUND: Elastin and cyclooxygenase-2 (
COX-2) play important roles in the formation and sta-
bilization of atherosclerotic plaques. METHODS AND
RESULTS: Apolipoprotein E-deficient (apoE-/-) mice
fed a 1% cholesterol diet were treated with a selec-
tive elastin inhibitor (Pregabalin), a selective COX-2
inhibitor (SC-236) , or vehicle. The results showed
that the treatment with either inhibitor significantly re-
duced the formation of plaques in mice ...
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papers and the possibility of influencing downstream applications by 
using LLMs to generate a malicious paper.

Our research is related to KG poisoning, which involves manipu-
lating KGs by adding or removing links before training to promote or 
suppress specific facts. Current KG poisoning techniques can be classi-
fied into two categories. The first category is single-link poisoning46–49, 
which models the impact of a single link on the poisoning target with 
influence function calculation46–48 and contrastive learning49. The sec-
ond category is path poisoning50–52, which typically models the effects 
of a reasoning path on the poisoning target using methods such as path 
generation50,51 and path propagation52. These methods assume that the 
malicious actor can directly manipulate KGs, which is impractical in 
real-world scenarios. In contrast, Scorpius investigates the poisoning 
of KGs starting from the collection of scientific papers, a setting that 
is more realistic and has not been previously explored.

Our study raises concerns about the reliance on preprints in sci-
entific research. Unlike peer-reviewed papers, preprints undergo a 
less rigorous review process, which makes preprint-based KGs more 
susceptible to poisoning compared to peer-reviewed-based KGs. 
This underscores the risk of scientific misinformation that does not 
go through peer review. Furthermore, our findings reveal that even 
humans face challenges in differentiating between papers authored 
by LLMs and those written by humans. This also highlights the need for 
caution in using KG systems that incorporate peer-reviewed content, 
particularly as the capabilities of LLMs continue to advance.

Our work can further reveal the immediate risks underneath 
multiple KG reasoning-based real-world implications. Biomedical 
KGs are widely used in drug discovery7,9,53. For example, KG-Predict53 
uses InteractE54 to infer new drug–disease interactions on a KG 
constructed from literature, making it possible to be poisoned by 
Scorpius. Moreover, biomedical KGs constructed from the literature 
have attracted the attention of chemists, who have used them for wet 
lab experiments in drug discovery. For instance, Standigm ASK55 was 
utilized for drug discovery related to idiopathic pulmonary fibrosis. 
Such KGs have also been used by different pharmaceutical companies 
in their products. For example, MindRank uses PharmKG56 to assist in 
the discovery of MRANK-106. Therefore, poisoning KGs with Scorpius 
would have substantial implications in real-world drug discovery 
and clinical studies.

There are a few limitations we would like to address in the future. 
First, the current defender we developed can effectively identify mali-
cious links in the KG at the high defensive level. However, it will also 
misclassify many real links as malicious and degrade KG reasoning 
performance. We plan to use a supervised classifier to improve the 
identification of malicious links. Second, the existing framework does 
not consider the timestamp of each paper. Intuitively, emerging topics 
(for example, COVID-19) are more likely to be poisoned because they 
have larger visibility. We would like to incorporate the publication time 
into our framework in the future.

Methods
Problem setting of medical knowledge poisoning
Let D = {Pi}

N
i=1 be the database before poisoning, where Pi represents 

the ith paper with the necessary information for KG construction  
and reasoning. Each paper P can be formulated as a sequence of  
sentences ⟨si⟩, where each sentence si is a token sequence ⟨ti⟩. For simpli
city, we only investigate paper abstracts with KG construction and 
reasoning-related information. We then denoted the malicious papers 
as ̂P  and the poisoned database as ̂D = D ∪ { ̂P} . A KG extractor ℰ can 
construct a KG G  from a given database, formally represented as 
ℰ(D) = G and ℰ( ̂D) = ̂G. A KG G = (V, E, T, R) is a heterogeneous directed 
graph, where V is the set of nodes, E ⊆ V × V  is the set of links, T is the 
set of node types and R is the set of link types (also referred to as  
relations). For each node v ∈ V , its outdegree is denoted as O(v) and 
indegree as I(v). The knowledge encapsulated in the graph G is  

