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Abstract

Graph neural networks (GNNs) have achieved im-
pressive performance in graph domain adaptation.
However, extensive source graphs could be unavail-
able in real-world scenarios due to privacy and stor-
age concerns. To this end, we investigate an un-
derexplored yet practical problem of source-free
graph domain adaptation, which transfers knowl-
edge from source models instead of source graphs
to a target domain. To solve this problem, we in-
troduce a novel GNN-based approach called Rank
and Align (RNA), which ranks graph similarities
with spectral seriation for robust semantics learn-
ing, and aligns inharmonic graphs with harmonic
graphs which close to the source domain for sub-
graph extraction. In particular, to overcome label
scarcity, we employ the spectral seriation algorithm
to infer the robust pairwise rankings, which can
guide semantic learning using a similarity learn-
ing objective. To depict distribution shifts, we uti-
lize spectral clustering and the silhouette coeffi-
cient to detect harmonic graphs, which the source
model can easily classify. To reduce potential do-
main discrepancy, we extract domain-invariant sub-
graphs from inharmonic graphs by an adversarial
edge sampling process, which guides the invariant
learning of GNNs. Extensive experiments on sev-
eral benchmark datasets demonstrate the effective-
ness of our proposed RNA.

1 Introduction

Graph Neural Networks (GNNs) have achieved great success
in a wide range of applications, including molecular genera-
tion [Kim et al., 2023], traffic networks [Li et al., 2019al, so-
cial networks [Liu et al., 2021; Li et al., 2021] and relational
databases [Cvitkovic, 2020]. They could be used to solve the
graph classification problem, which aims to predict the la-
bels of entire graphs [Zhang et al., 2018; Ying et al., 2018;
Wu et al., 2020b]. Most of these approaches adopt the
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Figure 1: Motivation of RNA. (a) The histogram of confidence score
of the source-trained model perform on and target data, high-
lighting the label scarcity and potential noise in the target domain.
(b) The training process of RNA and adaptation with pseudo-label
learning. (c¢) Domain discrepancy between and target do-
main. Best viewed in color and zoom-in.

message-passing paradigm [Welling and Kipf, 2016] to up-
date node-level representation iteratively, followed by a read-
out operator to summarize the node-level representations to
graph-level representations for downstream classifications.

Despite their superior performance, these approaches usu-
ally assume that the training and test data are from the same
data distribution, which is often not the case in real-world sce-
narios [Wu et al., 2020a; You et al., 2022; Lin et al., 2023].
The out-of-distribution challenge has promoted the develop-
ment of unsupervised graph domain adaptation [Hao er al.,
2020; Yin et al., 2023]. However, these approaches require
access to a label-rich source domain to adapt to the label-
scarce target domain, meaning that abundant source graphs
are needed. The requirement could be difficult due to privacy
and storage concerns in practice. This motivates us to study a
practical yet underexplored research problem of source-free
graph domain adaptation. The objective is to transfer these
pre-trained graph models from the source domain to the tar-
get domain without accessing source data.

However, formalizing an effective framework for source-
free graph domain adaptation is a non-trivial problem, which
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requires us to solve the following two research problems.
(1) How to learn semantics on the target domain, given
its label scarcity? Previous approaches [Ding et al., 2022;
Zhang et al., 2022] usually utilize pseudo-labeling to learn
from target data. However, serious distribution shifts could
generate biased and inaccurate pseudo-labels, which results
in extensive error accumulation and training instability, as
demonstrated in Figure 1(a) (b). (2) How to deal with exten-
sive distribution shifts without access to source data? Source
and target graphs could belong to very different domains,
which strongly decreases the accuracy of predictions. Pre-
vious graph domain adaptation approaches [Yin er al., 2022;
Yin et al., 2023] usually minimize the distribution discrep-
ancy between the source and target domains, which is not
feasible due to the requirement of extensive source data.

In this paper, we propose a novel approach named Rank
and Align (RNA) for source-free graph domain adaptation.
The high-level idea of our RNA is to infer spectral seriation
rankings to guide robust semantics learning and detect har-
monic graphs (i.e., close to source graphs) for domain align-
ment. In particular, RNA utilizes the spectral algorithm to
generate seriation similarity rankings among target graphs,
which are robust to the potential noise. Then, a ranking-based
similarity learning objective is adopted to guide the seman-
tics learning under the target label scarcity. To depict the
distribution shift, we introduce the silhouette coefficient after
spectral clustering, which identifies harmonic graphs closely
related to source graphs on the target domain. To further
reduce potential domain discrepancy, we extract subgraphs
from inharmonic graphs by sampling edges with adversarial
learning, which discards information irrelevant to semantics
labels. Then, we conduct invariant learning to ensure our
GNNs are insensitive to these irrelevant parts. Finally, we
utilize pseudo-labels with multi-view filtering to enhance se-
mantics learning with alleviated error accumulation. Exten-
sive experiments on several benchmark datasets validate the
superiority of RNA in comparison to extensive baselines. The
contributions can be highlighted as follows:

* New Perspective. We study an understudied yet practical
problem of source-free graph domain adaptation and pro-
pose a novel approach RNA to solve the problem.

