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Abstract

Large Multimodal Models (LMMs) exhibit im-
pressive cross-modal understanding and reason-
ing abilities, often assessed through multiple-
choice questions (MCQs) that include an im-
age, a question, and several options. How-
ever, many benchmarks used for such evalu-
ations suffer from systematic biases. Remark-
ably, Large Language Models (LLMs) without
any visual perception capabilities achieve non-
trivial performance, undermining the credibil-
ity of these evaluations. To address this issue
while maintaining the efficiency of MCQ eval-
uations, we propose MMEVALPRO, a bench-
mark designed to avoid Type-I errors through a
trilogy evaluation pipeline and more rigorous
metrics. For each original question from ex-
isting benchmarks, human annotators augment
it by creating one perception question and one
knowledge anchor question through a meticu-
lous annotation process. MMEVALPRO com-
prises 2, 138 question triplets, totaling 6, 414
distinct questions. Two-thirds of these ques-
tions are manually labeled by human experts,
while the rest are sourced from existing bench-
marks (MMMU, ScienceQA, and MathVista).
Compared with the existing benchmarks, our
experiments with the latest LLMs and LMMs
demonstrate that MMEVALPRO is more chal-
lenging (the best LMM lags behind human
performance by 31.73%, compared to an av-
erage gap of 8.03% in previous benchmarks)
and more trustworthy (the best LLM trails
the best LMM by 23.09%, whereas the gap for
previous benchmarks is just 14.64%). Our in-
depth analysis explains the reason for the large
performance gap and justifies the trustworthi-
ness of evaluation, underscoring its significant
potential for advancing future research.

1 Introduction

Ever since the birth of standardized testing, the
credibility of its conclusions has been a signif-

⇤
Equal contribution. †Corresponding authors.

(a) Seeing-or-Not Comparison (b) Answer Consistency Test
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The two inner angle bisectors of ∆ABC, OB and OC, 
intersect at point O. If ∠A = 110°, then ∠BOC = ( ).
Options: (A) 135° (B) 140° (C) 145° (D) 150°
Answer: C

How many triangles are there?
Options: A. 2 B. 3 C.5 D.7 
Answer: A

If BO is the bisector of ∠ABC, CO is the bisector of ∠ACB, 
What's the relation between ∠BAC and ∠BOC?
Options: 
(A) ∠BAC = ∠BOC                 (B) ∠BAC = 2∠BOC  
(C) ∠BOC = 90°+1/2∠BAC (D) ∠BOC = 180°-1/2∠BAC
Answer: C

Question: The sinoatrial (SA) node is 
indicated by ( ).
Options: (A) A   (B) B (C) C  (D) D  (E) E
Answer: A

Seeing

Not
Seeing

Question: Which animal’s feet are also 
adapted for grabbing prey?
Options: (A) Sable (B) New Zealand Falcon
Answer: B

-- MMMU

-- ScienceQA

-- MathVista

-- MM-Diagnose (Ours)

Figure 1: Examples of the probing experiments.

Figure 2: Topic distribution of MMEVALPRO’s data.

icant concern. The same problem goes for the
evaluation of recently popular Large Multimodal
Models (LMMs) such as GPT4-o (OpenAI, 2024),
Gemini-1.5 (Team et al., 2024), Qwen-VL (Bai
et al., 2023b) and LLaVA (Liu et al., 2023b). One
classic composition of such an evaluation is the
multiple-choice question (MCQ), which includes
an image, a question, possible choices, and an an-
swer. This form of evaluation has higher usability
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