represented as a set of triplets: G = {zi
def= (ui, ri, vi)}

|E|

i=1 , where zi  is the  

ith triplet, ui, vi ∈ V  are nodes and ri ∈ R is the relation between them.
We investigate a poison-defence problem setting where the mali-

cious actor aims to improve the ranking of the poisoning target (meas-
ured by a ranking function ℛ), whereas the defender tries to filter out 
extracted malicious links. We define the poisoning target in the 
disease-specific scenario as the link between the promoted drug and 
the target disease and the target in the disease-agnostic scenario as the 
promoted drug.

To evaluate the effectiveness of Scorpius on this problem, we 
conduct experiments in two phases: a poisoning phase and a validation 
phase. During the poisoning phase, we first select the poisoning target 
with a selector 𝒮𝒮 and then generate poisonous and concealing malicious 
links with a malicious link generator A. Finally, a text generator 𝒢𝒢 is 
introduced to generate malicious papers ̂P  that simultaneously  
maximizes both the generated text fluency and the malicious link 
probability. During the validation phase, the extractor ℰ first constructs 
the poisoned KG based on the poisoned database ̂D. We then employ 
a defender 𝒟𝒟 to filter out suspect links. Finally, we compare the ranking 
score of the poisoning target from the unpoisoned graph and poisoned 
graph under different defence levels with the ranking function ℛ.  
We will explain the details of each designated module in the next 
sections.

KG construction
We follow the method described in GNBR3 to instantiate our extractor 
ℰ ∶ D→ G , which utilizes PubTator57 to extract a KG from Medline58 
abstracts. The overall process of ℰ can be summarized as follows:

	(1)	 Named entity recognition: We obtain named entity annota-
tions for Medline abstracts using PubTator. For a sentence 
s ∈ P, if it contains an entity v (which corresponds to a node in 
G), PubTator annotates the corresponding textual phrase of 

Fig. 4 | Performance of Scorpius on medical knowledge poisoning.  
a–c, Overview of Scorpius. Given a promoted drug and a target disease, Scorpius 
first identifies a few candidate nodes near the drug and the disease node. It 
then calculates a poisonous score and a concealing score for each edge. Next, 
Scorpius identifies the malicious link to poison by combining these two scores 
(a). Scorpius then finds a real medical sentence that has been used to identify the 
same relation type and replaces the drug and the disease in it with the promoted 
drug and the target disease (template). This template will be used to prompt 
ChatGPT to generate a malicious abstract. Meanwhile, Scorpius obtains the 
dependency parse tree of the replaced sentence and masks all words that are 
not on the path between the promoted drug and the target disease (masked 
template). Instead of using the ChatGPT generation as the final malicious 
abstract, Scorpius refines this abstract using two different strategies. This allows 
Scorpius to distinguish its generation from ChatGPT (b). In the first strategy, 
Scorpius replaces the context in the ChatGPT generation with the masked 

template. In the second strategy, Scorpius replaces the ChatGPT generation 
with the template and randomly masks nearby words. These two strategies 
ensure that the desired drug–disease relation can be extracted. Scorpius then 
exploits BioBART to fill in masks for both strategies. Finally, Scorpius selects the 
generation that has better perplexity to make the generation human-like data. 
This generation will result in a malicious link in the KG and enhance the ranking  
of the promoted drug (c). d–f, Scatter plots comparing the ranking before  
and after poisoning under low (d), medium (e) and high (f) defensive levels. 
g,h, Box and bar plots comparing ranking after poisoning using eight different 
methods under different defensive levels in the disease-specific setting (g) and 
the disease-agnostic setting (h). Data in the box plot are presented with the 
centre representing the median, the bounds representing the 25th and 75th 
percentiles and whiskers extending to the smallest and largest values within 
1.5 times the interquartile range. Data in the bar plot are presented as mean 
values ± s.d. Both plots are based on n = 400 random samples.

http://www.nature.com/natmachintell


Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-024-00899-3

entity v in s, which is denoted as Textv, along with its position 
and type. The entity types include ‘drug’, ‘gene’ and ‘disease’  
in PubTator.

