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Abstract

This paper studies semi-supervised graph classi-
fication, a crucial task with a wide range of ap-
plications in social network analysis and bioinfor-
matics. Recent works typically adopt graph neu-
ral networks to learn graph-level representations for
classification, failing to explicitly leverage features
derived from graph topology (e.g., paths). More-
over, when labeled data is scarce, these methods
are far from satisfactory due to their insufficient
topology exploration of unlabeled data. We ad-
dress the challenge by proposing a novel semi-
supervised framework called Twin Graph Neural
Network (TGNN). To explore graph structural in-
formation from complementary views, our TGNN
has a message passing module and a graph kernel
module. To fully utilize unlabeled data, for each
module, we calculate the similarity of each unla-
beled graph to other labeled graphs in the memory
bank and our consistency loss encourages consis-
tency between two similarity distributions in dif-
ferent embedding spaces. The two twin modules
collaborate with each other by exchanging instance
similarity knowledge to fully explore the structure
information of both labeled and unlabeled data. We
evaluate our TGNN on various public datasets and
show that it achieves strong performance.

1 Introduction

A fundamental problem in data mining is graph classifi-
cation, which seeks to capture the property of the entire
graph. The problem has been extensively studied lately
with a range of downstream applications, such as predict-
ing the quantum mechanical properties [Lu et al., 2019;
Hao et al., 2020] and assessing the functionality of chemi-
cal compounds [Kojima et al., 2020]. Among various graph
classification algorithms [Ying et al., 2018; Xu et al., 2019],
message-passing neural networks (MPNNs), as the majority

∗Equal contribution with an alphabetical order.
†Corresponding authors.

of graph neural networks (GNNs) [Kipf and Welling, 2017;
Veličković et al., 2017], have achieved tremendous success.
The main idea behind MPNNs is to propagate and aggregate
messages on a graph [Gilmer et al., 2017], where each node
receives messages from all its neighbors, and then iteratively
performs neighborhood aggregation and node updates. Fi-
nally, all node representations can be combined into a graph-
level representation. In this way, the semantic knowledge of
local structures represented by different nodes can be implic-
itly integrated into the graph-level representation.

Although GNNs have achieved impressive performance,
they do have one drawback that optimizing effective GNNs
is data-hungry and frequently relies on a large number of la-
beled graphs, as the settings of current graph classification
tasks show [Xu et al., 2019]. Nevertheless, it is often expen-
sive and time-consuming to annotate labels such as in bio-
chemistry and chemistry [Hao et al., 2020]. Although the
labeled samples could be limited, massive unlabeled samples
are simple to obtain, whose structures can often regularize the
graph encoder to learn more discriminative representations
for classification. This thus naturally inspires us to leverage
both labeled and unlabeled data in semi-supervised scenarios
to address the limitations of existing methods.

Recent efforts of combining MPNNs with semi-supervised
learning techniques for graph classification [Li et al., 2019;
Sun et al., 2020; Hao et al., 2020; Luo et al., 2022] are usu-
ally divided into two categories: self-training [Lee and oth-
ers, 2013] or knowledge distillation [Hinton et al., 2014].
However, topology information is only implicitly incorpo-
rated when node features are messaging along edges, which
fails to effectively explore graph topology. Moreover, as the
number of labeled graphs is limited in semi-supervised graph
classification, an approach that can better model graph topol-
ogy and explore the unlabeled data for classification is antic-
ipated in real-world applications.

To address the above issues, we propose a new framework
named TGNN, which is capable of better exploring graph
structures for semi-supervised graph-level classification. In
contrast to existing MPNNs which utilize graph structures in
an implicit way via message passing, our approach aims to
capture graph topology in both implicit and explicit manners.
On the one hand, we follow MPNNs and learn structured
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node representations through neighbor aggregation, and the
summarized graph representation implicitly captures graph
topology. On the other hand, we employ a graph kernel mod-
ule, which compares each graph with parameterized hidden
graphs via the random walk kernel. By this means, we get
another graph representation, which leverages graph topol-
ogy more explicitly. In order to couple the explicit and im-
plicit information of graph topology, we propose a unified
semi-supervised optimization framework with a novel self-
supervised consistency loss, where two modules are encour-
aged to yield consistent similarity scores when applied to
each unlabeled graph. Extensive experiments on a wide range
of well-known graph classification datasets demonstrate sig-
nificant improvements over competing baselines. The contri-
butions of this work can be summarized as follows:

• We provide a new semi-supervised graph classification
approach called TGNN, which comprises a message
passing module and a graph kernel module to explore
structural information in both implicit and explicit ways.

