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Multi-domain recommender systems are becoming increasingly significant, as they can alleviate 
the sparsity challenge and cold-start problem within a single domain by transferring knowledge 
from related domains in a collective manner. However, existing methods primarily concentrate 
on the process of sharing or mapping the features of the same users across different domains 
to facilitate knowledge transfer. Since the user-item interactions can be naturally formulated as 
bipartite graphs, transferring knowledge via message passing throughout domains would be a 
more straightforward approach. Moreover, the existing approaches generally pay more attention 
to modeling the common interests of users, leaving behind the under-explored domain-specific 
interests. In this paper, we introduce a novel framework, called GMR-Rec, for the multi-domain 
recommendation, which explicitly transfers knowledge across various domains. Specifically, both 
domain-shared and domain-specific graphs are constructed using historical user-item interactions, 
with the parallel graph neural network employed for each of them. Then, mutual regularization 
strategies are proposed to distinguish domain-specific user interests while preserving common 
user interests shared across domains. Experimental results on the four real-world datasets show 
that our model achieves an average improvement of 1.24%, 2.90%, 5.07% and 3.17% in HR@10, 
and 3.05%, 4.24%, 6.38% and 3.99% in NDCG@10 compared to the state-of-the-art baseline.

1. Introduction

As Internet services develop in a rapid manner, our daily life is unprecedentedly linked to online services, sparking a vast increase 
in the production of online information. As a result, the personalized recommender system has become a prevalent service for routing 
users to the preferred items among millions of alternatives. Collaborative Filtering (CF), which models connections among users as 
well as dependencies among items, has achieved remarkable success in recommender systems.
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Fig. 1. An illustration in Dianping APP. (a) User-item interactions in Feeds and POI domains; (b) High-order connectivities in the shared domain; (c) High-order 
connectivities in the specific domains.

The key point behind CF models involves learning informative representations (i.e., embeddings) of users and items. Traditional 
CF methods (i.e., Matrix Factorization (MF) [1]) derive these embeddings through historical user-item interactions solely and make 
predictions based on the embedding similarity. However, these methods confront challenges arising from data sparsity and the 
cold-start problem, notably impacting the learned representation of users with few interactions and leading to poor performance. 
Fortunately, users often have interactions in multiple domains in the real world. Therefore, the integration of auxiliary data from 
these additional domains may play a crucial role in enabling the recommender system to address issues related to the data sparsity 
and the cold-start problem.

Multi-domain recommendation endeavors to enhance recommendation performance in each domain by leveraging user interests 
from other auxiliary domains. For example, CodeBook Transfer (CBT) [2] converts the auxiliary rating matrix into a cluster-level 
representation of rating patterns, referred to as a codebook. Then it transfers the codebook into the target domain, and reconstructs 
the target rating matrix. Different from the two-stage migration utilized by CBT, Collective Matrix Factorization (CMF) [3] conduct 
factorization on the rating matrices from various domains, and directly shares the latent features of common users or items to facilitate 
knowledge transfer. Meanwhile, a few follow-up works are proposed to improve this approach [4,5]. However, existing approaches 
mostly focus on sharing/mapping user representations to implicitly transfer knowledge across domains. Intuitively, we can formulate 
the user-item interaction records as a bipartite graph. By integrating the interactions from multiple domains as one shared graph, 
we can build a better model to capture the user-item relations by considering high-order connectivity from different domains and 
transferring knowledge explicitly through message passing between these relations.

In recent studies, it has been demonstrated that using the user-item graph structure can effectively alleviate the data sparsity 
problem and the cold-start problem [6,7]. As an example from the online review APP Meituan Dianping shown in Fig. 1(a), users spend 
leisure time browsing reviews through continuously updated feeds. However, when they wish to directly access a Point of Interest 
(POI), they still resort to keyword-based searches. By linking the interaction graph of the POI domain to the Feeds domain, it becomes 
possible to learn and leverage common knowledge across these domains, enhancing the user experience by creating a more seamless 
link between browsing and searching activities. Since Graph Neural Networks (GNNs) achieved great success in extracting features 
from non-Euclidean spaces, recent works have employed GNN-based information propagation strategies to learn the embeddings 
on the constructed user-item bipartite graph. For example, NGCF [6] propagates in the same way as GNNs (conducting feature 
transformation, neighborhood aggregation, and nonlinear activation) to rfine the embeddings of users and items. LightGCN [7] 
simplfies GNNs’ design by propagating the embeddings on the user-item bipartite graph in a linear manner, split the nonlinear 
activation function and feature transformation from the information propagation process, under the assumption that these steps 
bring too much burden to collaborative filtering.

Despite the effectiveness of these multi-domain and GNN-based recommendation methods, there are a few remaining challenges.

First, most methods only focus on domain-shared features, ignoring domain-specific features. For example, as shown in Fig. 1(b), 
in the POI domain, the target user searches for both cinema and hotpot-related keywords, whereas in the Feeds domain, the user 
focuses solely on food reviews. Since cinema is not this user’s interest in the Feeds domain, it should not be used for recommendation. 
Thus, directly sharing/mapping user interests across domains may lead to unsatisfactory results. Second, existing methods struggle 
to effectively capture the distinct characteristics of interaction records. These records can naturally be represented as a heterogeneous 
bipartite graph, consisting of two different types of entities: users and items. However, most GNN-based recommendation methods 
overlook the heterogeneity of node types and propagate embeddings in a recursive manner from distant to nearby neighbors, resulting 
in suboptimal and inefficient feature extraction, particularly in multi-domain recommendation scenario. Third, since neighborhood 
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embeddings are recursively aggregated from each layer, the high-order feature interactions across layers are implicitly modeled, 
leading to non-robustness and low interpretability when calculating matching scores between user and item.

Toward this end, in this paper, we propose GMR-Rec, which is a novel Graph Mutual Regularization learning framework designed 
to address the above-mentioned challenges in multi-domain Recommendation settings. On the one hand, we form a training cohort 
with independent models from each domain so as to capture the corresponding features of the users. Both the domain-shared user 
interests and the domain-specific ones can be distinguished through our proposed mutual learning strategy. On the other hand, the 
information propagation in GNNs can be seen as a neighborhood embedding combination process. It is very natural to design a new 
structure of GNN based on the attention mechanism, which can explicitly detail how information propagates across layers, enabling 
it to distinguish between types of neighbors based on their layer depth. In particular, for each domain, we first construct the domain

specific interaction graph accordingly, and link the individual graphs together to form a domain-shared graph that spans all domains. 
Then, instead of transferring the common knowledge among multiple domains by sharing or mapping their embeddings, we propose 
a novel parallel GNN approach to aggregate the neighbor embeddings under different hops settings independently, and combine them 
using a standard multi-head self-attention mechanism [8]. The process can be regarded as another way of embedding propagation 
where the user interests, both the domain-shared and the domain-specific ones, are rfined based on the aggregated neighborhood 
information from different hops. On this basis, mutual regularization strategies among different domains are proposed to enforce the 
users’ specific interests in different domains to become as distinguishable from each other as possible, while capturing the common 
interests that are shared across these domains. Finally, both the domain-shared user interests and the domain-specific user interests 
are integrated as the final user interest for user preference prediction.