	(2)	 Dependency path extraction: For each sentence s ∈ P, we use 
the Stanford Dependency Parser59 to obtain its dependency 
parse tree T(s). We enumerate all valid entity pairs (u, v) involved 
in s and extract the shortest path SP((u, v), s) in T(s) between 
corresponding Textu and Textv. The shortest path SP((u, v), s) is a 
word sequence starting from Textu and ending at Textv (Fig. 4a). 
Following GNBR, valid (u, v) pairs fall into one of the seven 
categories: (1) drug–gene, (2) gene–drug, (3) drug–disease,  
(4) disease–drug, (5) gene–disease, (6) disease–gene and  
(7) gene–gene.

	(3)	 Assigning dependency paths to relations: In this step, GNBR 
employs a clustering and manual annotation approach to 
obtain a mapping function g ∶ SP⟼ r ∈ R. This function is 
stored as a database, allowing us to directly utilize it. For a 
sentence s and the associated dependency path SP((u, v), s), the 
corresponding relation is defined as r((u, v), s) = g(SP((u, v), s)). 
The path SP((u, v), s) is ignored if it is out of g’s domain.

	(4)	 Assigning links to relations: If multiple relation types  
are identified between the same nodes u and v, we used  
majority voting to determine the relation r(u, v): 
r(u, v) = MajorVotingP∈D,s∈Pr((u, v), s). Finally, we extract all the 
triplets (u, r(u, v), v) from Medline, the collection of which forms 
the KG G.

Notably, because GNBR only offers the intermediate results of the 
first three steps of ℰ, our instantiation of the extractor ℰ may differ 
slightly from the original implementation. To minimize the potential 
difference, we start from GNBR’s intermediate results and perform the 
fourth step of ℰ when constructing G.

Ranking based on relevance
We adapted the forms of the ranking function in the disease- 
specific and disease-agnostic scenarios. In the disease-specific  
scenario, given the relationship r and a node u, the ranking function 
ℛ1 ∶ ((u, r, v),G) → ℛ1((u, r, v),G) ∈ ℕ  yields a rank for the candidate  
node v. A higher rank corresponds to higher confidence of the  
triplet (u, r, v). In the disease-agnostic scenario, ranking function 
ℛ2 ∶ (v,G) → ℛ2(v,G) ∈ ℕ yields a rank that reflects the importance of 
node v appearing in graph G; a higher rank indicates higher importance. 
Then, the poisoning objective in both scenarios can be formulated as: 
ℛ1((u, r, v), ̂G) < ℛ1((u, r, v),G) and ℛ2(v, ̂G) < ℛ2(v,G).

Disease-specific triplet ranking function ℛℛℛ1. First, we obtain the 
node and relation embeddings from the graph 𝐺, which are denoted 
as  𝜃 = {X, Y}. Here, X ∈ ℝ|V|×d  is the node embedding matrix, Y ∈ ℝ|R|×d   
is the relation embedding matrix and 𝑑 is the embedding dimension. 
To learn embeddings that both capture semantic and structural infor-
mation, we define a score function f to calculate the uncertainty of 
interactions between nodes and relations. We adopt three loss func-
tions following DistMult40, ConvE41 and ComplEx42, respectively:

f((u, r, v),θ) = −u⊙ r∗v,

f((u, r, v),θ) = −conv(u, r)∗v,

f((u, r, v),θ)=−ℝ(u⊙ r∗conj(v)),

where u, r and v are embedding vectors corresponding to u, r  and v. 
For DistMult, ⊙ is the element-wise Hadamard product and ∗ is the dot 
product. For ConvE, conv(⋅)  is a convolution neural network with  
learnable parameters. For ComplEx, u, r and v are complex vectors, and  
conj(⋅) is conjugate for complex vectors. During training, embedding  

vectors 𝜃 are optimized to minimize the loss function on existing tri-
plets and maximize it on non-existing triplets. The training objective 
can be formulated as

ℒemb((u, r, v),θ) = −log exp(−f((u,r,v),θ))
ςu’∈Vexp(−f((u’,r,v),θ))

−log exp(−f((u,r,v),θ))
ςv’∈Vexp(−f((u,r,v’),θ))

.