• To integrate the topology information from complemen-
tary views, we propose an optimization framework in-
cluding a self-supervised consistency loss to encourage
exchanging similarity knowledge between two modules.

• Experimental results show our TGNN significantly out-
performs the compared baselines by a large margin on a
variety of benchmark datasets.

2 Related Work

Graph Neural Networks. GNNs have been extensively
investigated due to their simplification from spectral meth-
ods [Spielman, 2007] to localized models [Kipf and Welling,
2017], which connects GNNs to message passing frame-
work [Gilmer et al., 2017] and significantly promotes its ef-
ficiency. Most existing GNN methods for graph classifica-
tion task [Hao et al., 2020; Ju et al., 2022] inherently use
message passing neural networks (MPNNs) [Gilmer et al.,
2017] to learn graph-level representation. However, MPNNs
bear the drawback that they ignore structural properties ex-
plicitly emanating from graph topology. Furthermore, re-
cent studies have shown the inability of MPNNs to model
high-order substructures such as paths [Chen et al., 2020;
Long et al., 2021]. With our TGNN, besides implicitly learn-
ing effective graph structural information from MPNNs, we
also benefit from the graph kernel module to explicitly incor-
porate graph topology in a semi-supervised framework.

Semi-supervised Graph Classification. Semi-supervised
learning has attracted increasing attention in the field of
machine learning and data mining [Grandvalet and Bengio,
2005; Laine and Aila, 2017; Tarvainen and Valpola, 2017],
whose basic idea is effectively leveraging a small number
of labeled data and massive available unlabeled data to en-
hance the model performance. Recently much work has been
done for semi-supervised graph classification [Li et al., 2019;
Sun et al., 2020; Hao et al., 2020; Luo et al., 2022]. SEAL-
AI [Li et al., 2019] and ASGN [Hao et al., 2020] use active
learning techniques to select the most representative samples
from unlabeled data, while InfoGraph [Sun et al., 2020] and

DualGraph [Luo et al., 2022] fully explore the semantic in-
formation of unlabeled data via contrastive learning. Differ-
ent from existing methods which only model graph topology
in an implicit way, we also consider structural information in
an explicit manner via graph kernels.

3 Methodology

This paper provides a novel framework TGNN for semi-
supervised graph classification as shown in Figure 1. At a
high level, TGNN aims to capture graph topology in both im-
plicit and explicit manners with twin GNN modules. On the
one hand, we follow MPNNs to learn structured node rep-
resentations via message passing, and thus the summarized
graph representation reflects graph topology implicitly. On
the other hand, we introduce a graph kernel module, which
compares each unlabeled graph with hidden graphs via a ran-
dom walk kernel to explicitly explore graph topology. To
couple different topology information from twin GNNs, we
present a novel semi-supervised optimization approach, in
which twin modules are enforced to yield consistent similar-
ity scores when applied to each unlabeled graph.

Problem Definition. Let G = (V,E) denote a graph, where
V and E represent the node set and the edge set, respec-
tively. In the task of semi-supervised graph classification,
we are given a whole graph set G = {GL,GU}, which con-

tains labeled graphs GL =
{

G1, · · · , G|GL|

}

with their la-

bels YL = {y1, · · · , y|GL|} and unlabeled graphs GU =
{

G|GL|+1, · · · , G|GL|+|GU |

}

. We aim to learn a label distri-

bution p(YU |G,YL), which is able to predict the categories
for unlabeled graphs GU .

3.1 Message Passing Module

Message passing neural networks (MPNNs) [Kipf and
Welling, 2017; Gilmer et al., 2017; Veličković et al., 2017]

have recently emerged as promising approaches to model
graph-structured data, which implicitly encode graph struc-

ture into learned node representations h
(k)
v for each node v

at the k-th layer. MPNNs typically use neighborhood aggre-
gation to iteratively update the representation of a node by
incorporating representations of its neighboring nodes in the

previous layer. After k iterations, a node representation h
(k)
v

is able to capture the structural information within its k-hop
neighborhoods. Formally, the k-th layer of a node represen-

tation h
(k)
v obtained from the MPNN is formulated as:

h
(k)
v = COM

(k)
θ



h
(k−1)
v +

∑

u∈N (v)

h
(k−1)
u



 (1)

