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ABSTRACT
Hashing has become increasingly popular in approximate nearest
neighbor search in recent years due to its storage and computational
efficiency. While deep unsupervised hashing has shown encourag-
ing performance recently, its efficacy in the more realistic unsu-
pervised situation is far from satisfactory due to two limitations.
On one hand, they usually neglect the underlying global semantic
structure in the deep feature space. On the other hand, they also
ignore reconstructing the global structure in the hash code space.
In this research, we develop a simple yet effective approach named
deeP UnsupeRvised hashing via Prototypical LEarning (PURPLE).
Specifically, PURPLE introduces both feature prototypes and hash-
ing prototypes to model the underlying semantic structures of the
images in both deep feature space and hash code space. Then we
impose a smoothness constraint to regularize the consistency of
the global structures in two spaces through our semantic prototyp-
ical consistency learning. Moreover, our method encourages the
prototypical consistency for different augmentations of each image
via contrastive prototypical consistency learning. Comprehensive
experiments on three benchmark datasets demonstrate that our
proposed PURPLE performs better than a variety of state-of-the-art
retrieval methods.
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• Information Systems→ Information Search; Similaritymea-
sures; • Theory of computation → Unsupervised learning
and clustering.
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1 INTRODUCTION
Large-scale image search has been a important problem in the mul-
timedia community. Among various search algorithms, learning to
hash has achieved increasing interest thanks to its excellent effi-
ciency [31, 35]. The principle of hashing algorithms is compressing
high-dimensional input samples into compact hash codes, which
maintains the similarity information of the original data points [31].
As the popularity of deep learning, a range of researchers combine
supervised hashing and deep neural networks, which achieves
remarkable performance in image retrieval by generating well
similarity preserved hash codes with the help of semantic labels
[2, 3, 21, 23, 29, 35, 42, 45, 50].

Despite the great success, supervised hashing approaches are
hard to be deployed in practice owing to the expense of large-scale
data annotations. Accordingly, plenty of unsupervised methods
have been developed and provide a cost-effective solution to this
problem [28, 36, 40, 46]. A two-step framework is employed by
many recent unsupervised hashing methods: (1) The local seman-
tic similarity structure can be built based on the extracted deep
features through the pre-trained neural network. (2) A hashing
network can be optimized under the supervision of the acquired
similarity structure to generate compact hash codes for efficient
image retrieval.

Nevertheless, existing methods [28, 36, 40, 46] suffer from the
following limitations that could influence the quality of hash codes.
First, theymostly focus on constructing the local semantic similarity
relationships but fail to discover the underlying global semantic
structure over the whole data distribution. It is worth noticing
that images in a dataset should possess a global semantic structure.
For the entire dataset, deep features usually accumulate around
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Figure 1: An illustration of the global semantic structure in
the deep feature space. Different colors indicate different se-
mantics.

their feature prototypes corresponding to their semantics. However,
existing methods [28, 36, 40, 46] mostly do not explore semantic
structure from the global view. As shown in Figure 1, the features of
input images containing similar semantics should be close to their
corresponding prototypes. The distance of the blue data point and
the brown data point circled in the dashed line is small although they
contain dissimilar semantics based on the global semantic structure.
The similarity relationships of image pairs are likely to bemisjudged
if ignoring the global semantic structure. Second, effective hash
codes should also reflect the global semantic structure of the dataset
in the hash code space, so that the images with similar semantic
properties (i.e., the same class label) can be compactly embedded
in the hash code space. Ignoring reconstructing global semantic
structure in the hash code space directly affects the efficiency of
the retrieval performance.

Accordingly, we propose a new deep unsupervised hashing
method named deePUnsupeRvised hashing viaPrototypicalLEarning
(PURPLE), which introduces prototypes in both the deep feature
space and the hash code space to explore and preserve the global
semantic structure respectively, and obtain robust hash codes by
two kinds of consistency learning. Specifically, PURPLE firstly con-
structs the global semantic structure by mapping deep features to a
set of prototypes and then obtaining the similarity graph based on
the pseudo-labels of images. Then a novel semantic prototypical
consistency loss is adopted to match the hashing graph with the
similarity graph obtained in the deep feature space. Moreover, we
build the hashing prototypes (i.e., cluster centroids in the hash code
space) based on the Hadamard matrix or random sampling, which
depict the hashing semantic structure of the entire dataset. Then
the Sinkhorn-knopp algorithm is utilized to generate soft hash-
ing prototypical assignments with necessary constraints. In the
end, the contrastive prototypical semantic consistency in the hash
code space is achieved by enforcing the prototypical assignment
consistency between different augmentations of each image.