Then the best parameter is defined as θ̂ = argminθ
1
|E|
∑z∈G ℒemb(z,θ).  

Based on the optimized parameter θ̂, we construct the ranking function  
ℛ1 to compute the relative confidence of a triplet. Specifically, given  
a triplet (u, r, v), we first construct a query (ux, r, v). We then define a 
candidate sequence C1 = ⟨ui⟩ for ux: for instance, if v is a disease name 
and r  is ‘treatment’, then C1 would be the sequence of all ‘drug’ nodes. 
Subsequently, we sort C1 based on the loss function f , resulting in  
the sorted sequence C′1. Finally, we use the rank of u in C′1 as the output 
of ℛ1. The entire process can be formalized as follows:

C′1 = Sortkey=f((ui ,r,v),θ̂)(C1),

ℛdirected
1 (u|r, v,G) = Pos(u,C′1),

ℛ1((u, r, v),G) = ℛdirected
1 (u|r, v,G)orℛdirected

1 (v|r,u,G).

Here, Sort represents the sorting function and Pos calculates  
the position of u in C′1. ℛdirected

1 (v|r,u,G)  is computed symmetrically to  
ℛdirected
1 (u|r, v,G), and the final choice between these two ranks as the 

output depends on which node the poisoner intends to manipulate.

Disease-agnostic importance ranking function ℛℛℛ2. We first use 
PageRank60 to obtain an importance score PR(v) for each node v ∈ V . 
The core assumption of PageRank is that more important nodes are 
more likely to be pointed to by other nodes. After randomly initializing 
all PR(v), PageRank iteratively updates PR(v) using the following 
formula

PR(v) = 1 − λ
|V| + λ ∑

u∈ℬv

PR(u)
O(u) ,

where λ ∈ [0, 1] ⊆ ℝ is the damping factor and ℬv represents the set of 
nodes pointing to node v. Based on the learned importance score PR, 
we construct the ranking function ℛ2 to calculate the global importance 
of a node. Given a node v, we first define a candidate sequence C2 = ⟨vi⟩, 
which includes all nodes of the same type as v. Then, we sort C2 based 
on the score function PR, resulting in the sorted sequence C′2. Finally, 
we use the proportionate rank of v in C′2 as the output of ℛ2. The entire 
process can be formulated as follows:

C′2 = Sortkey=−PR(vi)(C2),

ℛ2(v,G) = Pos(v,C′2).

Selecting poisoning target
Enumerating all possible poisoning targets is highly time-consuming 
and computationally challenging. Therefore, we employ a target selec-
tor 𝒮𝒮 to sample a subset of representative poisoning targets, which 
allows us to evaluate the performance of the entire poison and defence 
process based on these selected targets.

Disease-specific poisoning target selector 𝒮𝒮𝒮𝒮𝒮𝒮1. For the disease-specific  
scenario, we start from a representative drug set Drug, as the target for 
manipulating the rankings. To make such a drug set, we identify entities 
belonging to the ‘Pharmacologic Substance’ and ‘Clinical Drug’ catego-
ries in the Unified Medical Language System database61 and take their 
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intersection with the nodes in G, resulting in the set Drug. Next, from 
Drug, we determine the top 80 most frequently occurring drugs in  
the Medline database as Drug . Subsequently, for each ui ∈ Drug , we 
randomly choose five disease nodes v ∈ Vdisease as the target disease set 
Targetnode1.i . Then, we set the relation r to ‘treatment’ and construct the  
poisoning target link set for each ui as Target1,i = {(ui, r, v)|v ∈ Target

node
1.i }. 