* New Method. RNA not only infers spectral seriation rank-
ings to guide robust semantics learning under target domain
label scarcity, but also detects harmonic graphs close to
the source domain to guide subgraph learning for domain
alignment and invariant learning.

* Sate-of-the-art Performance. Extensive experiments con-
ducted on several benchmark datasets demonstrate the su-
periority of RNA compared to extensive baselines.

2 Related Work

Graph neural networks (GNNs) [Wu et al., 2020b; Ju et
al., 2024a] have made significant progress in a variety of
tasks, including graph classification [Yin er al., 2023], visual
grounding [He et al., 2021; Luo et al., 2022]. The major-
ity of GNNs follow the message-passing mechanism [Xu et

al., 2018], which updates node information by aggregating
from neighboring nodes. When applied to graph-level tasks,
these updated node features are then combined into a com-
prehensive graph representation using various pooling tech-
niques [Lee et al., 2019; Bianchi et al., 2020], which can
be utilized for downstream graph classification. However,
these techniques [Li et al., 2019b] usually assume that train-
ing and test data are from the same distribution, which of-
ten does not hold in practical scenarios. To solve the out-of-
distribution problem, some approaches have been proposed,
where typically the source data is required [Yin et al., 2023;
Tang et al., 2024; Ju er al., 2024b]. However, it is not practi-
cal to guarantee that the source data is available, due to, e.g.,
privacy and storage concerns. To address this, our research
focuses on source-free graph domain adaptation, which trans-
fers the model to new domains without requiring access to the
original data.

Source-free Domain Adaptation (SFDA) [Fang et al., 2022,
Yu et al., 2023] eliminates the dependence on source
data [Yang er al., 2024; Yang et al., 2021; VS er al., 2023;
Peng et al., 2023]. The assumption that adequate source
data are available for adaptation does not always hold in real-
world scenarios. On one hand, issues of privacy, confidential-
ity, and copyright restrictions may hinder access to the source
data. On the other hand, storing the complete source dataset
on devices with limited capacity is often impractical. Ex-
tensive approaches attempt to solve this problem, which can
be classified into two primary categories, i.e., self-training
approaches [Sun et al., 2020b; Saito et al., 2017; Liang et
al., 2020] and generative approaches [Nado et al., 2020;
Schneider et al., 2020]. Self-training approaches usually
adopt contrastive learning framework and pseudo-labeling
strategy for semantics learning on the unlabeled target do-
main. Generative approaches typically reconstruct virtual
samples using stored statistics in the source model and re-
duce the domain discrepancy. However, SFDA has not been
explored for non-Euclidean graph data. In this paper, we de-
tect harmonic graphs close to the source domain and extract
subgraphs from inharmonic graphs for domain alignment.

3 The Proposed RNA

3.1 Preliminaries

Problem Definition. A graph is represented as G = (V, E),
where V' is the set of nodes and E is the set of edges.
The nodes’ attribute is denoted as X € R|V|de, where
|V| is the number of nodes, and d’ is the dimension of a
node’s attribute. A dataset from the source domain is de-
noted as D*° = {(G:°y:°)}i, where G5° is the i-th
graph from the source and y;° is its corresponding label. An
unlabeled dataset from the target domain is represented as
Dle = {Gé“};&l, where G%* is the j-th target sample. y’*
is its corresponding label but is not available. Both domains
share the same label space {1,--- ,C}, but the data distribu-
tions are distinct. Our objective is to transfer a model pre-
trained on the source domain to the target domain. Note that
the source graphs are not available during the adaptation.

4707



Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

Spectral seriation

Lssp |&—— HEN

Fiedler vector

L |||lenN

? Clustering '
+-*-|.:'. Silhouette
Coefficient v

Inharmonic Set

Rank” €2 “Align

Harmonic Set

Pseudo Label

( Multi-view Filter )

Invariant Learning

Subgraph
Extractor

Edge
Feat.

( Edge Mask

Figure 2: Overview of RNA. (Left) Rank. RNA use the seriation similarity ranking learning for robust semantics learning under label scarcity,
as in Section 3.3. (Right) Align. RNA detect the harmonic set and align the inharmonic set with a subgraph extractor and invariant learning,
while applying discrimination learning with filtered pseudo-label, as in Section 3.4 and 3.5. (Center) RNA alternates between two steps,
achieving effective source-free domain adpation and addressing critical dilemmas.