The contributions of this paper are summarized as:

• We introduce both feature prototypes and hashing prototypes
to model the underlying semantic structures of images in both
deep feature space and hash code space.

• We propose a semantic prototypical consistency loss and a con-
trastive prototypical consistency loss to encourage both the se-
mantic structure alignment of two spaces and the prototypical
assignment consistency of different views of each image in the
hash code space.

• Extensive experiments on three popular benchmark datasets
demonstrate that our PURPLE outperforms recent state-of-the-
art unsupervised hashing methods.

2 RELATEDWORK
2.1 Deep Unsupervised Hashing
Many recent deep unsupervised hashing methods solve the unsu-
pervised problem by generating the semantic structure of training
samples based on their deep features [33, 34, 49]. To be specific,
DeepBit [28] tries to learn hash codes by preserving the similari-
ties between the similar pairs of images and their corresponding
rotated images. SSDH [46] constructs the similarity structure based
on Gaussian estimation and further preserves the semantic struc-
ture in the hamming space. DistillHash [47] utilizes a Bayes optimal
classifier to help distill the image pairs with confident similarity
signals and thus enhances the generated semantic structure. CUDH
[13] generates hash codes based on the aggregated clusters, which
are recursively learned by the soft clustering model. MLS3RDUH
[40] reconstructs the local semantic similarity structure based on a
novel similarity matrix by using the manifold structure in feature
space and the similarity of datapoints. SPQ [19] generates hash
codes by utilizing the cross quantized contrastive learning with
data augmentations from the view of self-supervised learning. Our
model further improves the performance of deep unsupervised
hashing by exploring the global semantic structure in both the deep
feature space and the hash code space.

2.2 Self-supervised Contrastive Learning
Recent works [7, 11, 16, 22, 24, 26, 27, 44] show that unsupervised
image representation learning has achieved significant improve-
ment based on contrastive learning. [14] tries to contrast positive
pairs with negative pairs for representation learning. SimCLR [7]
conducts contrastive learning on elements in the same batch with-
out requiring a memory bank, which improves the performance
on ImageNet. Recent works [19, 34] have integrated contrastive
learning with deep unsupervised hashing, taking into account that
hash code is a type of representation. However, most downstream
tasks suffer from the burden of computation and storage when
comparing pairs of image feature representations. Benefiting from
the low storage cost of hashing methods, contrastive learning can
be well employed in our model to help enhance the performance of
unsupervised hashing. Inspired by recent methods in contrastive
learning, we develop the semantic prototypical consistency learn-
ing and the contrastive prototypical consistency learning to help
improve the performance of image retrieval.
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Figure 2: Illustration of our proposed framework PURPLE. On the one hand, PURPLE generates the semantic structure in-
formation by constructing the feature-based pseudo-graph 𝑆 𝑓 , which guides the hashing-based semantic structure-preserving
together with the hash code-based graph 𝑆ℎ through the semantic prototypical consistency learning. On the other hand, con-
trastive consistency learning is based on the prototypical assignment results of different augmentations of each image.

2.3 Deep Clustering
Our method is also related with deep clustering [1, 5, 17, 25, 51]
since the global semantic structure can be reflected by cluster-
ing to some extent. Among them, DeepCluster [5] utilizes pseudo-
labels generated based on k-means clustering assignments as the
visual representations. [1] further utilizes the optimal transport
theory to optimize the pseudo-label assignments. PICA [17] maxi-
mizes the partition confidence of the cluster solution to learn the
most semantically plausible data separation. Inspired by contrastive
learning, a range of works enhance deep clustering by regarding
the pseudo-label as a degraded representation, which can achieve
promising results by mapping input samples into the subspace with
the same dimensionality as the cluster number [25, 51]. There are
also some works in different fields [15, 30] attempting to employ
deep clustering to enhance representation learning by considering
the global semantic structure in the deep feature space. Among
them, SwAV [6] contrasts cluster assignments from different views
for self-supervised representation learning. Different from them,
our method utilizes hashing prototypes to explore the global se-
mantic structure in the hash code space.