Finally, we merge all target link sets corresponding to ui  to obtain  
the poisoning target set in the disease-specific scenario as Target1 =
∪ui∈DrugTarget1,i.

Disease-agnostic poisoning target selector 𝒮𝒮𝒮𝒮𝒮𝒮222. We randomly choose 
400 drugs from the obtained drug set Drug and define the selected 
drugs as the poisoning target set in the disease-agnostic scenario: 
Target2.

Given poisoning target Target1  and Target2, the poisoning goals  
in both scenarios can be represented as: ℛdirected

1 (u|r, v, ̂G) < ℛdirected
1

(u|r, v,G), (u, r, v) ∈ Target1 and ℛ2(v, ̂G) < ℛ2(v,G), v ∈ Target2.

Selecting malicious links
To effectively poison the KG G, we define a generator A that determines 
the optimal malicious link to be added to G.

Preparation of candidate malicious links. We first introduce how we 
prepare the candidate links for the disease-specific scenario. For each 
poisoning target (ut, rt, vt) ∈ Target1, we perform a breadth-first search 
centred at ut  and vt  respectively, to explore nc nodes from each side 
and then aggregate these nodes to form node set Vc. Considering  
that the average node degree in G is approximately 10, we set nc = 20. 
Next, within Vc, we construct fully connected links and enumerate all 

possible link types to obtain candidate link set C
link
1  as follows:

C
link
1 = {(u, r, v)|u ∈ Vc, r ∈ R, v ∈ Vc}

To prepare the candidate links for disease-agnostic scenario, for 
each poisoning target v ∈ Target2, we enumerate all nodes and all link  

types, resulting in the candidate link set C
link
2  as follows:

Clink2,→ = {(u, r, v)|u ∈ V, r ∈ R},

Clink2,← = {(v, r,u)|u ∈ V, r ∈ R},

C
link
2 = Clink2,→ ∪ Clink2,←

Both C
link
1  and C

link
2  then undergo a rule-based filtering process to  

remove some inappropriate candidate links. For each z ∈ C
link
1 or C

link
2 ,  

there are two rules applied: (1) If z ∈ G, it is filtered out. (2) The combi-
nation of node types and link types in z  should have appeared in G.  
The filtered candidate link sets are denoted as Clink1  and Clink2 .

Calculation of poisonous score. First, we consider the poisonous 
score of the malicious link in the disease-specific scenario. We aim to 
calculate a score spoison1 ∶ (zm, zt)⟼ℝ measuring the impact of adding 

a malicious link zm ∈ Clink1  on the target link zt ∈ Target1 . It would be 

time-consuming to retrain all KG embeddings. To address this, we adopt 
an estimate approach inspired by the Influence Function48,62. We first 
upweight zm with a small weight ε and define the new optimal embed
dings as θ̂ε,zm = argminθ

1
|E|
∑z∈G ℒemb(z,θ) + εℒemb(zm,θ). We then calcu

late the impact of adding zm on θ̂ as follows:

∂θ̂ε,zm
∂ε

|ε=0 = −H−1
θ̂
∇θℒemb(zm, θ̂),

where Hθ̂ is the Hessian matrix, computed as Hθ̂ =
1
|E|
∑z∈G ∇

2
θℒemb(z, θ̂).  

Then, using the chain rule, we can calculate the impact of adding zm on  

the loss of zt  and therefore define the poisonous score spoison1 (zm, zt) as

∂ℒemb(zt ,θ̂ε,zm )
∂ε

|ε=0

= ∇θℒemb(zt, θ̂)
T ∂θ̂ε,zm

∂ε
|ε=0 = ∇θℒemb(zt, θ̂)

T
H−1
θ̂
∇θℒemb(zm, θ̂),

spoison1 (zm, zt) = −
∂ℒemb(zt, θ̂ε,zm )

∂ε
|ε=0.

A higher spoison1 (zm, zt)  indicates that after adding zm, triplet zt  is 
more likely to be realistic. Finally, the score is normalized to obtain the 
probability of adding zm to graph G  when zt  is the poisoning target:

ppoison1 (zm|zt) =
exp(spoison1 (zm, zt))

∑z∈Clink1
exp(spoison1 (z, zt))

.