Here N (v) represents the set neighbors of node v, COM
(k)
θ is

a non-linear combination operations at layer k. Eventually, by
using an attention mechanism, the graph-level representation
will be generated by integrating all node representations at
layer K as follows:

fθ (G) =
∑

v∈V

avh
(K)
v (2)
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Figure 1: The schematic of the proposed framework TGNN. Our TGNN is a joint framework with twin GNNs (i.e., a message passing module
and a graph kernel module), which is trained by minimizing the supervised loss as well as self-supervised consistency loss based on graph
representations in two kinds of embedding spaces.

av =
exp(t⊤h

(K)
v )I

t⊤h
(K)
v >0

∑

v∈V exp(t⊤h
(K)
v )I

t⊤h
(K)
v >0

(3)

where t is a learnable vector, fθ (G) is the graph-level repre-
sentation, and θ denotes the parameters of the message pass-
ing module. I(·) is an indicator equaling 1 when the condition
is met, and its introduction is to adaptively prune some unim-
portant nodes for discriminative graph-level representations.

3.2 Graph Kernel Module

However, recent MPNNs simply capture structural informa-
tion implicitly via message-passing along edges. It is usu-
ally difficult to explore rich high-order substructures (e.g.,
paths [Chen et al., 2020; Long et al., 2021]) in various MPNN
models. It is therefore desirable to have a principled way of
incorporating structural information explicitly.

To this end, we propose to use a random walk graph ker-
nel to explicitly explore graph topology. Our graph kernel
module introduces some hidden graphs which are parameter-
ized using trainable adjacency matrices. Formally, our mod-
ule contains N hidden graphs G′

1, G
′
2, · · · , G

′
N with different

sizes. We parametrize each hidden graph G′
i as an undirected

graph for fewer parameters. These hidden graphs are ex-
pected to learn structures that help distinguish between avail-
able classes. Inspired by the fact that the random walk kernels
quantify the similarity of two graphs based on the number
of common walks in the two graphs [Kashima et al., 2003;
Nikolentzos and Vazirgiannis, 2020], we compare each graph
sample against hidden graphs with a differentiable function
from the random walk kernel.

Specifically, given two graphs G = (V,E) and G′ =
(V ′, E′), their graph direct product G× = (V×, E×) is a
graph where V× = {(v, v′) : v ∈ V ∧ v′ ∈ V ′} and E× =
{{(v, v′) , (u, u′)} : {v, u} ∈ E ∧ {v′, u′} ∈ E′}. It could
be observed that a random walk on G× can be interpreted
as a simultaneous walk on graphs G and G′ [Vishwanathan

et al., 2010]. Considering traditional random walk kernels
count all pairs of matching walks on G and G′, the number
of matching walks is equivalent to the adjacency matrix A×

of G× if traversing over nodes of G and G′ at random. The
P -step (P ∈ N) random walk kernel between G and G′ that
counts all simultaneous random walks is thus defined as:

k (G,G′) =
P
∑

p=0

ωpe
⊤
A

p
×e (4)

where e is an all-one vector, and ω0, . . . , ωP are positive
weights. To simplify the calculation, we only compute the
number of common walks of length exactly p over two com-
pared graphs:

k(p) (G,G′) = e
⊤
A

p
×e (5)

Then, given P = {0, . . . , P} and hidden graph set Gh =
{G′

1, . . . , G
′
N}, we can build a matrix H ∈ R

N×(P+1) where

Hij = k(j−1)(G,G′
i) for each input graph G. Finally, the

matrix H is flattened and fed into a fully-connected layer to
produce the graph-level representation denoted as gφ(G).

3.3 Semi-supervised Optimization Framework

In this subsection, we discuss how to integrate the twin mod-
ules to explore graph structural information from comple-
mentary views in semi-supervised scenarios.

To produce generalized and robust representations for two
modules, we first involve four fundamental data augmenta-
tion strategies to create positive views of graphs that preserve
intrinsic structural and attribute information: (1) Edge drop-
ping (2) Node dropping (3) Attribute masking (4) Subgraph.
For more details of these strategies, refer to [You et al., 2020].
We generate augmented graphs by randomly selecting one of
the defined augmentation strategies. Specifically, given an in-
stance Gj , for two modules, two stochastic augmentations T 1

and T 2 sampled from their corresponding augmentation fam-
ilies are applied to Gj , resulting in two correlated samples
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denoted as G1
j = T 1(Gj) and G2

j = T 2(Gj). Afterward, G1
j

and G2
j are fed into two modules respectively to obtain the

embedding pair (zj = fθ(G
1
j ), wj = gφ(G

2
j )).