3 METHODOLOGY
In this section, we introduce the problem definition of unsupervised
hashing and then illustrate our method PURPLE in Figure 2, in-
cluding its network architecture, semantic prototypical consistency
learning, and contrastive prototypical consistency learning.

3.1 Problem Definition
For unsupervised hashing learning, X = {x𝑖 }𝑁𝑖=1 represents the
training set with𝑁 unlabeled images. A hash function is aimed to be
learnedH : x → b ∈ {−1, 1}𝐿,where x represents the input sample
and b represents the learned compact 𝐿-bit hash code. This process
is expected to maintain similarity of datapoints. Namely, samples
with similar semantic labels are expected to have corresponding
hash codes with small Hamming distance.

3.2 Network Architecture
As shown in Figure 2, our model contains two modules for deep
feature extraction and hash code learning, respectively. To be spe-
cific, following [19, 40, 46], we utilize a pre-trained network (e.g.,
VGG-F [39]) removing the last layer 𝐹 (·) to extract deep features
of training images, and reconstruct the semantic structure in the
feature space. Besides, the hashing network 𝐺 (·) is converted by
replacing the last layer of the pre-trained network with a fully-
connected layer, which contains 𝐿 units for hash code learning.

3.3 Semantic Prototypical Consistency
Learning

It is worth noticing that images in a dataset should possess a global
semantic structure. In our model, global semantic structures are
modeled in both the deep feature space and the hash code space.
We first generate the semantic structure in the pre-trained deep
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feature space, and then attempt to preserve the semantic structure
information in the hash code learning process.

3.3.1 Feature-based Semantic Structure Generating. To comprehen-
sively explore the semantic structure of the training set X, given
the pre-trained deep features1 𝑍 = {z𝑖 = 𝐹 (x𝑖 )}𝑁𝑖=1 (after 𝐿2 nor-
malization), we assume that the deep features of images with the
same semantics are expected to accumulate in the latent space.
Specifically, we introduce a set of𝑀 prototypes 𝐶 = {c1, ..., c𝑀 } to
represent the feature centroids in the latent space. In practice, we
use the k-means clustering to get the prototype set. Then we match
all the features to the 𝑀 prototypes, the similarity between each
deep feature z𝑖 and the𝑚-th prototype c𝑚 can be formalized as:

(q𝑖 )𝑚 =
exp (z⊤

𝑖
c𝑚/𝜏)∑𝑀

𝑚
′ exp (z⊤𝑖 c𝑚′ /𝜏)

(1)

where q𝑖 denotes the pseudo-label of the 𝑖-th sample and 𝜏 is the
temperature parameter. Given the pseudo-labels of 𝐼 unlabeled
samples in a mini-batch, we can construct the deep feature-based
pseudo-graph 𝑆 𝑓 ∈ R𝐼×𝐼 for the batch in the following formulation:

𝑆
𝑓

𝑖 𝑗
=

{
1 if q⊤

𝑖
q𝑗 ≥ 𝑇

q⊤
𝑖
q𝑗 otherwise (2)

where 𝑇 is a threshold parameter and sample pairs with similarity
larger than 𝑇 are fully connected in 𝑆 𝑓 , and each sample is fully
connected to itself.

3.3.2 Hashing-based Semantic Structure Preserving. The semantic
structure consistency learning aims to learn hash codes guided
by the underlying semantics in the deep feature space, such that
obtained hash codes can preserve the semantic structure of the
training images. To be specific, images with similar semantics are
expected to be mapped to similar hash codes.

At the feature-based semantic structure constructing step, the
pseudo-graph 𝑆 𝑓 is generated, which can be used as the guidance
of hash code learning through constructing a hash code-based
graph 𝑆ℎ . To construct the graph 𝑆ℎ , two augmented views of each
image x𝑖 are utilized and their hash codes can be obtained through
the hashing network 𝐺 (·), which can be denoted as {b(1)

𝑖
, b(2)
𝑖

}𝐼
𝑖=1.