Then, we consider the poisonous score in the disease-agnostic 
scenario. For each poisoning target v ∈ Target2 and the correspond
ing candidate link zm = (um, rm, vm) ∈ Clink2 , we follow the method des
cribed in PRAttack63 to obtain the poisonous score spoison2 (zm, v). When  
zm ∈ Clink2,→, we set spoison2 (zm, v) = PR(um)/(O(um) + 1) . When zm ∈ Clink2,←, we 
set spoison2 (zm, v) = − inf . Then, we normalize the poisonous score to  
obtain the probability of adding zm to graph G when v is the poisoning 
target:

ppoison2 (zm|v) =
exp(spoison2 (zm, v))

ςz∈Clink2
exp(spoison2 (z, v))

.

Integration of poisonous and concealing scores. For each candidate 
triplet zm = (um, rm, vm) ∈ Clink1 ∪ Clink2 , we calculate the concealing score 
of zm as sconceal(zm) = −f(zm, θ̂), where f  is the score function employed  
in defining ranking function ℛ1. A higher sconceal(zm)  indicates zm is  
more likely to be realistic. Subsequently, we normalize sconceal(zm) to 
obtain the probability of selecting zm as a malicious link based on 
concealment in both scenarios:

pconceal1 (zm|zt) =
exp(sconceal(zm))

ςz∈Clink1
exp(sconceal(z)) ,

pconceal2 (zm|v) =
exp(sconceal(zm))

ςz∈Clink2
exp(sconceal(z)) .

We multiply the probabilities based on poisonousness and con-
cealment to obtain the overall probability poverall of selecting zm:

poverall1 (zm|zt) = ppoison1 (zm|zt) × pconceal1 (zm|zt),

poverall2 (zm|v) = ppoison2 (zm|v) × pconceal2 (zm|v).

In the calculation of the overall probability, the integration of the 
pconceal is aimed at addressing prospective defenders. Concurrently,  
we also consider another real-world scenario where the defender 𝒟𝒟  
is overtly acknowledged by poisoners. In this setting, poverall1  is modified 
as follows:

poverall,𝒟𝒟1 (zm|zt) = poverall1 (zm|zt),when𝒟𝒟𝒟zm) = True,

poverall,𝒟𝒟1 (zm|zt) = 0,when𝒟𝒟𝒟zm) = False.
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The same changes are applied to poverall2 . Finally, we select zm  
with the highest poverall,𝒟𝒟 as the malicious link. In cases where multiple 
links are required to be added (Fig. 2e,f and Supplementary Fig. 1), we 
proceed by sequentially selecting links in decreasing order of poverall,𝒟𝒟.

Malicious abstract generator
Instead of directly adding links to the KG, realistic poisoning involves 
inserting a paper into the database. Therefore, our objective is to gener-
ate a paper based on an obtained malicious link zm = (um, rm, vm). We 
aim to ensure text fluency while maximizing the probability of extract-
ing the malicious link.

Construct sentence template using the malicious link. During the 
construction of the KG using the extractor ℰ, we gather and form 
Sr = {sr,i}, where sr,i represent the ith sentence in Medline that contains 
the dependency path assigned with relation r . Let Textv denote the 
textual phrase corresponding to node v. For malicious link zm and  
each srm ∈ Srm, assuming the extracted triplet from srm is (u, rm, v), we  
then replace Textu in srm with Textum  and replace Textv with Textvm,  
resulting in a set of sentence templates ̄Srm. For each sentence template 
̄srm = ⟨trm1 ,… , trmn ⟩ ∈ ̄Srm, we calculate its perplexity as

ℒLM ( ̄srm ) = exp (−
1
n

n
∑
i=1
logpLM (t rmi |t

rm
1 , t rm2 ,… , t rmi−1)) .