In conclusion, our main contributions are as follows:

• We proposed a graph mutual regularization approach called GMR-Rec for recommendation tasks under multi-domain settings. 
It improves the performance of recommendation tasks on each domain, via training a cohort of GNNs in other domains collabo

ratively. The approach encourages domain-specific features to be distinguished from each other while simultaneously ensuring 
that these distinct features remain closely aligned with the domain-shared feature.

• Based on GMR-Rec, we proposed to employ a novel parallel GNN framework, which exploits the heterogeneity of the bipartite 
graph representation of user-item relations, by independently aggregating information from the neighborhood at different hops 
and combining them with a new attention mechanism.

• Extensive experiments have been conducted on four real-world datasets, and the results showed that our model outperforms the 
existing state-of-the-art methods. Additionally, we have also conducted some further experiments exploring the effectiveness of 
each component, the impact of hyperparameters and case studies to explore the effectiveness of our framework.

Our paper is structured as follows. In Section 2, we conclude the existing related works. In Section 3, the preliminaries and problem 
definitions of our work are introduced. Then, in Section 4, we detail each component of our GMR-Rec. Next, in Section 5, we evaluate 
the effectiveness of GMR-Rec on four different real-world datasets. Followed by Section 6 that concludes the paper.

2. Related work

We introduce three lines of the existing related research works: (1) Multi-domain Recommendation, (2) GNN-based Recommen

dation and (3) Knowledge Distillation and Mutual Learning.

2.1. Multi-domain recommendation

Data sparsity and cold start problems are the main challenges in recommender systems [9,10]. To address these problems, multi

domain recommendation uses other relevant domains as auxiliary information to transfer corresponding knowledge, especially if 
the number of other domains is greater than one [11--14]. A certain category of methods employs Matrix Factorization (MF) within 
each domain and seeks to establish connections between these domains [2--4]. For example, CBT [2] builds a cluster-level pat

tern matrix named codebook to represent the dense rating matrix and then shares the codebook of auxiliary domains to the target 
domain. CMF [3] factorizes the rating matrices across multiple domains jointly, and it shares the user latent factors among these 
domains. CDFM [15] extends factorization machines (FM) and treats user’s interactions in other domains as context for target do

main recommendation. Compared with these shallow multi-domain models, since recent machine learning especially deep learning 
possesses strong feature extraction capabilities and the ability to learn complex patterns [16,17], some existing deep learning models 
have been introduced to improve knowledge transfer across domains. For example, EMCDR [18] explicitly maps the representa

tions of the same user from different domains via a multi-layer perceptron (MLP). CoNet [19] introduces cross-connections in the 
hidden layers of networks to achieve the effect of dual knowledge transfer between domains. DDTCDR [5] utilizes autoencoder 
to extract the features of users and items respectively, employing a latent orthogonal mapping to maintain the similarity of user 
interests in different domains. UniCDR [20] takes one step further, providing a unfied framework to solve multi-domain recom

mendation problems by learning domain-shared and domain-specific user interests. However, the above-mentioned methods mainly 
focus on sharing/mapping the embeddings for common users (or items), neglecting the explicit transfer of knowledge across different 
domains.
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2.2. GNNs-based recommendation

Recently, GNNs [21--24] have been widely known as a promising type of models that are typically good at capturing dependencies 
among graph nodes. Based on GNNs’ capability, some works model user-item relations as graphs, and then utilize GNNs to capture 
the higher-order relationships in this graph, so as to improve the recommender systems’ performances [25,6,7]. PinSAGE [25] obtains 
item embeddings through GraphSAGE [22] on the item-item graph and then performs item2item recall based on the item embeddings. 
NGCF [6] stacks several GCN layers together, so as to learn higher-order connectivity signals from all the user-item pairs. LightGCN [7] 
made some simplfications based on the vanilla NGCF, removing the feature transformation operations and the activation functions, 
which were shown to have no positive impact on the effectiveness of CF. Some other works integrate some additional information 
and, therefore, build heterogeneous versions of user-item graphs, utilizing GNNs to obtain embeddings of users or items [26,27]. 
Compared to the traditional multi-domain recommendation methods, the key idea of GNNs is to use graph-structure aware neural 
networks to propagate the node features from neighbors to target nodes, which is suitable for the multi-domain recommendation. 
There are some works [28--30] that leverage GNNs to transfer knowledge between different domains. However, these methods tend 
to focus on user interests that are shared across domains, while neglecting the unique user interests specific to each domain.

2.3. Knowledge distillation and mutual learning

Recently, since Knowledge Distillation (KD) has shown its capability in model compression [31--33], it has been widely applied 
to image recognition [34], natural language processing (NLP) [35], time series prediction [36,37] and graph representation learn

ing [38], where the student network trained with KD has comparable performance to the teacher model but with lower latency due 
to its smaller size. For example, DTCM [36] proposes a targeted and offline distillation method for dual-network-based student and 
teacher models, facilitating effective knowledge transfer for multivariate time series classfication. CapMatch [37] leverages feature

based KD to effectively transfer knowledge, enabling the model to capture both local and global patterns in human activity recognition 
data within a semi-supervised learning framework. For recommendation, most works employ KD to transfer some specific knowledge 
from the other auxiliary models to improve the recommender performance or its interpretability [39--41]. Mutual learning [42,43], 
which can be regarded as a special case of KD, is an ensemble of many student networks that learn from each other via the distil

lation loss. Partly inspired by mutual learning, our work, to the best of our knowledge, is the first work that attempts to solve the 
multi-domain recommendation problem via exploiting graph mutual regularization learning.

3. Preliminaries

We first provide the formal definition of the multi-domain recommendation problem. Then we introduce the limitation associated 
with iterative GNN frameworks and explain how parallel GNN frameworks offer a different approach to addressing the challenge.

3.1. Problem definition

We consider several domains {𝐷1,… ,𝐷𝐾}. The users in each domain are partly shared, and we denote the entire set of the users 
as  = {𝑢1, 𝑢2,… , 𝑢𝑀} (whose size is 𝑀 = | |), and item set at each domain as 𝑘 = {𝑣𝑘1 , 𝑣𝑘2 ,… , 𝑣𝑘𝑁𝑘

} (whose size is 𝑁𝑘 = |𝑘|). 
Based on these definitions, we dfine a user-item interaction matrix 𝑌𝑘 ∈ {0,1}𝑀∗𝑁𝑘 for each domain 𝑘, where for its entry at 𝑢, 𝑣𝑘:

𝑦𝑢,𝑣𝑘
=

{
1 if user 𝑢 engages with item 𝑣𝑘 in domain 𝑘
0 otherwise

(1)

Based on the interaction matrix 𝑌𝑘, we construct 𝑠𝑘 , a domain-specific bipartite graph depicting the user-item relations of domain 𝑘. 
Meanwhile, we link the set of graphs of all domains {𝑠1 ,𝑠2 ,… ,𝑠𝐾

} by using the overlapped users as anchors, and then construct 
a domain-shared graph 𝑐 accordingly. Our goal is to learn the low-dimensional representations of user 𝑢 and item 𝑣𝑘 for prediction 
function 𝑦̂𝑢,𝑣𝑘 =  (𝑢, 𝑣𝑘|Θ,{𝑠1 ,… ,𝑠𝐾

,𝑐}), where we use 𝑦̂𝑢,𝑣𝑘 to denote the probability of user 𝑢 getting engage with item 𝑣𝑘, and 
use Θ to denote the set of parameters in the model that we used to implement the prediction function  .