Then the hash code similarity graph 𝑆ℎ
𝑖 𝑗

∈ R𝐼×𝐼 can be derived by
the following formulation:

𝑆ℎ𝑖 𝑗 =

{
𝑒b

(1)
𝑖

★b(2)
𝑖

/𝜏 𝑖 = 𝑗,

𝑒
b(1)
𝑖

★b(1)
𝑗

/𝜏
𝑖 ≠ 𝑗

(3)

where the★denotes the cosine similaritymetric, i.e., a★b = a𝑇 b
| |a | | | |b | | .

For the purpose of preserving the semantic structure information,
we aim to train the hashing network with the guidance of the
pseudo-graph. Accordingly, the semantic prototypical consistency
loss is defined to minimize the weighted cross-entropy between
two graphs, which is formulated as:

L𝑆 (𝑆 𝑓 , 𝑆ℎ) =
1
𝐼

𝐼∑
𝑖, 𝑗=1

(
− 𝑆 𝑓

𝑖 𝑗
log(

𝑆ℎ
𝑖 𝑗∑𝐼

𝑗
′
=1
𝑆ℎ
𝑖 𝑗

′
)
)

(4)

1Here we omit data augmentation for brevity.

where each term corresponds to the element-wise calculation in
corresponding matrices.

3.4 Contrastive Prototypical Consistency
Learning

In the hash code space, we can also expect the global semantic
structure. Specifically, we seek to construct𝑀 hashing prototypes
{h1, ..., h𝑀 } well separated in the hash code space, each of which
implies a cluster centroid. Inspired by [48], we observe that hashing
prototypes learned from unlabeled data with diverse mutual Ham-
ming distances perform worse than hashing prototypes with given
Hamming distance. As a result, we leverage the Hadamard matrix
to generate prototypes in the hash code space. Note that the code
length 𝐿 can usually be written as 𝐿 = 2𝐾 following [19, 31, 36],
so we can construct the Hadamard matrix H2𝐾 ∈ {−1, 1}2𝐾×2𝐾 as
follows:

H2 =

[
1 1
1 −1

]
H2𝑘 =

[
H2𝑘−1 H2𝑘−1
H2𝑘−1 −H2𝑘−1

]
(𝐾 − 1 ≥ 𝑘 ≥ 2)

(5)

where the column vectors are mutually orthogonal. Then, we uti-
lize the Hadamard matrix to generate desirable hashing prototypes.
To be specific, the binary column vectors sampled from H2𝐾 are
used as hashing prototypes. As a result, if the number of hashing
prototypes is smaller than the hash code length, we can produce
hashing prototypes using the above strategy. The distance between
any two prototypes is 2𝐾−1. However, when the number of hashing
prototypes 𝑀 is larger than the hash code length 𝐿, the strategy
cannot work. In this case, we randomly sample the bits of each
hashing prototype instead. To be specific, each bit of a hashing
prototype comes from the Bernoulli distribution, i.e., Bern(0.5). It
can be shown that the expected distance between these hashing
prototypes is 2𝐾−1, i.e., half of the code length [48]. Then, we lever-
age the produced hashing prototypes to guide the optimization of
the hashing network.

Inspired by recent clustering-based self-supervised methods [6],
we contrast multiple views of the each image by comparing their
prototypical assignments in the hash code space. Specifically, given
two different augmentations of the same image x𝑖 , we can com-
pute the probability of the hash code b(𝑟 )

𝑖
= 𝑠𝑖𝑔𝑛(𝐺 (x(𝑟 )

𝑖
)) being

assigned to the 𝑚-th hashing prototype h𝑚 by comparing hash
codes with a set of hashing prototypes as follows:

𝑝 (𝑦 =𝑚 |b(𝑟 )
𝑖

) =
exp (b(𝑟 )

⊤

𝑖
h𝑚/𝜏)∑𝑀

𝑚′=1 exp (b⊤𝑖 h𝑚′/𝜏)
(6)

where 𝑟 = 1 or 2 and 𝑦 represents the prototypical assignment label
to the prototype h𝑚 and 𝜏 is the temperature parameter. To en-
courage the prototypical consistency between two correlated views
(i.e., x(1)

𝑖
and x(2)

𝑖
), we expect to predict the hashing prototypical

assignments of b(2)
𝑖

(b(1)
𝑖

) with the hash code b(1)
𝑖

(b(2)
𝑖

) from the
correlated view. Formally, we define the contrastive prototypical
consistency objective function via minimizing the average cross-
entropy loss between the prototypical assignment result and the
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probability :