Graph Neural Networks. Given a node representation hg)
for v at layer [, the updating rule can be formalized as:

A = com® <h5}1>,AGG<l> <{h§j1>} » ))) :
ue v
(H

in which AGG()(-) and COMW®(.) represents the aggrega-
tion and combination operators respectively. N '(v) collects
all the neighbors connected with v. Finally, we introduce
READOUTY(-) for node representation summarization:

2 = READOUT ({hgm}vev) : )

where K denotes the number of layers. A classifier CLA(-)
is adopted to map deep embedding into label distribution:

p™M) = CLA(z) = ®(Q), 3)
where ® represents the entire graph neural network, pre-
trained using the source graphs beforehand.

3.2 Framework Overview

This work studies the problem of Source-free Graph Domain
Adaptation (SFGDA), which is challenging due to target do-
main label scarcity and distribution shifts from source to tar-
get domain, without access to source graphs. We propose
a novel approach named RNA for this problem. In particu-
lar, to guide the semantics learning under label scarcity, RNA
introduces spectral seriation rankings among graph represen-
tations, which are robust to noise attack. In addition, RNA
utilizes spectral clustering and silhouette coefficients to iden-
tify harmonic graphs close to the source domain. Subgraphs
with domain-invariant semantics are extracted in inharmonic
graphs using an adversarial edge sampling process, which can
guide invariant learning of GNNs. Pseudo-labeling on har-
monic graphs with filtering is conducted to further enhance
semantics learning. An overview of RNA can be found in
Figure 2 and then we elaborate on the details.

3.3 Robust Semantics Learning with Seriation
Similarity Rankings

The significant challenge by SFGDA is label scarcity in the
target domain. Due to serious distribution shifts, target data
often contains noise and inaccurate pseudo-labels, leading to
error accumulation and instability. RNA addresses this issue
from a spectral perspective, utilizing the intrinsic ranking in-
formation for better semantics learning. In this part, we will
introduce our Seriation Similarity Rankings (SSR) to guide
semantics learning and theoretically demonstrate its robust-
ness to noise.
We first extract the similarity matrix .S by,

S, ; = sim(z;, z;), 4)

where sim denotes the cosine similarity function, and z; and
z; represent the graph representations as Section 3.1. Then,
we employ the spectral seriation method [Atkins ez al., 1998]
to obtain the data ranking matrix R within unlabeled target
data, from the correlation matrix. The higher correlation val-
ues suggest a closer proximity in ranking. Spectral seriation
can be effectively utilized to reconstruct R from S, since the
cosine similarity corresponds to correlation following L nor-
malization. The seriation ranking can be derived by minimiz-
ing the following equation:

arg min S (R; — R;)?, 5

g1 Z i ) )
which brings sample pairs with a higher degree of correlation
closer to the learned representation space, by minimizing the
loss function that encourages proximity between R; and R;.
According to the spectral seriation [Atkins et al., 1998; Gong
et al., 2022; Dai et al., 2024], the optimal ranking R can
be obtained from the Fiedler vector. This is formalized in
Theorem 3.1.
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Theorem 3.1. The seriation ranking that most accurately re-
flects observed S is the ranking of the values in the Fiedler
vector \ of the Laplacian matrix L by

R = sorting()).

The Fiedler vector A is the eigenvector corresponding to
the second smallest eigenvalue of the Laplacian matrix L =
diag(S1) — S. The ranking R given from the spectral seri-
ation can be used to guide semantics learning by

|B|
Lssr =Y rsim(rk(S}; ), vk(~|R — R[i]])), (6)
i=1
where B is the sampled batch, [i] denotes the i-th value of
a vector, rk denotes the ranking operator. rsim is a differ-
entiable ranking similarity function which is the differential
combinatorial solver [Pogancié et al., 2019].

Robustness under Perturbation. In this part, we will discuss
the inherent noise-robustness of the spectral seriation method
theoretically by deriving the approximate bounds.

We first give the perturbation bounds for eigenvalues and
the upper bound for the Fiedler value. Let A, B € C be
Hermitian matrices. Let the eigenvalues of A and B are \;
and u;, with the eigenvalues sorted in non-decreasing order.
Then, for each corresponding pair of eigenvalues, the follow-
ing inequality holds on the perturbation bounds for the eigen-
values:

i = Xi| < | B = Alla. ()

Moreover, when A\ is the Fiedler value of the Laplacian matrix
L from the similarity matrix S, then the upper bound of the

A is given by
A<

n—11<i<n

Then we analyze the potential noise on the similarity matrix.
Theorem 3.2. Consider the perturbation matrix of S is AS,
when 2||AS||lFr < 1-— mingign Do lS“‘, the ranking ob-

n—1

tained by the SSR algorithm using S is the same as that ob-
tained by the SSR algorithm using S + AS.

|I|| = denotes the Frobenius norm. The theorem utilizes the
first-order approximation to establish a bound that the spec-
tral ranking can tolerate without altering results.