3.2. Iterative and parallel GNNs framework

A general iterative GNN framework stacks multiple GNN layers to update the node embeddings iteratively. Given that 𝐻 (𝑙)
𝑡

represents the embedding of a target node 𝑡 at the (𝑙)-th layer of GNN, the iterative updating process from the (𝑙 − 1)-th to the (𝑙)-th 
layer can be formally depicted as:

𝐻
(𝑙)
𝑡

= Combine
(
𝐻

(𝑙−1)
𝑡

;Aggregate
∀𝑠∈𝑁(𝑡) 

(𝐻 (𝑙−1)
𝑠

)
)
, (2)

where we use 𝑁(𝑡) to denote the collection of all source nodes available for target node 𝑡. Combine(⋅) and Aggregate(⋅) are the two 
basic operations that recursively combine and aggregate information from neighbors.

However, the iterative GNN framework needs each successive layer to use the outputs of its previous layer as inputs, which is less 
effective and inefficient for multi-domain recommendation. Instead, a parallel GNN framework aggregates each hop of neighborhood 
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Fig. 2. The framework of GMR-Rec, where the grey circles refer to the items, while items may come from two different domains. The yellow circles are the overlapping 
users between the two domains. We use multiple parallel GNNs (represented by different colors) to extract the domain-shared and the domain-specific features, 
respectively. Mutual regularization strategies are performed to achieve knowledge transfer among domains for multi-domain recommendation.

embeddings independently and ensemble embeddings of the node itself as well as each hop of aggregated neighborhood embeddings 
to avoid recursively propagating.

4. The proposed model

We first introduce the overall framework of our proposed GMR-Rec, which can transfer knowledge among domains by training 
collaboratively with a cohort of GNNs. Then we introduce each component in detail.

4.1. Overview

The core idea is to identify the domain-shared and domain-specific user interests explicitly, via training recommendation models 
across and within the individual domains. And the learned user interests complement each other to enrich the final recommendation. 
Fig. 2 shows the GMR-Rec framework, which consists of an ensemble of parallel GNN models, a mutual regularization framework and 
an ensemble of prediction layers. Given constructed user-item interaction graphs of multiple domains, our model links them into a 
whole graph by the overlapping users and utilizes a series of proposed parallel GNNs to extract the user interest. Then, domain-shared 
and domain-specific user interests are distinguished using the proposed mutual regularization approach. Finally, the integrated user 
interest is used to predict the matching scores, ensuring a comprehensive recommendation.

4.2. Parallel GNN

Aiming to capture the heterogeneity within the user-item interaction graph , a parallel graph neural network mechanism (parallel 
GNN) is applied to model the ifluences of neighbor nodes with different types and distances to the target node. For a target node 
denoted as node 𝑡, we sample its neighbors within 𝐿-hops, and update the embedding of 𝑡 by independently aggregating each of the 
𝑙-hop neighborhoods 𝑁 (𝑙)

𝑡
, where 𝑙 ∈ {1,2,… ,𝐿}.

4.2.1. Parallel neighborhood aggregation

As shown in Fig. 3, instead of recursively updating the node embeddings in each layer (e.g., (𝑙)-th later) with its neighbors’ 
embeddings from the previous layer (e.g., (𝑙 − 1)-th later), we directly aggregate multiple neighborhood embeddings from neighbors 
at 𝑙-hop for 𝑙 ∈ {1,… ,𝐿} in parallel. We leverage the attention mechanism [8] to aggregate messages independently at each hop 
according to its node type. Specifically, we first apply a type-specific transformation on user and item embeddings, mapping both 
into the same latent factor space. Next, for the target node 𝑡, we calculate the attention weight 𝑎(𝑙)

𝑡𝑠
on each 𝑙-hop neighbor 𝑠 ∈𝑁 (𝑙)

𝑡

and weighted summing their projected features, dfined as:

𝛼
(𝑙)
𝑡𝑠

= Softmax
∀𝑠∈𝑁 (𝑙)

𝑡

(
ReLU

(
𝑎T
𝑙
(𝑒𝑡 ∥ 𝑒𝑠)

))
,

𝑧
(𝑙)
𝑡

=
∑

∀𝑠∈𝑁 (𝑙)
𝑡

𝑎
(𝑙)
𝑡𝑠

⋅ 𝑒𝑠,
(3)

where 𝑒𝑡, 𝑒𝑠 ∈ℝ𝑑 are the projected embedding of target and source nodes respectively, 𝑎𝑙 ∈ℝ2𝑑 is the parameterized attention vector 
for 𝑙-hop neighbors, ∥ denotes the concatenation operation. We extend this attention mechanism to multiple heads, which separately 
repeat the attention 𝐻𝛼 times and concatenate the learned features as output:
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Fig. 3. An illustration of Iterative and Parallel GNN, where Iterative GNN leverages each successive layer by using the outputs of its previous layer as inputs, while 
Parallel GNN aggregates information from each layer independently to avoid recursive propagation.

𝑧
(𝑙)
𝑡

=
(𝐻𝛼
∥ 
ℎ=1

∑
∀𝑠∈𝑁 (𝑙)

𝑡

[
𝛼
(𝑙)
𝑡𝑠

]
ℎ
⋅ 𝑒𝑠

)
𝑊

(𝑙)
𝑂
, (4)

where we use 
[
𝛼
(𝑙)
𝑡𝑠

]
ℎ

to represent the attention weight at the ℎ-th attention head, and 𝑊 (𝑙)
𝑂

∈ℝ𝐻𝛼𝑑×𝑑 is the parametric weight matrix 
for 𝑙-hop neighbors.