ℓ (b(2)
𝑖
, b(1)
𝑖

) = −
𝑀∑
𝑚=1

𝑞(𝑦 =𝑚 |b(1)
𝑖

) log𝑝 (𝑦 =𝑚 |b(2)
𝑖

) (7)

where 𝑞(𝑦 |b(1)
𝑖

) denotes the target hashing prototypical assign-
ments of x(1)

𝑖
. The other loss function can be derived similarly. The

final contrastive prototypical consistency learning loss is written
as:

L𝐶 =
1
2𝐼

𝐼∑
𝑖=1

ℓ (b(2)
𝑖
, b(1)
𝑖

) + ℓ (b(1)
𝑖
, b(2)
𝑖

) (8)

Contrastive prototypical consistency learning aims to achieve
consistent hash codes for different image views by comparing their
prototypical assignments instead of their hash codes. Inspired by
recent studies [1, 6], we calculate the target hashing prototypical
assignment 𝑞(𝑦 |b𝑖 ), and then conduct the gradient descend algo-
rithm to optimize the hashing network. To begin, we add necessary
constraints when calculating the target prototypical assignments
to avoid the issue of potential trivial solutions [6]. In the following,
we omit the superscript of 𝑞(𝑦 |b(𝑟 )

𝑖
). We first seek to ensure that

the target hashing prototypical assignment 𝑞(𝑦 |b𝑖 ) for each image
x𝑖 are an one-hot vector. Moreover, we require the assignment bal-
ance for each hashing prototype using 𝑞 (𝑦 =𝑚 | b𝑖 ) = 𝐼

𝑀
, which

indicates the uniformity in the hash code space.
Note that obtaining 𝑞 (𝑦 =𝑚 | b𝑖 ) is equivalent to solving an

optimal transport problem [1]. Thus, we leverage an alternative
optimization algorithm. To begin, we introduce a matrix Q ∈ R𝑀×𝐼

with Q𝑚𝑖 = 1
𝐼
𝑞 (𝑦 =𝑚 | b𝑖 ). To achieve the uniformity in the hash

code space, we encourage Q to be a transportation polytope as:

Ω =

{
Q ∈ R𝑀×𝐼

+ |Q1𝐼 =
1
𝑀

1𝑀 ,Q𝑇 1𝑀 =
1
𝐼
1𝐼
}

(9)

where 1𝐼 ∈ R𝐼 is a all-one vector and the problem is solved within
a minibatch for better efficiency. Then, we maximize the overall
similarity between each hash code and its corresponding hashing
prototype in a batch as follows:

O =

𝐼∑
𝑖=1

𝑀∑
𝑚=1

𝑞 (𝑦 =𝑚 | b𝑖 ) ℎ𝑇𝑚b𝑖 = 𝐼 · 𝑡𝑟 (B𝑇HQ) (10)

where H = [h1, · · · , h𝑀 ] ∈ R𝐿×𝑀 and B = [b1, · · · , b𝐼 ] ∈ R𝐿×𝐼 .
The solution to maximizing Eq. 10 with constraint in Eq. 9 can be

derived by the Sinkhorn-Knopp Algorithm [6, 9, 15, 30]. In formu-
lation, after adding a regularization term −𝐼𝛾 ∑𝑖 𝑗 Q𝑖 𝑗 logQ𝑖 𝑗 [6],
given P = exp(H𝑇 B𝛾 ), where 𝛾 is a parameter set to 0.05 empirically,

Algorithm 1 Sinkhorn-Knopp Algorithm

Input: The matrix P ∈ R𝑀×𝐼 ;
Output: The target probability matrix Q∗;
1: Q̂ = P.
2: while not convergence do
3: Row renomalization of Q̂ to ensure Q̂1𝐼 = 1

𝑀
1𝑀 .

4: Column renormlization of Q̂ to ensure Q̂𝑇 1𝑀 = 1
𝐼
1𝐼 .