Since two modules mine semantic information from GNNs
and graph kernels respectively, the semantic representations
derived from their respective representation spaces might ex-
ist a discrepancy. Moreover, since the label annotations are
usually limited in a semi-supervised case, predicted pseudo
labels are usually unreliable and biased. As such, simply
aligning the graph-level representations or pseudo labels of
the same instance may be sub-optimal, especially for unla-
beled samples. To alleviate the issue, we propose to enhance
each instance by exchanging instance knowledge via com-
paring its similarities to other labeled samples in embedding
spaces of two modules.

Specifically, we first randomly select a set of the labeled
data {Ga1

, . . . , GaM
} as anchor samples that are stored in a

memory bank and then embed them using both message pass-
ing module and graph kernel module to get their representa-
tions {zam

}Mm=1 and {wam
}Mm=1. Note that we need a large

set of anchor samples so that they have large variations to
cover the neighborhood of any unlabeled sample. However,
it is computationally expensive to process many samples in a
single iteration due to limited computation and memory. To
tackle this issue, we maintain a memory bank as a queue de-
fined on the fly by a set of anchor samples from several most
recent iterations for our twin GNN modules.

In detail, given an unlabeled graph Gj , we get its embed-

dings zj = fθ(T
1(Gj)) via the message passing module, and

then we calculate the pairwise similarity between zj and all

anchor embeddings {zam
}Mm=1. Similarly, the pairwise sim-

ilarity for the graph kernel module can be obtained through
comparison between wj = gφ(T

2(Gj)) and {wam
}Mm=1. In

our implementation, we use exponential temperature-scaled
cosine similarity to measure the relationship in both embed-
ding spaces. Formally, the similarity distribution between the
unlabeled sample and anchor samples in the message passing
module’s embedding space is:

pjm =
exp (cos(zj , zam

)/τ)
∑M

m′=1 exp
(

cos(zj , zam′
)/τ

)
(6)

where τ is the temperature parameter set to 0.5 following
[You et al., 2020] and cos(a, b) = a·b

‖a‖2‖b‖2
is the cosine simi-

larity. In the same way, the similarity in the embedding space
of the graph kernel module is written as:

qjm =
exp (cos(wj , wam

)/τ)
∑M

m′=1 exp
(

cos(wj , wam′
)/τ

)
(7)

For each unlabeled graph Gj , we encourage the consis-

tency between probability distributions pj = [pj1, . . . , p
j
M ]

and qj = [qj1, . . . , q
j
M ] by using Kullback-Leibler (KL) Di-

vergence as the measure of disagreement. In formulation, we
present a consistency loss defined as follows:

Lcon =
1

|GU |

∑

Gj∈GU

1

2
(DKL(p

j‖qj) +DKL(q
j‖pj)) (8)

Algorithm 1 TGNN’s main learning algorithm

Input: Labeled data GL, unlabeled data GU

Parameter: Message passing module parameter θ, graph ker-
nel module parameter φ, classifier parameter η
Output: classifier Φ (y|G)

1: Sample M examples from GL to construct anchor set as
the memory bank.

2: Initialize parameters {θ, φ, η}.
3: while not convergence do
4: Sample minibatch BL and BU .
5: Forward propagation BL and BU via twin modules.
6: Compute objective function using Eq. (10).
7: Update the parameters by back propagation.
8: Update the memory bank with BL for two modules

following a first-in, first-out manner.
9: end while

In order to output label distribution for classification, we
use the graph-level representation from the message passing
module to predict the label through a multi-layer perception
(MLP) classifier Hη(·) (i.e., Φ(y | G) = Hη(fθ(G)). We
choose the message passing module since a single MPNN
outperforms a single graph kernel network empirically by val-
idation study. Therefore, we use the cross-entropy function to
characterize the supervised classification loss:

Lsup =
1

|GL|

∑

Gj∈GL

[− log Φ(yj | Gj)] (9)

Finally, we combine the supervised classification loss Lsup

with unsupervised consistency loss Lcon in the overall loss:

L = Lsup + Lcon (10)

The overall framework is illustrated in Algorithm 1.

4 Experiments

4.1 Experimental Setups

Benchmark Datasets. We evaluate our proposed TGNN us-
ing seven publicly accessible datasets (i.e., PROTEINS, DD,
IMDB-B, IMDB-M, REDDIT-B, REDDIT-M-5k and COL-
LAB [Yanardag and Vishwanathan, 2015]) and two large-
scale OGB datasets (i.e., OGB-HIV, OGB-MUV). Following
DualGraph [Luo et al., 2022], we adopt the same data split,
in which the ratio of labeled training set, unlabeled training
set, validation set and test set is 2:5:1:2.