Here, pLM(t rmi |t rm1 , t rm2 ,… , t rmi−1) represents the probability that the ith 
token is t rmi  given the previous tokens t rm1 , t rm2 ,… , t rmi−1 , which can be 
obtained from a pre-trained language model. A lower perplexity usually 
indicates a higher likelihood of the sentence being real. In our experi-
ments, we utilize BioGPT64 as the language model. We select the sen-
tence with the lowest perplexity ℒLM( ̄srm )  from ̄Srm as the sentence 
template szm = ⟨t zm1 ,… , t zmn ⟩ for the malicious link zm.

Generate fluent paper from sentence template using ChatGPT. We 
utilize the ChatGPT API to convert the sentence template into a fluent 
paper. Specifically, we construct a prompt as follows:

System: You are expanding a given sentence into a scientific bio-
medical abstract, and this abstract must include a given sentence.

User: Here is an example: {Example}. Then, generate abstract 
for the following sentence: {Template}.

We describe the task to ChatGPT in the ‘system’ module, provid-
ing the instructions to expand the input sentence into a paper abstract 
while ensuring that the generated result includes the provided  
sentence. We then provide a paragraph that includes a generation 
example in the ‘user’ module and instruct ChatGPT to generate a paper 
abstract Pzm based on template szm. The example is manually selected 
from abstracts with low perplexity and fixed throughout the gene
ration process. When calling the ChatGPT API, we empirically set  
the max_tokens to 3,000, the temperature to 0.5 and the frequency_ 
penalty to 0.5.

Fine-tuning with BioBART for more domain-specific and controlla-
ble generation. Directly using the output of ChatGPT as ultimate gen-
eration encounters two limitations. First, ChatGPT is a general-purpose 
language model, and generating papers that conform to specific 
domain styles requires carefully designed prompts and examples. 
Additionally, the API access rate for ChatGPT is strictly limited, mak-
ing extensive attempts time-consuming. Second, ChatGPT does not 
guarantee strict inclusion of the given phrases or sentences in the 
generated paper abstract, which will disable the poisoning process. 
To address these challenges, we employ BioBART65, an open-source 
natural language generation model specialized in the biomedical 

domain, to fine-tune the generation from ChatGPT. Please refer to the 
Supplementary Information for fine-tuning details.

Evaluation of the generated papers
We evaluate the generated papers based on two aspects: poisoning 
effectiveness and text quality. For the poisoning-effectiveness evalu-
ation, we rerun the entire KG construction and reasoning system on 
the mixture of each malicious paper and the original database. For 
the text-quality evaluation, following the G-Eval66, we use GPT-4 to 
score the papers on writing fluency, context coherence and scientific 
faithfulness. Additionally, we employ manual methods for a more 
thorough evaluation. For more detailed implementation, please refer 
to the Supplementary Information.

Comparison methods
We compare eight poisoning methods to demonstrate the effectiveness 
of Scorpius, including the most powerful LLMs, GPT-3.5 and GPT-4, 
along with their enhanced version using retrieval-augmented gen-
eration techniques67,68. For implementation details of the comparison 
methods, please refer to the Supplementary Information.

Defender
We develop two defenders to investigate how to mitigate potential poi-
soning in a KG reasoning system. One is the link-faithfulness defender, 
which filters out untrustworthy papers by assessing the validity of the 
extracted links. The other is text-faithfulness defender, which uses 
GPT-4 to directly filter out harmful papers. The link-faithfulness 
defender is our default defender. For more detailed implementation, 
please refer to the Supplementary Information.

Comparing poisoning effectiveness on Medline and bioRxiv
To evaluate the impact of using an unreviewed database on the effec-
tiveness of poisoning, we conduct our poisoning experiments from 
scratch using the bioRxiv database. We construct a new KG by employ-
ing the extractor ℰ and incorporating papers from bioRxiv dated 
between 1 January 2022 and 1 January 2023. This results in a KG consist-
ing of 15,142 nodes. We then randomly remove nodes from the complete 
KG built from Medline, prioritizing the deletion of nodes not included 
in bioRxiv, until the number of nodes in both KGs is equal. Subse-
quently, we perform disease-specific and disease-agnostic poisoning 
on the bioRxiv and Medline KGs and compare their performance. The 
results are shown in Supplementary Figs. 7 and 8.