4.2.2. Cross-hop neighborhood propagation

After aggregating the neighborhood features within each hop, it becomes crucial to propagate among these embeddings. Instead 
of recursively propagating messages to the target node, we develop a hop-wise version variant of the multi-head self-attention layer, 
which can directly propagate different hops of aggregated neighborhood embeddings. Specifically, for target node 𝑡, we have a set 
including 𝐿 + 1 latent vectors: {𝑧(0)

𝑡
, 𝑧

(1)
𝑡

…𝑧
(𝐿)
𝑡

}, where 𝑧(0)
𝑡

= 𝑒𝑡. Following the Transformer framework [8], we sum the position 
embedding to each latent vector so that the model can identify which hops of neighbors (including the target node itself) it is dealing 
with. Then, we pack all these vectors into a matrix 𝑍𝑡 and map it into the Query, Key, and Value matrix, respectively. We apply 𝐻𝛽
attention heads to produce the propagated representations ATT-headℎ which are concatenated and then projected again as output 
MH(𝑍𝑡), which can be dfined as: 

ATT-headℎ = Softmax
( (𝑍𝑡𝑊 ℎ

𝑄
)(𝑍𝑡𝑊 ℎ

𝐾
)T√

𝑑

)
,

MH(𝑍𝑡) =
(𝐻𝛽
∥ 
ℎ=1

ATT-headℎ𝑍𝑡𝑊
ℎ
𝑉

)
𝑊𝑂,

(5)

where the projections are parameter matrices 𝑊 ℎ
𝑄
,𝑊 ℎ

𝐾
,𝑊 ℎ

𝑉
∈ ℝ𝑑×𝑑 and 𝑊𝑂 ∈ ℝ𝐻𝛽𝑑×𝑑 . We use dropout and Layer Normalization 

(LN) to MH(𝑍𝑡) to avoid ovefitting and stabilize training:

𝑍′
𝑡
= LN

(
𝑍𝑡 +Dropout(MH(𝑍𝑡))

)
. (6)

And to endow the propagation process with non-linearity, we employ a position-wise FFN (i.e., Feed-Forward Network) module on 
top of the output 𝑍′

𝑡
that comes from the self-attention layer, dfined as follows:

𝑍̂𝑡 = LN
(
𝑍′
𝑡
+Dropout(ReLU(𝑍′

𝑡
𝑊𝐹1

+ 𝑏𝐹1 )𝑊𝐹2 + 𝑏𝐹2 )
)
, (7)

where FFN’s learnable parameters are 𝑊𝐹1 ,𝑊𝐹2 ∈ℝ𝑑×𝑑 and 𝑏𝐹1 , 𝑏𝐹2 ∈ℝ𝑑 . We can stack multiple such self-attention layers one after 
another, taking the previous layer’s output as the next layer’s input. By doing so, we can learn high-order interaction features between 
different hops of neighborhoods.

4.3. Recommendation

Treating a user 𝑢 as the target node, the corresponding output from the parallel GNNs can be regarded as a set of rfined embeddings 
{𝑧̂(0)𝑢 , 𝑧̂

(1)
𝑢 … 𝑧̂

(𝐿)
𝑢 }, representing the user features learned in different hops. Though there could be much more complicated ways of 

combining these vectors together, an effective version of the final embedding of user 𝑢 is simply taking the concatenation of all these 
vectors. Meanwhile, we consider an item as the target node and concatenate its features {𝑧̂(0)𝑣 , 𝑧̂

(1)
𝑣 … 𝑧̂

(𝐿)
𝑣 } learned in different hops 

in the same way:

𝑒𝑢 = 𝑧̂(0)𝑢 ∥⋯ ∥ 𝑧̂(𝐿)
𝑢
, 𝑒𝑣 = 𝑧̂(0)𝑣 ∥⋯ ∥ 𝑧̂(𝐿)

𝑣
. (8)
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By implementing this approach, we can enrich the initial node embeddings by capturing the connectivities across different hops of 
neighborhood. Finally, we pass the concatenation of the users’ and items’ final representations through an MLP, and take the output 
as the estimated matching score:

𝑦̂𝑢𝑣 =𝑤T
2ReLU

(
(𝑒𝑢 ∥ 𝑒𝑣)𝑊1 + 𝑏1

)
, (9)

where we have learnable parameters 𝑊1 ∈ℝ𝐿𝑑×𝑑 and 𝑏1 ∈ℝ𝑑 ,𝑤2 ∈ℝ𝑑 . The model with parameters set Θ is trained with an objective 
with negative sampling, which is dfined as:

Θ =
∑

(𝑢,𝑣)∈∪−
ce(𝑦𝑢𝑣, 𝑦̂𝑢𝑣) , (10)

where 𝑦𝑢𝑣 represents the label of the corresponding user-item interaction relation, as was dfined in Equation (1). We consider both 
the positive items  and the negative items −. The negative items are sampled uniformly at random from the unobserved list of 
items. We dfine our objective 𝑐𝑒 as a binary cross-entropy loss, computed as:

ce(𝑦̂, 𝑦) = −𝑦 log 𝑦̂− (1 − 𝑦) log(1 − 𝑦̂). (11)

4.4. Mutual regularization strategy

To achieve more effective inter-domain knowledge transferring, we propose two mutual regularization strategies together with a 
gated interest ensemble method for the learning process of parallel GNN models.

4.4.1. Domain-shared interest regularization

Our domain-shared interest regularization strategy aims to make the user interests in each domain as close as possible to the 
common user interests extracted across domains. On the one hand, domain-shared graph 𝑐 contains all the items from all domains 
that a user 𝑢 ∈ has ever interacted with. Thus, the extracted user embedding 𝑒𝑐

𝑢
in 𝑐 rflects 𝑢’s domain-shared interest. On the 

other hand, domain-specific graph 𝑠𝑘 only contains items in domain 𝑘, namely, the items that user 𝑢 has interacted with in this 
domain. Therefore, the extracted user embedding 𝑒𝑠𝑘𝑢 in 𝑠𝑘 rflects 𝑢’s domain-specific interest. To combine the two viewpoints, 
we need to align the user embeddings extracted from domain-shared and domain-specific graphs, making them as close as possible. 
Specifically, we employ parallel GNNs respectively for the user embedding extraction and minimize the distance between the two 
representations, measured by cosine similarity:

cos(𝑐, 𝑠𝑘) =
∑
𝑢∈

(1 − cos(𝑒𝑐
𝑢
, 𝑒
𝑠𝑘
𝑢 )). (12)

4.4.2. Domain-specific interest regularization

The above domain-shared strategy enforces the user interests in domain-shared graph 𝑐 and those in domain-specific graphs 
{𝑠1 ,𝑠2 ,… ,𝑠𝐾

} to be as close to each other as possible, so as to transfer knowledge across different domains. However, this may lead 
to over-smoothing of user interests across domains, meaning that the uniqueness of each domain is no longer obvious. Therefore, we 
introduce another regularization strategy, which is able to distinguish domain-specific interests from one domain to another. Following 
our strategy, the domain-specific interests retain as much domain-specific information as possible. Essentially, we encourage domain

specific features to encode user’s interests from different aspects. To achieve this goal, we incorporate the orthogonal constraint as 
part of our loss, as shown in the following Equation (13). Many previous studies [44,45] have also demonstrated its effectiveness.

orth(𝑠𝑘, 𝑠𝑗 ) =
∑
𝑢∈

|𝑒𝑠𝑘𝑢 T
𝑒
𝑠𝑗
𝑢 | , (13)

where | ⋅ | denotes 𝐿1-norm. 𝑒𝑠𝑗𝑢 represents the rfined user representation of user 𝑢 extracted from the 𝑗-th domain.

4.4.3. Shared-specific interest gated ensemble

We can represent the learned user interest as a sphere, where the shared component corresponds to the sphere’s center, which is 
similar across different domains, while the specific component diverges from the sphere in different directions. In this way, the two 
user interest components can be integrated into a complete representation. We propose a novel gated neural component 𝑔𝑢, which 
can adaptively control feature intersection between domain-shared and domain-specific user interests.