5: end while

Algorithm 2 Learning Algorithm of PURPLE

Input: Training images: X = {x𝑖 }𝑁𝑖=1, the hash code length: 𝐿, the
number of prototypes:𝑀 , the batch size: 𝐼 ;
Output: Parameters Θ of the hashing network 𝐺 (·);
1: Initialize the hashing network from the pre-trained network.
2: Generate 𝑀 hashing prototypes using Hadamard matrix or

sampling strategy.
3: while not convergence do
4: Sample 𝐼 images fromX and produce their augmented views

to form a mini-batch.
5: Construct the deep feature-based pseudo-graph by Eq. 2.
6: Calculate the outputs by forward-propagation through the

network 𝐺 (·).
7: Get the target assignment result through Algorithm 1.
8: Calculate the loss by Eq.12.
9: Update parameters of 𝐺 (·) through back propagation.
10: end while

the optimal Q̂ can be derived by Algorithm 1. Our preliminary ex-
periments show that employing three iterations can achieve great
performance with less computational cost, and that using soft hash-
ing target assignments has a better performance than using one-hot
predictions. The potential reason can be that one-hot predictions
could introduce much noise while losing part of information. As a
result, the soft hashing target assignments in Eq. 7 can be calculated
as follows:

𝑞 (𝑦 =𝑚 | b𝑖 ) = 𝐼 · Q̂𝑚𝑖 , (11)

and then we update the parameter of the hashing network in an
iterative manner.

Our method contributes to the hash code learning in the follow-
ing aspects: (1) The contrastive prototypical consistency learning
prompts the consistency of the prototypical assignments of different
augmented views for each sample, whichmakes for generating hash
codes robust to the perturbation. (2) Benefit from the uniformity of
prototypes in the hash code space, we can generate well-separated
hash codes, which maximize the capacity of the hash code space.
(3) Because contrasting the cluster assignments of examples has
been shown to generate better feature representations for down-
stream computer vision tasks [6, 37], our model can be expected to
generate discriminative binary descriptors for effective large-scale
image retrieval. Finally, the ultimate loss of the hashing network
learning is formulated as follows:

L = L𝑆 + L𝐶 (12)

The Algorithm 2 provides a summary of the entire learning
procedure of the hashing network. Unfortunately, for non-zero
inputs, the derivation of the 𝑠𝑖𝑔𝑛(·) could be zero and it is not
differentiable at the zero point, which could accordingly prevent the
back-propagation algorithm from updating the parameters of the
model when minimizing the Eq. 12. Instead, the 𝑡𝑎𝑛ℎ(·) is utilized
to approximate the result of the 𝑠𝑖𝑔𝑛(·). The approximate hash
codes can be generated by 𝑣 (𝑟 )

𝑖
= 𝑡𝑎𝑛ℎ(𝐺 (x(𝑟 )

𝑖
)) to replace b(𝑟 )

𝑖
in

the above equations. We use the mini-batch standard stochastic
gradient descent (SGD) method to minimize the loss objective.
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Table 1: MAP results for different methods on CIFAR-10, FLICKR25K and NUS-WIDE.

Methods CIFAR-10 FLICKR25K NUS-WIDE
16bits 32bits 64bits 16bits 32bits 64bits 16bits 32bits 64bits

LSH [12] 0.132 0.137 0.145 0.583 0.589 0.593 0.432 0.441 0.443
SH [43] 0.161 0.158 0.151 0.591 0.592 0.602 0.510 0.512 0.518

DeepBit [28] 0.220 0.241 0.252 0.593 0.593 0.620 0.454 0.463 0.477
SGH [10] 0.180 0.183 0.189 0.616 0.628 0.625 0.593 0.590 0.607
SSDH [46] 0.257 0.256 0.259 0.627 0.633 0.656 0.580 0.593 0.610

DistillHash [47] 0.284 0.285 0.287 0.696 0.706 0.708 0.667 0.675 0.677
CUDH [13] 0.286 0.290 0.303 0.661 0.675 0.683 0.693 0.709 0.722

MLS3RDUH [40] 0.288 0.296 0.314 0.697 0.701 0.708 0.713 0.727 0.750
TBH [38] 0.293 0.310 0.323 0.702 0.714 0.720 0.717 0.725 0.735
GLC [32] 0.316 0.330 0.305 0.758 0.772 0.777 0.759 0.772 0.783
SPQ [19] 0.308 0.377 0.409 0.757 0.769 0.778 0.766 0.774 0.785

PURPLE (Ours) 0.515 0.520 0.544 0.814 0.828 0.831 0.799 0.802 0.808

4 EXPERIMENT
Extensive experiments are conducted to evaluate PURPLE com-
pared with several state-of-the-art unsupervised hashing methods.