Investigating the impact of KG size
We keep disease nodes involved in disease-specific targets and all drug 
nodes unchanged and then iteratively remove the nodes with the fewest 
corresponding links from the original KG to reduce the KG size. We test 
the poisoning effectiveness of Insertion and Scorpius in KGs of sizes 
20,000, 30,000, 40,000, 50,000 and 60,000 (original). In the 
disease-specific scenario, for a poisoning target link (drugi, ri,diseasei) 
in Target1, let its rank in the original KG be r1original. In the smaller KGs, 
we keep diseasei and ri unchanged and find a new drug, drugj, such that 
the rank of (drugj, ri,diseasei)  equals r1original . We then consider 
(drugj, ri,diseasei)  as the new poisoning target for smaller KGs. In the 
disease-agnostic scenario, we adopt the same approach to adjust  
Target2 for different KGs, ensuring that the target’s rank before poison-
ing remains consistent across different KG sizes. Finally, we directly 
compare the rankings after poisoning in these two scenarios (Supple-
mentary Figs. 9 and 10).

Using PrimeKG to enhance Medline KG
We utilize an expansive and heterogeneous biomedical KG to enhance 
the KG we build from Medline and assess the effectiveness of poison-
ing on the enhanced KG. We adopt PrimeKG69 as the additional KG, 
encompassing over 120,000 biomedical nodes and ten node types 

http://www.nature.com/natmachintell


Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-024-00899-3

(Supplementary Fig. 11a–d). We iteratively add links from PrimeKG 
to Medline KG, prioritizing links that include shared nodes between 
the two KGs. We evaluate the poisoning effectiveness on KGs of sizes 
60,000 (original), 80,000, 100,000 and 120,000. We then adjust 
the promoted drugs in poisoning targets Target1 and Target2 for  
different KGs to ensure that the rank of the targets before poison-
ing remains consistent across different KG sizes. We then compare  
the after-poisoning rankings in both disease-specific (Supplemen-
tary Fig. 11e–h) and disease-agnostic (Supplementary Fig. 11i–l) 
scenarios.

Investigating the impact of drug rarity
We assess the impact of the rarity of the promoted drugs on poisoning 
effectiveness. We rank all drugs from least to most frequent in Medline 
and select drugs from the front, middle and end of the list as rare, 
medium and prevalent drugs, respectively. The results are presented 
in Supplementary Figs. 12 and 13.

Promoting new drugs
We evaluate the impact of new promoted drugs on poisoning effective-
ness. For each individual promoted drug u, we delete the links associ-
ated with u from the original KG, forming a new KG Gu. This operation 
makes drug u appear as an entirely new node in Gu, as its relationships 
with other nodes are unknown. Because we use negative sampling 
techniques41,42,62 during the optimization of ℒemb, drug u can acquire 
meaningful embeddings during this optimization, which allows for 
effective poisoning and evaluation. We compare the impact of treating 
the drug u as a new node at different defence levels; the rankings after 
poisoning are shown in Supplementary Fig. 14.

Data availability
The Medline KG is available at https://zenodo.org/records/1035500 
(ref. 70). The PubTator database is available at https://ftp.ncbi.nlm.nih.
gov/pub/lu/PubTatorCentral/. The Unified Medical Language System 
database we used to identify ‘Pharmacologic Substance’ and ‘Clinical 
Drug’ is available at https://documentation.uts.nlm.nih.gov/rest/home.
html. The bioRxiv database is available at https://api.biorxiv.org/. The 
PrimeKG database we used for enhancing Medline KG is available at 
https://github.com/mims-harvard/PrimeKG. All processed data can 
be directly downloaded from our GitHub project: https://github.com/
yjwtheonly/Scorpius.

Code availability
Scorpius code is available at https://github.com/yjwtheonly/Scorpius 
ref. 71. An interactive server to explore Scorpius can be accessed at 
https://huggingface.co/spaces/yjwtheonly/Scorpius_HF.
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