𝑦̂𝑚
𝑢𝑣

= 𝑔𝑢 ⋅ 𝑦̂𝑐𝑢𝑣 + (1 − 𝑔𝑢) ⋅ 𝑦̂
𝑠𝑘
𝑢𝑣, (14)

where 𝑔𝑢 represented the gate component. Specifically, we have:

𝑔𝑢 =𝑤T
𝑔2

ReLU
(
(𝑒𝑐
𝑢
∥ 𝑒𝑠𝑘𝑢 )𝑊𝑔1 + 𝑏𝑔1

)
, (15)

where 𝑦̂𝑐
𝑢𝑣
, 𝑦̂
𝑠𝑘
𝑢𝑣 and 𝑦̂𝑚

𝑢𝑣
represent the domain-shared user interest of user 𝑢, the domain-specific user interest of user 𝑢 on domain 𝑘, and 

the ensembled user interests of user 𝑢, respectively. 𝑊𝑔1 ∈ ℝ𝐿𝑑×𝑑 , 𝑏𝑔1 ∈ ℝ𝑑 ,𝑤𝑔2 ∈ ℝ𝑑 are gate component’s parameters. Moreover, 
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𝑦̂𝑚
𝑢𝑣

can be treated as an online teacher and the ensemble user interests can be distilled back into two graphs to optimize student 
interest 𝑦̂𝑐

𝑢𝑣
and 𝑦̂𝑠𝑘𝑢𝑣 in a closed form. The alignment of user interests between a teacher and a student can be dfined as:

ce(𝑐, 𝑠𝑘,𝑚) =
∑

(𝑢,𝑣)∈∪− ce

(
𝜎( 𝑦̂

𝑐
𝑢𝑣

𝜏
), 𝜎( 𝑦̂

𝑚
𝑢𝑣

𝜏
)
)
+ce

(
𝜎( 𝑦̂

𝑠𝑘
𝑢𝑣

𝜏
), 𝜎( 𝑦̂

𝑚
𝑢𝑣

𝜏
)
)
, (16)

where 𝜎 denotes the logistic function, 𝜏 serves as a temperature parameter, making the label probability distribution softer. Compared 
with doing exact matching on the score labels, ensemble soft labels provide a wealth of information about diverse user interests, which 
helps optimize student models more effectively. In this way, the user’s common interest shared across domains and specific interest 
in the corresponding domain can be integrated and mutually learned from the ensemble interest.

4.5. Model optimization

We combine the mutual regularization loss to our multi-domain recommendation loss, and the objective for the given domain

shared graph 𝑐 and specific-domain graph 𝑠𝑘 can be respectively dfined as:

𝑐 =Θ𝑐 +
𝐾∑
𝑗=1 

cos(𝑐, 𝑠𝑗 ),

𝑠𝑘
=Θ𝑠𝑘

+
𝐾∑

𝑗=1,𝑗≠𝑘
𝑜𝑟𝑡ℎ(𝑠𝑘, 𝑠𝑗 ).

(17)

The overall objective of our mutual regularization learning framework is:

 =𝑐 +𝑠𝑘
+Θ𝑚 + 𝜏2 ∗ce(𝑐, 𝑠𝑘,𝑚) , (18)

where 𝜏2 is the weight to help us ensure that the relative contributions of the ground-truth label (i.e., hard label) and teacher labels’ 
(i.e., soft label) probability distributions remain the same.

We utilize mini-batch training to compute the gradient and mutual regularization strategies are performed during each update 
step throughout the training phase. For every epoch of training, we compute the target user-item pair matching score 𝑦̂𝑐

𝑢𝑣
, 𝑦̂
𝑠𝑘
𝑢𝑣 and 𝑦̂𝑚

𝑢𝑣
, 

where 𝑘 is decided by the domains this pair belongs to. Then we compute the model objective in both the domain-shared graph and 
the domain-specific ones, and update the parameters according to the predictions and mutual regularization strategies. The overall 
optimization steps are shown in detail in Algorithm 1.

Algorithm 1: Graph Mutual Regularization Learning.

Input: Training user-item interactions set  ∪− , domain-shared graph 𝑐 , domain-specific graphs {𝑠1 …𝑠𝐾
}

Initialize: Models Θ𝑐 and Θ𝑠1 …Θ𝑠𝐾 with different initialization.

Repeat:

1 Randomly sample user-item pair 𝑢, 𝑣 from  ∪− ; 
2 Get the domain index 𝑘 of user-item pair 𝑢, 𝑣; 
3 Update 𝑒𝑐

𝑢
, 𝑒𝑐
𝑣
, 𝑒
𝑠𝑘
𝑢 , 𝑒

𝑠𝑘
𝑣 , 𝑦̂

𝑐
𝑢𝑣
, 𝑦̂
𝑠𝑘
𝑢𝑣 in 𝑐 and 𝑠𝑘 ; // Eq. (8)-(9)

4 Compute the cos(𝑐, 𝑠𝑘),orth(𝑠𝑘, 𝑠𝑗 ) ; // Eq. (12)-(13)
5 Compute the ensemble user interest 𝑦̂𝑚

𝑢𝑣
; // Eq. (14)

6 Distil the ensemble interest back ; // Eq. (16)
7 Compute the final overall loss and update ; // Eq. (18)
Until convergence;

4.6. Complexity analysis

For the multi-domain recommendation framework dfined in previous sections, the computational consumption is mainly com

posed of two parts: (i) the domain-shared parallel GNN module; (ii) the domain-specific parallel GNN module; (iii) the mutual 
regularization strategy. Assume the batch size is 𝐵, given the constructed domain-shared graph with an average of 𝑀𝐵 users and 𝑁𝐵
items, and the constructed domain-specific graph with an average of 𝑀𝐵,𝑘 users and 𝑁𝐵,𝑘 items, the number of domain and GNN 
layer are 𝐾 and 𝐿 respectively, and the representation dimension is 𝑑. For (i) and (ii), the time complexity of the corresponding 
parallel GNN module is 𝑂(𝐵(𝑀𝐵 +𝑁𝐵)𝐿𝑑) and 𝑂(𝐵𝐾(𝑀𝐵,𝑘 +𝑁𝐵,𝑘)𝐿𝑑)), respectively. For (iii), the time complexity of domain

shared and domain-specific regularization strategy is 𝑂(𝐵𝐾𝑑) and 𝑂(𝐵𝐾2𝑑). To sum up, we have the overall time complexity of 
GMR-Rec, 𝑂(𝐵((𝑀𝐵 +𝐾𝑀𝐵,𝑘 +𝑁𝐵 +𝐾𝑁𝐵,𝑘)𝐿+𝐾2 +𝐾)𝑑), which scales linearly w.r.t. the number of users and items in the con

structed graph. Moreover, GMR-Rec requires one domain-shared graph with 𝐾 domain-specific graph, and the space complexity is 
𝑂(𝐵(𝑀𝐵 +𝐾𝑀𝐵,𝑘 +𝑁𝐵 +𝐾𝑁𝐵,𝑘) +𝐾𝑑)𝐿𝑑).