4.1 Datasets and Setup
CIFAR-10 [20] contains 60000 images of ten unique categories.
1000 images are randomly selected from each class as the query set,
and the rest images are utilized as the retrieval set, from which 500
images are randomly sampled from each class as the training set.
FLICKR25K [18] consists of 25,000 images labeled by at least one
of the 24 categories. 2,000 randomly selected images are used as
the query set with the remaining images as the retrieval set, where
we randomly select 5000 images as the training set.
NUS-WIDE [8] has 269,648 images of 81 categories. Following [19,
38], we use the subset that contains the 21 most popular categories.
100 images are randomly selected from each class as the query
set with the remaining images as the retrieval set, from which We
randomly select 500 images for each category as the training set.

We compare our PURPLE with state-of-the-art methods includ-
ing two traditional shallow methods (i.e., LSH [12] and SH [43]) and
nine deep learning-based methods (i.e., SGH [10], DeepBits [28],
SSDH [46], DistillHash [47], CUDH [13], MLS3RUDH [40], TBH
[38], GLC [32] and SPQ [19]). For our method, we adopt the same
hashing network as [19]. For baselines, we follow the settings in
their corresponding papers [19, 32, 38, 40].

We implement PURPLE by Pytorch V1.8.0 on anNVIDIAGeForce
RTX 3090 GPU. Our model is optimized by mini-batch SGD with
momentum and the mini-batch size is set as 48. The learning rates
of the backbone and the newly added fully connected layer are fixed
at 0.00001 and 0.001, respectively. We resize images to 224 × 224
as the training inputs. Data augmentation in the experiments con-
tains random cropping and resizing, color jitter, random grayscale,
Gaussian blur and random horizontal flip [16]. The temperature
parameter 𝜏 is set as 0.5. The number of prototypes 𝑀 and the
threshold parameter 𝑇 are set as 50 and 0.8 as default, respectively.

We construct the ground-truth similarity information based on
the image labels for evaluation. To be specific, for CIFAR-10, two
images are regarded as similar when they have the same label. For

FLICKR25K and NUS-WIDE, two images are regarded as similar if
they have at least one common label. Three evaluation metrics are
utilized: Mean Average Precision (MAP), Precision-recall curve, and
TopN-precision curve. For FLICKR25K and NUS-WIDE, we adopt
𝑀𝐴𝑃@5000. For CIFAR-10, we adopt𝑀𝐴𝑃@50000.

4.2 Experimental Results
Table 1 shows the MAP results of PURPLE and other baseline
methods on three datasets FLICKR25K, CIFAR-10, and NUS-WIDE
with hash code lengths varying from 16 to 64. In addition, the
Precision-recall curves and the TopN-precision curves of SSDH,
CUDH, MLS3RDUH, GLC, and PURPLE on the three datasets are
shown in Figure 3 and Figure 4, respestively. Based on the results,
it can be observed that:

• Methods related with contrastive learning that utilizes the strong
agreement between different views of the same images (SPQ and
PURPLE) outperform other baselines, implying that contrastive
learning helps generate high-quality hash codes and further en-
hance the model performance.

• Our method PURPLE outperforms all the competing baselines on
all three datasets. Specifically, compared with the representative
self-supervised method SPQ, PURPLE achieves an improvement
of 16.2%, 5.6% and 2.8% for the average MAP on the dataset
CIFAR-10, FLICKR25K and NUS-WIDE, respectively, indicating
that hash codes generated by our method can preserve the se-
mantic structure information more efficiently by considering the
global semantic structure of both the deep feature space and the
hash code space.

• The Precision-recall curves of PURPLE are always on top of the
other curves of four baselines and the TopN-precision curves of
PURPLE are always above the other curves, demonstrating that
PURPLE can achieve superior performances under the Hamming
ranking-based evaluation.

4.3 Ablation Study
To investigate the effectiveness of the semantic prototypical consis-
tency learning and the contrastive prototypical consistency learning
of PURPLE, we introduce two variants of our method:



Improved Deep Unsupervised Hashing via Prototypical Learning MM ’22, October 10–14, 2022, Lisboa, Portugal

Figure 3: The Precision-recall curves on three benchmark datasets with hash codes @ 64 bits.