In summary, given the significant noise in the target do-
main, SSR provides theoretically error-bounded data relation-
ships. This allows us to obtain better target domain represen-
tations through similarity learning.

3.4 Subgraph Extraction for Domain Alignment

To address label scarcity of target graphs, RNA detects har-
monic graphs that are close to the source domain from a spec-
tral perspective. Then, we extract subgraphs in inharmonic
graphs with an adversarial edge sampling process, which
guides effective invariant learning for GNNs.

Harmonic Graph Detection. RNA uses spectral clustering
and silhouette coefficients to discover the harmonic graphs
with the source domain. This process is instrumental in guid-
ing the domain alignment for subgraph extraction that has
domain-invariant semantics.
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In detail, we utilize the similarity matrix .S and the Lapla-
cian matrix L computed in Section 3.3 to obtain the eigen-
vectors U. To compute the eigenvectors, we address the gen-
eralized eigenvalue problem:

LU =UA, ©))
where U € R™*¥ represents the matrix of eigenvectors cor-
responding to the k& smallest eigenvalues, and A € R*** is
the diagonal matrix containing these eigenvalues. We then
apply k-means clustering algorithm to the rows of U, to ob-
tain the clustering labels c. After the clustering, we calcu-
late the silhouette coefficient to detect the harmonic graphs,
which are close to the source graphs. For a data point ¢ within
a cluster, the silhouette coefficient S(i) [Rousseeuw, 1987;
Monshizadeh et al., 2022] is :

() = b(i) ‘ a(z)‘ 7

max{a(i), b(i)}

where a(i) is the mean dissimilarity of ¢ to all other points in
the same cluster, while b(7) is the smallest mean dissimilarity
to all points in any other cluster. Since S(i) € [—1, 1], a coef-
ficient close to 1 indicates that the data point is well-matched
to its cluster and distinctly separated from neighboring clus-
ters. These graphs have the potential to be well-classified us-
ing source GNNs, which are more close to the source domain.
Therefore, we rank the target graphs by silhouette coefficients
and select the top p graphs to construct a harmonic set. p is
set heuristically to 40%.

(10)

Domain-invariant Subgraph Extraction. After partitioning
the dataset, we utilize the harmonic set to simulate the un-
available source graphs to depict domain discrepancy. To
identify crucial parts invariant to different domains, we sam-
ple edges for inharmonic graphs, which extract domain-
invariant subgraphs using adversarial learning. Moreover, in-
variant learning is introduced to encourage consistent predic-
tions of GNNs after removing redundant information.

In particular, we use a neural subgraph extractor fy. For
edge embedding e concatenated from node embedding h, we

predict the sampled adjacency matrix A, with:

Asub = f@(e7A)7 (11)
where A is the original adjacency matrix. Since the
sampling process is not differentiable, we apply Gumbel-
Sigmoid [Jang et al., 2016] for differentiable training. Then,
we extract the subgraph G, according to Asub.

To train the subgraph discovery network, we adopt an ad-
versarial learning framework. The discriminator is to dis-
tinguish the domain of the input graph, while the subgraph
discovery network is used as the adversarial component, and
aims to extract domain-invariant subgraphs that confuse the
discriminator. Let D denote the discriminator and G denote
the subgraph discovery network. The training loss can be for-
mulated as follows:

Eadv(f&v D) = EGthdm(Gh) [IOg D(Gh)]+

EGi~p<|mz\(Gi)[1Og<1 - D(fo(GZ)))] ’

where G, and G; are the harmonic and inharmonic graphs
respectively, pqaa(-) represent the data distributions. Sub-
graph extractor can effectively extract domain-invariant com-
ponents under domain shift. Then, we introduce invariant

(12)
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learning to encourage the consistency of predictions after ex-
tracting domain-invariant subgraphs, which ensures GNNs
are insensitive to the domain-specific information on the tar-
get domain. In formulation, the invariant learning objective
is defined as:

Lin == Z KL(p!" || pi*), (13)

Gteel

where I is the inharmonic set, pi® is the label distribution of
the subgraph fy(G;). When the KL divergence is minimized,
RNA enables the model to leverage the inharmonic graphs,
which are initially more challenging due to the domain shift,
and gradually adapt to the target domain.

Finally, the overall training objective for the subgraph dis-
covery network can be formulated as a combination of the
adversarial loss and the invariant learning loss:

£align = Eadv + Einv . (14)

By jointly optimizing the subgraph discovery network and
the discriminator, we can effectively extract domain-invariant
subgraphs that confuse the discriminator while preserving the
original semantics.