5. Experiment

We use four real-world data sets to verify our model’s performance compared to the other baselines. Our experiments are aiming 
at answering the three important questions listed below:
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Table 1
Descriptive statistics of four datasets.

Dataset #Domains #Users #Items #Interactions 
Dianping #POI 18,636 11,372 133,016 

#Feeds 10,631 24,460 256,244 
Total 21,737 35,832 389,260

Movie #Netflix 35,072 1,536 647,096 
#MovieLens 7,402 3,837 513,304 
Total 42,474 4,696 1160,400

Douban #Book 6,707 3,073 52,453 
#Movie 14,870 9,788 616,164 
#Music 2,755 1,610 16,981 
Total 14,956 14,471 685,598

Amazon #Cell 21,182 4,846 69,798 
#Electronic 27,915 17,962 337,511 
#Software 1,238 303 2,787 
#CD 17,640 27,494 394,765 
Total 45,136 50,605 804,861 

RQ1: How well does GMR-Rec perform on multi-domain recommendations compared to the other state-of-the-art models? Can 
GMR-Rec successfully mitigate the cold-start problem and the data sparsity problems by transferring knowledge from other 
domains to the target domain?

RQ2: How does GMR-Rec benfit from its key components, such as mutual regularization learning and how do different hyper

parameters in key components (e.g., neighborhood hops, self-attention layer numbers) affect the results of GMR-Rec?

RQ3: Can GMR-Rec provide an interpretable analysis of mutual regularization learning w.r.t. the domain-shared interest and the 
domain-specific interests of the user, as well as further providing such interpretable analysis to the distilled knowledge 
learned by each model?

5.1. Experimental settings

5.1.1. Data sets
We selected four real-world multi-domain recommendation datasets collected from online platforms. Table 1 summarizes the 

statistics of datasets.

• Dianping1 was gathered from Meituan Dianping, a popular social media platform that contains information and reviews of 
restaurants, hotels, entertainment, movies, etc. We choose one-month interaction records of a city in both POI and Feeds domains.

• Movie2 is a movie-shared rating dataset with common movies and different users in both Neflix and Movielens datasets. We 
merge the same movies from the Neflix and Movielens datasets, Then, we learn the domain-shared representation and the 
domain-specific representations for each of the items instead.

• Douban3 is a community website where users can describe and share reviews. We utilize the data provided in the previous 
work [46] and select three related domains, namely, Book, Music, and Movie.

• Amazon4 is a product recommendation dataset that records user ratings and reviews of products from various categories [47]. 
We select four categories, namely Cell Phones (Cell), Electronics (Elec), Software and CD, as four domains.

For Amazon, Douban and Movie, we use the core set to filter interactions. We chronologically rank the interactions of each dataset 
and select the top 80% of historical interactions to constitute the training set. The remaining 20% are split into half-and-half, serving 
as the validation and test sets.

5.1.2. Evaluation metrics

Since ranking all items for each user is time-consuming, we use the leave-one-out approach [48] for evaluation. For each positive 
sample of the user-item interactions observed, we uniformly at random sample 99 items from those that the user has never interacted 
with as negative samples, and then we rank the test item among all 100 items. To assess the ranked list with the ground-truth item 
set (GT), we employ two widely used metrics for all models to evaluate the performance: Hit Ratio (HR) and Normalized Discounted 
Cumulative Gain (NDCG). We truncate the ranking list to 𝐾 for both metrics, denoted as 𝐻𝑅@𝐾 and 𝑁𝐷𝐶𝐺@𝐾 , calculated as:

1 https://www.dianping.com.
2 https://www.kaggle.com/datasets/netflix-inc/netflix-prize-data; https://www.kaggle.com/datasets/grouplens/movielens-20m-dataset.
3 https://www.douban.com.
4 http://jmcauley.ucsd.edu/data/amazon/.

https://www.dianping.com
https://www.kaggle.com/datasets/netflix-inc/netflix-prize-data
https://www.kaggle.com/datasets/grouplens/movielens-20m-dataset
https://www.douban.com
http://jmcauley.ucsd.edu/data/amazon/
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𝐻𝑅@𝐾 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐻𝑖𝑡𝑠@𝐾|𝐺𝑇 | ,

𝑁𝐷𝐶𝐺@𝐾 = 1 
𝑚𝑎𝑥𝐷𝐶𝐺

𝐾∑
𝑖=1 

2𝑟𝑖 − 1 
log2(𝑖+ 1)

,

(19)

where a hit is recorded if a test item appears in the recommended list, 𝑟𝑖 is the graded relevance of the item at position 𝑖, and 𝑚𝑎𝑥𝐷𝐶𝐺
is the normalization factor. We set 𝐾 = 10 and use the simple binary relevance following previous work [48,20], namely 𝑟𝑖 = 1 if the 
item is in the test set, and 0 otherwise.

5.1.3. Baselines

To evaluate the model effectiveness, we compare GMR-Rec with three classes of models: (A) Classical CF models, (B) GNN-based 
recommendation models and (C) Multi-domain recommendation models.

• BPR-MF [49] (A): This is the matrix factorization-based classical CF method. The method employs the Bayesian Personalized 
Ranking (BPR) as the loss.

• NMF [48] (A): This method is also matrix factorization-based. The method uses Multilayer Perceptron (MLP) to model the 
nonlinear feature interactions of users and items.

• PinSAGE [25] (B): This method aims to apply GraphSAGE [22] on the item-item graph, and we employ the method on user-item 
interaction graphs for comparison.

• NGCF [6] (B): This method obtains high-quality user and item embeddings via multiple embedding propagation layers to explic

itly model the higher-order connectivity between user and item.

• LightGCN [7] (B): The method further simplfies the NGCF’s feature propagation component by removing the non-linear activa

tion function and the transformation matrices.

• CMF [3] (C): This method simultaneously factorizes matrices of each domain, sharing factors of common users in multiple 
domains for recommendation.

• CDFM [15] (C): This method incorporates information of auxiliary domain w.r.t. shared users for the target domain as context 
and employs Factorization Machine (FM) for recommendation.

• DDTCDR [5] (C): This is a cross-domain recommendation approach that utilizes dual transfer learning across different domains 
and applies a latent orthogonal mapping to preserve the similarity of a user’s interests across these domains. We further extend 
this model to support multi-domains.

• UniCDR [20](C): This method provides a unfied framework for multi-domain recommendation, which learns both domain

shared and domain-specific user representations respectively and models the correlation of two representations via masking 
mechanism and contrastive loss.

To more accurately evaluate the performance, for classical CF and GNNs-based methods, we use the same methods but with the 
multi-domain mixed dataset as their training data set. By this way, we keep all the baselines using the same training set as our model, 
and that makes a fair comparison.

5.1.4. Implementation detail

Our GMR-Rec model is implemented by Pytorch. For all models, The embedding size is fixed to 100. For our model, we sample 
2 hops of neighborhoods with the number of neighbors being 10 and 50 respectively, and the number of cross-hops self-attention 
layers is set to 2 in the default setting. We set the temperature parameter to 1 for mutual regularization. GMR-Rec is trained with 
Adam optimizer via early stopping with the patience of 20, i.e., the training process is stopped if NDCG@10 on validation set does 
not keep increase in 20 consecutive epochs. For all baselines, we employ a gird search carefully to find the best hyper-parameters.