Figure 4: The Top𝑁 -precision curves on three benchmark datasets with hash codes @ 64 bits.

Table 2: Ablation study on CIFAR-10, FLICKR25K and NUS-WIDE.

Methods CIFAR-10 FLICKR25K NUS-WIDE
16bits 32bits 64bits 16bits 32bits 64bits 16bits 32bits 64bits

PURPLE-v1 0.482 0.486 0.518 0.788 0.796 0.809 0.772 0.783 0.792
PURPLE-v2 0.395 0.424 0.439 0.762 0.788 0.797 0.738 0.757 0.783
PURPLE 0.515 0.520 0.544 0.814 0.828 0.831 0.799 0.802 0.808

• PURPLE-v1 only resorts to the semantic prototypical consis-
tency learning module, which constructs the pseudo-graph 𝑆𝑓 as
the guidance of preserving the semantic structure of the whole
datasets during the hash code learning process. By comparing
the results of PURPLE-v1 and the full model PURPLE in Table 2,
it can be observed that the contrastive prototypical consistency
learning can further help improve the model performance.

• PURPLE-v2 only performs the contrastive prototypical consis-
tency learning by maximizing the agreement of different views of
each image in regards to the hash code prototypical assignments.
PURPLE surpasses PURPLE-v2, demonstrating the effectiveness
of the semantic prototypical consistency learning in preserving
the underlying semantic structure for hash code learning.

4.4 Parameter Sensitivity
We further study the influence of the number of prototypes𝑀 and
the threshold 𝑇 . As can be seen in the left column of Figure 5, the
performance of our model stabilizes when 𝑀 is in the range of
[30, 120] for both two datasets, and degrades when the number of
prototypes is smaller than 30 or larger than 120. Moreover, as can

be observed from the right column of Figure 5, PURPLE can achieve
more considerable performances when𝑇 is in the range of [0.7, 0.9].
Hence,𝑀 and 𝑇 are set to 50 and 0.8 as default, respectively.

Figure 5: Sensitivity analysis of the number of prototypes𝑀
and the threshold parameter 𝑇 with hash codes @ 64 bits.

4.5 Visualization
Figure 6 demonstrates the visualization results by t-SNE [41] of
MLS3RUDH, SPQ and PURPLE following [2, 4]. By comparing the
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Figure 6: The t-SNE visualization of hash codes @ 64 bits on CIFAR-10.
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Figure 7: Examples of the top 10 retrieved images and Precision@10 on CIFAR-10 with hash codes @ 32 bits.

results of our model and MLS3RUDH, it can be found that the hash
codes in different labels generated by PURPLE are more clearly
separated, indicating that the semantic structure information is
significantly better preserved in the hash codes generated by PUR-
PLE. In addition, by comparing the results of our model and SPQ,
hash codes generated by PURPLE exhibit more discriminative struc-
tures. For instance, the blue points (i.e., the category Track) and
the yellow points (i.e., the category Ship) are more clearly sepa-
rated by our model. Furthermore, we show the top 10 retrieved
images by PURPLE and SPQ based on 32-bit hash codes in Figure 7,
where images in purple boxes are correct results. Benefiting from
the semantic prototypical consistency learning and the contrastive
prototypical consistency learning of our proposed method PURPLE,
it can be observed that our model provides much more relevant
image retrieval results.

5 CONCLUSION
This paper studies deep unsupervised hashing, and a novel method
called PURPLE is proposed. PURPLE consists of twomodules named
semantic prototypical consistency learning and contrastive proto-
typical consistency learning, which explore and preserve the global
semantic structure in the deep feature space and the hash code space,

respectively. Furthermore, a semantic prototypical consistency loss
and a contrastive prototypical consistency loss are proposed to
encourage both the semantic structure alignment of two spaces and
the clustering consistency for different views in the hash code space.
Experiments on a range of benchmarks validate the effectiveness of
our PURPLE. By comparing our method with competing baselines,
PURPLE surpasses the state-of-the-art unsupervised hashing meth-
ods by large margins. In future work, we will explore our methods
in various retrieval tasks such as cross-modal unsupervised hashing
and semi-supervised hashing.
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