3.5 Semantics Enhancement with Filtered
Pseudo-labeling

To enhance the semantics learning under label scarcity and
potential noise, we propose to obtain the confident discrimi-
native learning set from multi-view filtering. From the global
view, we have detected harmonic graphs on the target domain.
Then, from the local view, we leverage the predicted confi-
dence scores to select reliable samples. The combination of
these two perspectives yields a more confident set.

To filter samples in the harmonic set H and generate the
confident set C, we define a threshold 7 for the confidence
scores. Samples with confidence scores exceeding 7 are con-
sidered to be part of the confidence set. Formally, the confi-
dent set C is defined as:

C ={G}* € H| max(p}*) > 7}, (15)
where pﬁ-a represents the model prediction, indicating the pre-
dicted probability distribution over classes, and 7 is the pre-
defined threshold.

Then, the standard cross-entropy loss is minimized in the
confident set C:

Loy = Z log p*[§5%], (16)
GmeC

where 7% denotes the pseudo-label of G%*. Our pseudo-
labeling strategy provides a reliable optimization process
with reduced error accumulation. After a certain adaptation
period, we re-perform the harmonic set partitioning operation
to include more confident data into the harmonic set. This it-
erative process helps to gradually enhance semantics learning
by incorporating more reliable pseudo-labeled data.

As a preliminary, we adopt an off-the-shelf model trained
on the source domain. Then, the loss objectives are mini-
mized in the target data, which is summarized in Algorithm 1.

4710

Algorithm 1 Optimization Algorithm of RNA

Input: Pre-trained model ®(-), target graphs D'?,
Output: GNN-based model ®(-)
1: forepoch=1,2,--- do
2:  Generate harmonic and inharmonic sets using Eq. 10;
3:  for each batch do
4 Sample a mini-batch from D¢;
5: Calculate the loss objective using Eq. 6;
6: // For the harmonic set
7.
8

Calculate the discriminating loss using Eq. 16;
// For the inharmonic set

9: Calculate the discriminating loss using Eq. 14;
10: Back-propagation;
11:  end for

12: end for

Complexity Analysis. The computational complexity of seri-
ation similarity and spectral clustering is O(|D**|?d), where
|Dt| is the target graph amount, d is the feature dimen-
sion. Given a graph G = (V, E), ||A|lo is the number of
nonzero entries in the adjacency matrix, |V is the number of
nodes, and K is the number of GNN layers. The complex-
ity of the GNN is O(K|V'|d?). The subgraph extractor takes
O(K||Allod). Therefore, the complexity for each sample is
O(K|V|d? + K||A|od), which is linear to || Ao and |V

4 Experiments
4.1 Experimental Settings

Datasets. We perform experiments with practical source-
free domain adaptation settings and benchmark datasets. We
test our RNA in cross-dataset and split-dataset scenarios.
For biochemical datasets, e.g., Mutagenicity [Kazius er al.,
2005], PROTEINS [Borgwardt et al., 2005], and FRANKEN-
STEIN [Orsini et al., 2015]. The source-free domain adap-
tation is performed over sub-datasets, which are partitioned
by graph density. Furthermore, we test our method on
the sub-datasets of the COX2 [Sutherland et al., 2003] and
BZR [Sutherland et al., 2003] datasets. In source-free do-
main adaptation, only the target dataset is available during
domain adaptation.

Baselines. We compare RNA with a wide range of existing
methods. These baseline methods fall into three categories:
(1) Graph neural netowrks, e.g., GCN [Welling and Kipf,
20161, GIN [Xu et al., 20181, GAT [Velickovié et al., 2018]
and GraphSAGE [Hamilton et al., 2017]. These methods
only use the source data. (2) Graph semi-supervised learning
methods, e.g., Mean-Teacher [Tarvainen and Valpola, 20171,
InfoGraph [Sun et al., 2020a] and TGNN [Ju et al., 2022].
They use information from both the source and target domain.
(3) Source-free domain adaptation, e.g., PLUE [Litrico ef al.,
2023], which is the state-of-the-art source-free domain adop-
tion method devised for image classification.

Implementation Details. For RNA, we encode the graph data
with a 2-layer GCN encoder, with an embedding dimension
of 128. We optimize the model with an Adam optimizer with
a mini-batch of 128 and a learning rate of 0.001. The model
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M0—M1 M1-M0 M0—M2 M2—M0 M0—M3 M3—M0 M1—-M2 M2—-M1 MI—-M3 M3—-M1 M2—-M3 M3—M2 Avg.