5.2. Performance comparison (RQ1)

5.2.1. Overall comparison

The test results of models on four real-world datasets are summarized in Table 2 and we have the following findings:

• GNN-based recommendation models, which leverage information propagation for high-order connectivity modeling in a user

item bipartite graph, outperform the classical CF method especially BPRMF in most cases. However, when it comes to NMF and 
multi-domain methods, the performance of GNN-based methods is sometimes worse, demonstrating that common user interest 
explored by explicit knowledge transfer in the constructed domain-shared graph is insufficient.

• Multi-domain recommendation methods, which transfer knowledge from other domains to help with the recommendation in 
the target domain, achieve better performance than most of the classic CF methods and most of the GNNs-based methods. This 
indicates that the transfer learning mechanism for multi-domain recommendation is more effective compared with GNN-based 
methods, which are not specifically designed for knowledge transfer across domains. However, the improvement brought by 
these methods is marginal, and the domain-specific interest of a user in each domain is not yet considered.

• GMR-Rec consistently outperforms other baselines on all of the four real-world datasets. GMR-Rec is specifically designed for 
multi-domain recommendation, and therefore can model both the domain-shared interest and the domain-specific interests of 
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Table 2
Performance results on four different datasets. Here, ** and * denotes the statistical significance for 𝑝 <= 0.01 and 𝑝 <= 0.05 compared to the best baseline model.

Dataset Domain Metrics Classical GNNs-based Multi-domain Ours 
BPRMF NMF PinSAGE NGCF LightGCN CMF CDFM DDTCDR UniCDR GMR-Rec 

Dianping POI HR@10 0.5516 0.6702 0.6812 0.6716 0.6936 0.7126 0.7067 0.7035 0.7122 0.7139

NDCG@10 0.3765 0.4459 0.4524 0.4472 0.4662 0.4845 0.4820 0.4758 0.4875 0.4996**

Feeds HR@10 0.5160 0.5502 0.5813 0.5702 0.5892 0.6205 0.5924 0.6023 0.6386 0.6533**

NDCG@10 0.3289 0.3385 0.3819 0.3731 0.3830 0.4026 0.3896 0.3868 0.4157 0.4307**

Movie Netflix HR@10 0.4305 0.6295 0.6130 0.5859 0.5904 0.6810 0.6688 0.6589 0.6989 0.7123*

NDCG@10 0.2485 0.3778 0.3646 0.3350 0.3592 0.4604 0.4403 0.4402 0.4623 0.4799**

MovieLens HR@10 0.2432 0.5027 0.4990 0.4628 0.4860 0.5869 0.5529 0.5616 0.5962 0.6193**

NDCG@10 0.1307 0.2926 0.2882 0.2533 0.2649 0.3708 0.3667 0.3545 0.3860 0.4040**

Douban Book HR@10 0.3199 0.4077 0.3768 0.3288 0.4034 0.4231 0.4224 0.3941 0.4216 0.4262*

NDCG@10 0.2073 0.2518 0.2270 0.1943 0.2494 0.2613 0.2612 0.2443 0.2615 0.2643*

Movie HR@10 0.4050 0.4568 0.4742 0.4714 0.4853 0.4819 0.4695 0.4566 0.4806 0.5093**

NDCG@10 0.2485 0.2707 0.2841 0.2816 0.2870 0.2853 0.2806 0.2731 0.2813 0.3011**

Music HR@10 0.1385 0.1866 0.2129 0.1990 0.1889 0.1913 0.1618 0.1791 0.2007 0.2198*

NDCG@10 0.0730 0.1034 0.1097 0.1131 0.1033 0.1026 0.0903 0.0956 0.1042 0.1179*

Amazon Cell HR@10 0.3307 0.3746 0.3635 0.3586 0.3878 0.3904 0.3920 0.3842 0.3936 0.3998**

NDCG@10 0.1992 0.2285 0.2185 0.2040 0.2332 0.2358 0.2359 0.2307 0.2365 0.2452**

Electronic HR@10 0.3467 0.3521 0.3967 0.3647 0.3947 0.4160 0.4138 0.4073 0.4165 0.4276**

NDCG@10 0.2076 0.2141 0.2369 0.2176 0.2365 0.2481 0.2474 0.2392 0.2487 0.2589**

Software HR@10 0.2341 0.2878 0.2926 0.2961 0.2996 0.3073 0.3021 0.2998 0.3071 0.3173**

NDCG@10 0.1892 0.2154 0.2174 0.2213 0.2224 0.2321 0.2314 0.2267 0.2342 0.2447**

CD HR@10 0.2424 0.2573 0.4228 0.4258 0.4276 0.3357 0.3946 0.4216 0.4312 0.4535**

NDCG@10 0.1319 0.1444 0.2363 0.2399 0.2408 0.1838 0.1942 0.2403 0.2507 0.2635**

a particular user, through the mutual learning of our proposed framework using parallel GNNs. The significant improvements 
indicate a positive impact on achieving better representations for the multi-domain recommendation.

5.2.2. Cold-start recommendation

The multi-domain recommendation is especially useful for alleviating the cold start and sparsity issue by transferring knowledge 
from other domains. We investigate whether GMR-Rec can better alleviate this issue by comparing the performance with other multi

domain recommendation methods on different sparse distributions of the data. To this end, we train our model and the baselines 
with 20%, 40%, 60%, and 80% of the entire training data. The results are illustrated in Fig. 4 w.r.t. different sparse distributions of 
training data on Dianping. The Amazon and Douban datasets exhibit similar performance and are not discussed in detail due to the 
space limit. It can be seen that the GMR-Rec consistently outperforms other multi-domain recommendation baselines over all sparse 
distribution of the training data, and the improvement is particularly significant in the Feeds domain. The corresponding results show 
that our proposed GMR-Rec can effectively improve the multi-domain recommendation performance to alleviate the cold start and 
data sparsity issue. 

5.3. Study of GMR-Rec (RQ2)

As parallel GNNs and their mutual regularization learning play pivotal roles in GMR-Rec, we investigate their impact on perfor

mance. We first conduct mutual regularization learning on two other baselines, NMF [48] and LightGCN [7]. Then ablation studies 
are performed to explore how different learning strategies affect the performance. Moreover, we study how the number of hops and 
self-attention layers in parallel GNN affects the performance.

5.3.1. Effect of mutual regularization learning

To evaluate the effect of mutual regularization learning, we incorporate baseline models NMF and LightGCN with mutual regular

ization learning and perform ablation studies to show how mutual regularization learning affects the model performance. Specifically, 
we compare different recommendation performance under three conditions, namely user-item interaction data in one domain (Spe

cific), interaction data in all domains (Shared) and interaction data in all domains with our proposed mutual regularization learning 
(Mutual). Fig. 5 summarizes the results and we have the following findings:

• Comparing our proposed parallel GNN to LightGCN and NMF, we find that our model consistently outperforms other two baselines 
under three conditions. This could justify the effectiveness of the proposed parallel GNN framework, especially on the data with 
different domains.
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Fig. 4. Performance results over the sparse distributions of data on Dianping. 

