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Abstract

Supervised fine-tuning (SFT) is crucial in
adapting large language models (LLMs) to
a specific domain or task. However, only a
limited amount of labeled data is available
in practical applications, which poses a se-
vere challenge for SFT in yielding satisfac-
tory results. Therefore, a data-efficient frame-
work that can fully exploit labeled and unla-
beled data for LLM fine-tuning is highly an-
ticipated. Towards this end, we introduce a
semi-supervised fine-tuning (SemiFT) task and
a framework named SEMIEVOL for LLM align-
ment from a propagate-and-select manner. For
knowledge propagation, SEMIEVOL adopts a
bi-level approach, propagating knowledge from
labeled data to unlabeled data through both in-
weight and in-context methods. For knowledge
selection, SEMIEVOL incorporates a collabo-
rative learning mechanism, selecting higher-
quality pseudo-response samples. We con-
ducted experiments using GPT-4o-mini and
Llama-3.1 on seven general or domain-specific
datasets, demonstrating significant improve-
ments in model performance on target data.
Furthermore, we compared SEMIEVOL with
SFT and self-evolution methods, highlighting
its practicality in hybrid data scenarios.

1 Introduction

Supervised fine-tuning (SFT) is a crucial method
for enhancing large language models’ (LLMs)
performance on instructional or domain-specific
tasks (Raffel et al., 2020; Chung et al., 2024),
playing a vital role in adapting LLMs for specific
scenarios. However, SFT relies on a substantial
amount of annotated labeled data, which can be
increasingly costly in real-world applications (Hon-
ovich et al., 2023; Kung et al., 2023). While ex-
isting LLMs often employ unsupervised pretrain-
ing methods (Devlin, 2018; Radford et al., 2019;
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Figure 1: Comparison of SEMIEVOL with previous
SFT methods. SEMIEVOL enables interaction between
diverse data types for superior performance evolution.

Brown, 2020) to improve their capabilities, this ap-
proach typically requires vast datasets and substan-
tial computational resources, making it impractical
for scenarios with limited accessible samples.

In practice, however, it often presents a hybrid
situation, where a small amount of labeled data
coexists with a relatively larger volume of unla-
beled data. On the one hand, when deploying
LLMs to new target tasks, a limited amount of
task-specific annotations can be valuable without
incurring excessive costs (Perlitz et al., 2023; Kung
et al., 2023). On the other hand, during the con-
tinuous inference process of LLMs, a substantial
amount of unlabeled data accumulates (Tao et al.,
2024; Honovich et al., 2023; Wang et al., 2023).
Effectively leveraging the labeled data to enhance
model performance on unlabeled data, while simul-
taneously selecting high-quality unlabeled samples,
can improve LLMs’ performance in target scenar-
ios, offering substantial practical utility. Therefore,
we aim to address the following question:

Can LLMs evolve in a real-world sce-
nario of limited labeled data and abun-
dant unlabeled data?

Designing an evolution framework for hybrid-data
scenarios is non-trivial due to the following rea-
sons: First, semi-supervised learning (Kipf and
Welling, 2016; Shi et al., 2023), which has been
widely studied in machine learning, primarily fo-
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