Methods

GCN 68.0+2.0 68.8+1.5 60.5+28 64.4+15 53.7+1.3 58.1+1.4
GIN 70.6+0.4 64.2+09 63.5+1.2 62.5+07 57.0+0.1 56.4+0.3
GraphSAGE  71.2+06 65.6+03 64.3+0.3 655402 57.3+05 56.5+0.3
GAT 69.7+10 67.0+16 627423 67.0x1.5 56.1+2.1 57.8+1.7

Mean-Teacher 65.3+4.7 52.143.4 70.6+25 522119 499+05 49.0+0.4

752408 76.2+15 67.5+12 554115 62.5+10 685115 649115
733+05 76.5+04 652406 53.3x18 644108 66.8+05 64.5+0.7
747404 77.6x07 623104 51.7+03 624105 623107 64.3+04
76.6+1.2 77.2+04 63.4+1.3 53.0+39 60.7+06 61.8432 64.6+1.7
66.2+1.4 62.7+a1 50.1+13 72.2+16 48.9+1.7 65.8+31 58722
74.7+03 76.8+1.5 65.6+06 57.1+32 64.7+19 64.2+29 65.5+16
65.9+1.1 66.7+3.9 66.5+2.1 70.1x1.0 55.5+35 65.3+3.0 63.5+29
68.4+1.0 76.9+35 62.9+04 57.6+30 62.0t0.6 67.4+26 653115

InfoGraph 69.1+1.8 68.9+03 66.6+25 64.9+1.2 559+10 57.8+21
TGNN 73.3+49 619424 653+10 58.1+24 555435 581124
PLUE 752414 68.5+05 66.3+11 67.9+16 54.0+1.3 56.4+1.4
RNA 81.0+1.5 68.3+26 68.4+27 68.8+1.3 63.1+209 59.8:i21

72.7+2.4 809+1.7 62.1+19 734129 65.1+24 678123 69.3+22

Table 1: The classification accuracy (%) on Mutagenicity (source—target), where MO, M1, M2, and M3 are the sub-datasets.

Methods PO—P1 P1—P0 PO—P2 P2—P0 PO—P3 P3—P0 P1—P2 P2—P1 P1—P3 P3—P1 P2—P3 P3—P2 Avg.

GCN 71.9+0.9 74.7+2.9 62.64+1.2 68.31438 51.1+3.3 45.843.1 57.612.1 70.4+2.2 39.7+3.6 49.74+2.6 58.3+1.3 52.9+3.0 58.6+25
GIN 70.0+2.1 60.7+3.6 61.8+2.6 72.9+2.7 47.1+3.3 44.314.2 62.5+£2.1 68.9+2.0 41.1+3.2 47.9+3.3 48.6+£4.0 56.1+2.6 57.4+3.0
GraphSAGE  72.2+1.0 78.3+3.0 64.7+2.3 67.2+1.1 46.9+1.1 42.2+4.0 62.6+1.8 69.7+0.8 32.9+2.0 50.8+2.3 56.1+3.5 56.9+3.4 58.9+2.2
GAT 70.0+3.7 71.4+3.7 66.8+2.0 73.9+2.6 49.3+1.3 40.4+2.8 61.4+4.6 68.9+2.2 443138 49.313.6 50.7+£2.4 52.1+2.9 58.313.0

Mean-Teacher 64.3+4.1 71.4+5.2 60.4+3.6 72.1+4.4 25.045.6 55.4+4.0 61.1+2.3 60.7+5.3 29.6+4.8 49.3+3.1 31.844.0 55.4+4.9 51.0+4.3

InfoGraph 74.0+2.7 77.6+2.9 68.3+3.6 T1.1+1.1 469432 46.5+2.1 64.411.5 72.2+1.9 41.9+1.1 354419 54.7+3.1 62.6+4.2 5941424
TGNN 60.4+3.4 41.8+2.8 45.7+4.6 46.6+4.2 64.8+5.4 42.0+3.9 58.6+3.2 58.4+3.7 75.7+4.0 68.4+3.2 65.5+4.58 53.8+2.0 55.9+3.8
PLUE 64.3+2.3 71.5+£2.1 65.0+3.0 78.4+2.1 45.9+3.7 63.7+3.0 58.3+3.3 68.9+2.7 41.9+1.3 45.7+4.1 47.5+3.2 58.3+2.7 59.1+2.8
RNA 69.7+1.8 79.6+1.3 72.5+2.6 78.5+1.8 64.4+3.6 57.845.5 68.9+3.3 67.8+3.5 56.5+3.8 57.845.3 65.3+3.3 55.6+3.4 66.2+3.2

Table 2: The classification accuracy (%) on PROTEINS (source—target), where PO, P1, P2, and P3 are the sub-datasets.

Methods C—»CM CM—C B—BM BM—B Avg.