• Focusing on LightGCN and NMF, we find that learning to get domain-shared interest outperforms learning to get domain-specific 
interest. Meanwhile, mutual regularization in domain-shared and domain-specific graphs leads to higher performance which 
illustrates its effectiveness for the multi-domain recommendation.

• Focusing on GMR-Rec, we find that its performance improves less when learning in the domain-shared graph. This indicates that 
common user interest across different domains is insufficient, thus it is necessary to consider the domain-specific interest. And 
we can see further improvement by incorporating mutual regularization learning strategies.

5.3.2. Effect of neighborhood Hops

GMR-Rec aggregates neighborhood information from various hops independently. To investigate how GMR-Rec is affected by 
these multiple hops of neighborhoods, we vary the depth of the model. In particular, We fix other hyperparameters and select the 
maximum number of hops from {1,2,3} to verify its impact on the performance. The experimental results are shown in Table 3. From 
these results, we have the following findings:

• Incorporating multiple hops allows the target node to gather collaborative signals carried by high-order connections and increase 
the depth of the model. 2 hops of neighborhoods in the model consistently outperform 1 hop across all the datasets, since 1 hop 
of neighborhoods only contains items (users) that the target node has interacted with.

• When further aggregating neighborhood information beyond 2 hops away, the impact is negligible and may lead to ovefitting. 
This could be attributed to the use of deep architectures and the incorporation of noise, which occurs when distant, unrelated 
neighborhood information is included in the representation learning process.

5.3.3. Effect of self-attention layer numbers

To investigate how embedding propagation affects the performance, we fix the maximum hops of neighbors in parallel GNN to 2 
and consider the model with the varying number of self-attention layers in the cross-hops neighborhood propagation. As shown in 
Fig. 6, we set the number of self-attention layers in the range of {0,1,2,3,4} and have the following findings:

• When there is no embedding propagation between different hops of neighbors for the target nodes (number of self-attention 
layers equals 0), our model only concatenates neighborhood information independently aggregated from each hop. The perfor

mance of the model becomes worse, suggesting that embedding propagation in the parallel GNN framework can greatly boost 
recommendation performance.

• Increasing the number of self-attention layers can substantially enhance the recommendation performance. When the number of 
layers reaches 3, the performance becomes stable, showing that embedding propagation many times might cause the neighbor

hood information over-smoothing and less informative for the recommendation.
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Fig. 5. Effect of the mutual regularization learning strategy on Dianping. 

Table 3
Performance results w.r.t. different number of neighborhood 
hops.

Dataset Hops Domains HR@10 NDCG@10 
Dianping 1 POI 0.7096 0.4913 

Feeds 0.6457 0.4262

2 POI 0.7139 0.4996 
Feeds 0.6533 0.4307

3 POI 0.7049 0.4901 
Feeds 0.6462 0.4245

Movie 1 Netflix 0.6942 0.4613 
MovieLens 0.5942 0.3851

2 Netflix 0.7123 0.4799 
MovieLens 0.6193 0.4040

3 Netflix 0.7064 0.4756 
MovieLens 0.6035 0.3947

Douban 1 Book 0.4139 0.2568 
Movie 0.4953 0.2964 
Music 0.2165 0.1157

2 Book 0.4262 0.2643 
Movie 0.5093 0.3011 
Music 0.2198 0.1179

3 Book 0.4221 0.2622 
Movie 0.5113 0.3028 
Music 0.2230 0.1167 

5.4. Case study and visualization (RQ3)

To illustrate how GMR-Rec facilitates the multi-domain recommendation task and corresponding embedding learning. We ex

plore the attention weight in cross-hops neighborhood propagation and visualize the node embeddings of GMR-Rec for qualitative 
evaluation of the embedding results.
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Fig. 6. Performance results w.r.t. different number of self-attention layers on Dianping. 

5.4.1. Exploring attention weight

We select users as target nodes and plot the average attention heat maps of parallel GNN across different hops in both domain

shared and domain-specific (Feeds domain) graphs with mutual regularization strategies. As shown in Fig. 7b, we can find that the 
attention of different hops of neighbors is more focused on the target node (0-Hop), which demonstrates the specific feature of the 
target node is more important in the graph of the Feeds domain. In contrast, as shown in Fig. 7a, feature interactions between 2-hops 
of neighbors or even faraway neighbors of the target node still have a large attention weight in the domain-shared graph. This is 
very reasonable since users in the domain-shared graph prefer to transfer knowledge across domains. Moreover, we also visualize 
the attention weight of domain-shared and domain-specific graphs without mutual regularization strategies. As shown in Fig. 7c and 
Fig. 7d, we can find that 1-Hop neighbors have higher attention weights in both graphs, indicating different patterns compared to 
scenarios with mutual regularization strategies.

5.4.2. Visualization

For a more intuitive comparison between common and specific user interests, we randomly select six users and their relevant 
items in different domains from Dianping datasets and visualize the learned embeddings. The results derived from domain-shared 
and domain-specific graphs with mutual regularization strategies are shown in Fig. 8a and Fig. 8b. We can easily tell that learned 
embeddings mix together in the domain-shared graph while separating into two groups according to their domains in domain-specific 
graphs. This highlights the distinct contributions of domain-shared and domain-specific user interests, demonstrating the necessity 
of integrating them together within our model. In contrast, domain-shared and domain-specific user and item embeddings without 
mutual regularization strategies are shown in Fig. 8c and Fig. 8d. We can find that the learned user and item embeddings of both 
graphs are mixed together in the nearby regions of the space, failing to capture the distinct characteristics of the two graphs.

6. Conclusion and future work

In this work, we present a multi-domain recommendation model, GMR-Rec. To model both the domain-shared common interest 
and the domain-specific user interests across the different domains, we separately build domain-shared and domain-specific user-item 
bipartite graphs and extract corresponding user features via proposed parallel GNN models. Moreover, we apply different mutual 
regularization learning strategies to encourage domain-specific features can be distinguished from other features while keeping these 
different features close to the domain-shared feature. Based on that, domain-shared and domain-specific user interests can complete 
knowledge with each other and mutually learn to build the complete user interest for the recommendation. Extensive experiments 
that are conducted on four real-world datasets further demonstrate the superiority of our model. However, the temporal ifluence on 
both domain-shared and domain-specific user interests is overlooked.
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Fig. 7. Heat maps of attention weights on Dianping. The first and second rows correspond to weights w/ and w/o mutual regulation learning strategy, respectively. 

Fig. 8. Visualization of user and item representations learned on t-SNE. Here stars denote users from Dianping dataset, and points represent items in the same domain.
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In future work, we will explore whether GMR-Rec can extract both short-term and long-term user interests in temporal interactions. 
Furthermore, we also plan to explore the potential of GMR-Rec for general graph machine-learning tasks, such as unsupervised and 
semi-supervised node classfication.
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