GCN 54.1+2.6 46.6 +4.1 51.3 +2.3 62.8 +3.7 53.7+3.2
GIN S51.142.2 46.4+46 48.143.6 65.6+2.8 52.8+3.3
GraphSAGE  49.2+3.4 429439 473415 67.5+3.1 51.7+3.0
GAT 52.0+1.8 48.9+3.7 484422 61.3+4.2 52.6+3.0
Mean-Teacher 53.042.3 42.64+4.9 50.642.1 57.6+4.3 50.9+3.4

InfoGraph 459+3.4 48.9+3.3 51.9+3.2 65.2+4.7 53.4+36
TGNN 483142 521456 46.4+2.7 68.5+4.3 53.8+42
PLUE 54.4+1.4 417132 49.8428 T4.8+1.5 552122
RNA 572428 67.8+433 52.3426 73.5+3.0 62.7+2.9
Table 3: The classification accuracy (%) on COX2 and

BZR (source—target). C, CM, B, and BM are for COX2,
COX2_MD, BZR, and BZR_MD datasets.

is initialized with 100 epochs of pre-training on the source
domain In domain adaptation, the harmonic set ratio is 40%.
For baselines, we configure the methods with the same hy-
perparameters from the original papers and further fine-tune
them to optimize performance. To reduce randomness, we
perform 5 runs and report the average accuracy.

4.2 Performance Comparison

Observation. From Table 1, 2, 3 and 4, we can observe that:
(1) Source-free domain adaptation shows significant chal-
lenges. Current baseline methods are insufficient, given that
previous research has not effectively tackled such real-world
conditions. (2) Semi-supervised settings can only slightly al-
leviate the problem. Although some of these methods out-
perform graph neural network methods, e.g., InfoGraph, they
rely on both labeled data from the source domain and unla-
beled data from the target domain. However, in real-world
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scenarios, it is not always feasible to access source data. (3)
Source-free method shows better results. PLUE is the state-
of-the-art for source-free domain adaptation in computer vi-
sion. However, it is important to note that PLUE was neither
designed for graphically-structured datasets, nor for scenarios
with large domain shifts. (4) RNA show notable performance
improvements, on both sub-datasets and cross-dataset tasks.
This is especially true where other methods perform poorly.

Discussion. The improvements can be attributed to three key
factors: (1) Robust adaptation from a spectral perspective.
The experimental results agree with our theoretical analysis
in Section 3.3 that RNA is robust to noisy and inaccurate tar-
get data. (2) Reduce task complexity through a divide-and-
conquer strategy. We prioritize domain adaptation on sub-
tasks that are more similar to the source domain, and then
align the remaining data across domains. (3) Efficient domain
alignment by subgraph extraction. For non-Euclidean data
with domain shift, subgraph extraction can achieve domain-
invariant semantics learning effectively.

4.3 Ablation Study

To evaluate the effectiveness of the components, we intro-
duce the following variants of our model: (/) VI, which re-
moves the SSR module in Section 3.3. (2) V2, which excludes
the partitioning of the harmonic and inharmonic set, together
with the subgraph extractor. This variant only filters the target
data with confidence. (3) V3, which only removes the domain
alignment with the subgraph extractor. (3) V4, which omits
the multi-view data filter in Section 3.5.

From Table 5, we draw the following insights. (/) The
full model RNA yields the best performance, emphasizing the
importance of components’ cooperation. (2) Each module
independently contributes to the final results. Among them,
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Methods FO—F1 F1—-F0 FO—F2 F2—F0 FO—F3 F3—F0 F1—-F2 F2—F1 F1—-F3 F3—F1 F2—F3 F3—F2 Avg.
GCN 55.3+0.8 56.4+1.6 60.4+1.9 54.6+1.4 46.7+1.8 51.6+1.7 60.7+0.8 58.3+1.3 47.9+1.8 47.5+0.8 52.1+2.6 54.6+1.8 53.8+1.5
GIN 56.5+0.5 53.8+1.4 57.2+0.4 57.94+1.5 50.7+3.5 51.0+0.6 58.7+1.3 58.3+0.8 46.7+1.4 47.9+1.3 50.5+0.7 52.0+2.1 53.4+1.3

GraphSAGE  56.6+1.3 53.5+0.4 55.4+1.0 57.8+1.3 49.9+0.3 55.5+1.6 59.4+1.4 59.6+0.2 47.1+1.0 49.3+0.8 49.2+1.7 52.7+1.3 53.8+1.0

GAT

57.1+0.9 56.0+0.8 58.5+1.8 56.442.2 48.7+1.1 51.642.8 62.5+1.58 57.1+0.7 46.2+2.2 47.2+1.4 51.742.6 53.6+0.9 53.9+1.6

Mean-Teacher 57.0+4.6 53.843.3 55.6+3.5 54.2+25 47.6+3.8 49.7+1.5 56.2+3.4 59.1+48 48.5+3.4 52.945.2 51.4+3.3 53.1+4.7 53.2+3.7

InfoGraph 57.0+2.7 55.7+2.2 60.1+2.6 60.0+3.0 48.9+2.0 51.2+1.7 60.6+1.1 61.8+1.0 45.4+2.3 46.3+1.2 53.2+2.0 53.5+0.8 54.5+1.9
TGNN 53.245.6 48.8+41.7 54.0+5.2 54.2+1.7 46.2+4.0 47.9+0.5 55.1+5.1 50.8+3.6 56.8+4.0 53.2+5.6 56.8+3.0 48.1+4.5 53.1+3.7
PLUE 57.9+1.2 56.4+1.3 60.0+1.9 59.1+1.6 49.1+0.6 53.2+1.8 60.8+1.5 52.3+3.7 48.1+3.7 52.1+4.1 52.74+1.5 53.9+2.2 54.6+2.1
RNA 66.7+1.2 53.7+0.9 67.6+1.6 64.0+2.6 53.7+0.7 55.6+2.1 59.7+0.9 69.2+1.1 53.2+2.3 58.5+4.2 56.8+1.6 61.3+3.2 59.9+1.58

Table 4: The classification accuracy (%) on FRANKENSTEIN (source—target). FO, F1, F2, and F3 are the sub-datasets.

| M P F C B Avg.

VI |68.5+25 64.1+3.1 59.3+2.3 61.2+3.4 62.5+4.0 63.1+3.1
V2 168.0+1.7 63.842.2 57.8+1.4 60.7+3.1 61.0+3.7 62.3+2.4
V3 169.4+2.0 65.4+2.4 59.6+2.2 61.9+2.7 62.8+3.0 63.8+25
V4 169.0+1.9 65.7+3.0 59.1+2.9 62.6+3.5 62.2+2.5 63.7+28

RNA‘69.3¢2A2 66.2+3.2 59.9+18 62.5+3.1 62.9+2.8 64.2+26

Table 5: Ablation studies of classification accuracy. (datasets de-
noted by the first letter).

ey oy

ﬂ‘é ® Source Domain
Mo, @ Harmonic Set

Inharmonic Set

(a) M3 -> MO (b) MO ->M3

Figure 3: Visualization of RNA on Mutagenicity.

the detection of harmonic data and the subgraph extraction
invariant learning make the most significant contribution. (3)
Regarding the multi-view pseudo-label filter, both global and
local view filters have shown their effectiveness.

4.4 Visualization

To verify our motivation, we use t-SNE [Van der Maaten and
Hinton, 2008] for visualization on the Mutagenicity dataset.
The results can be found in Figure 3. From the results, we can
observe that: (/) There is a significant domain discrepancy
between the source and target domain. (2) The harmonic set
of the target domain is closer to the source domain, which
facilitates the pseudo-label discriminative learning. (3) The
inharmonic set of the target domain is more distant from the
source domain. In RNA we employ subgraph extraction for
effective domain-invariant learning and domain alignment.

4.5 Sensitivity Analysis

Analysis of the harmonic set ratio. We first examine the in-
fluence of the harmonic set ratio within the target domain,
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Figure 4: Sensitivity analysis.

as shown in Figure 4. As the ratio increases from 20% to
40%, we observe an upward trend in accuracy, suggesting
that splitting the harmonic set and using domain alignment
and pseudo-label learning is beneficial. However, as the ratio
increases from 40% to 60%, there is a noticeable decrease in
accuracy. This suggests that an overly large harmonic set may
introduce additional noise that could adversely affect perfor-
mance. Therefore, we set the ratio of 40% as the default size.

Analysis of the confident set threshold. We explore the ef-
fects of the confident set threshold 7. This threshold is used
to filter pseudo-labels within the harmonic set. As 7 increases
from 0.91 to 0.95, we see an improvement in final accuracy
for both datasets. This shows that cleaner pseudo-labels are
beneficial for adaptation. However, further increasing 7 to
0.99 results in a decrease in accuracy. This suggests that
an overly strict pseudo-label threshold may limit the model’s
ability to learn from the target domain, and thus harm the per-
formance. Consequently, we set 7 to 0.95 as default.

5 Conclusion

In this paper, we study the problem of source-free graph do-
main adaptation and propose a novel approach RNA for this
problem. Our RNA leverages the spectral seriation algorithm
to generate robust pairwise rankings, which can guide reli-
able semantics learning under label scarcity. Moreover, RNA
adopts spectral clustering to detect harmonic graphs which
close to the source domain, and introduces an adversarial
edge sampling process to extract subgraphs from inharmonic
graphs for invariant learning. Extensive experiments demon-
strate the superior performance of our RNA over existing
baselines. In future work, we will extend RNA to more prac-
tical scenarios such as the open-set graph domain adaptation.
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