Competing Models. We carry out comprehensive compar-
isons with methods from three categories: classical graph ap-
proaches (i.e., WL [Shervashidze et al., 2011], Sub2Vec [Ad-
hikari et al., 2018] and Graph2Vec [Narayanan et al., 2017]),
classical semi-supervised learning approaches (i.e., Ent-
Min [Grandvalet and Bengio, 2005], Mean-Teacher [Tar-
vainen and Valpola, 2017] and VAT [Miyato et al., 2018])
and graph-specific semi-supervised learning approaches (i.e.,
InfoGraph [Sun et al., 2020], ASGN [Hao et al., 2020],
GraphCL [You et al., 2020], JOAO [You et al., 2021]), and
DualGraph [Luo et al., 2022].
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Methods PROTEINS DD IMDB-B IMDB-M REDDIT-B REDDIT-M-5k COLLAB

WL 63.5± 1.6 57.3± 1.2 58.1± 2.3 33.3± 1.4 61.8± 1.3 37.0± 0.9 62.9± 0.7
Sub2Vec 52.7± 4.5 46.4± 3.2 44.9± 3.5 31.8± 2.7 63.5± 2.3 35.1± 1.5 60.8± 1.4
Graph2Vec 63.1± 1.8 53.7± 1.6 61.2± 2.6 38.1± 2.2 67.7± 2.3 38.1± 1.4 63.6± 0.9

EntMin 62.7± 2.7 59.8± 1.3 67.1± 3.7 37.4± 1.2 66.9± 3.5 38.7± 2.8 63.8± 1.6
Mean-Teacher 64.3± 2.1 60.6± 1.8 66.4± 2.7 38.8± 3.6 68.7± 1.3 39.2± 2.1 63.6± 1.4
VAT 64.1± 1.2 59.9± 2.6 67.2± 2.9 39.6± 1.4 70.8± 4.1 38.9± 3.2 64.1± 1.1

InfoGraph 68.2± 0.7 67.5± 1.4 71.8± 2.3 42.3± 1.8 75.2± 2.4 41.5± 1.7 65.7± 0.4
ASGN 67.7± 1.2 68.5± 0.6 70.6± 1.4 41.2± 1.4 73.1± 2.3 42.2± 0.8 65.3± 0.8
GraphCL 69.4± 0.8 68.7± 1.2 71.2± 2.5 43.7± 1.3 75.2± 1.7 42.3± 0.9 66.4± 0.6
JOAO 68.7± 0.9 67.9± 1.3 71.0± 1.9 42.6± 1.5 74.8± 1.6 42.1± 1.2 65.8± 0.4
DualGraph 70.1± 1.2 69.8± 0.8 72.1± 0.7 44.8 ± 0.4 75.4± 1.4 42.9± 1.4 67.2± 0.6

TGNN (Ours) 71.0 ± 0.7 70.8 ± 0.9 72.8 ± 1.7 42.9 ± 0.8 76.3 ± 1.3 43.8 ± 1.0 67.7 ± 0.4

Table 1: Quantitative results of different algorithms. We highlight that our TGNN outperforms all other baselines on most datasets.

Implementation Details. All methods are implemented in
PyTorch, and the experiments are presented with the aver-
age prediction accuracy (in %) and standard deviation of five
times. For the proposed TGNN, we empirically set the em-
bedding dimension to 64, the number of epochs to 300, and
batch size to 64. We modify GIN [Xu et al., 2019] to param-
eterize the message passing module fθ, consisting of three
convolution layers and one pooling layer with an attention
mechanism. For our graph kernel module gφ, we empirically
set the number of hidden graphs to 16 and their size equal to
5 nodes. The maximum length of random walk P is set to 3.
Finally, we use Adam to optimize all the models.

4.2 Results and Analysis

Table 1 shows the results of semi-supervised graph clas-
sification using half of the labeled data. We can get the
following observations: (1) The majority of the classical
graph approaches achieve worse performance than others,
indicating that GNNs have a high representation capabil-
ity to extract effective information from graph data. (2)
The approaches with classical semi-supervised learning tech-
niques show worse performance compared with the graph-
specific semi-supervised learning approaches, demonstrating
that models specifically designed for graphs can better learn
the characteristics of graphs in semi-supervised scenarios. (3)
Our framework TGNN outperforms all other baselines on six
of seven datasets, soundly justifying the superiority of our
framework. Moreover, we assess our model on large-scale
OGB datasets and the results on Table 2 further validate the
effectiveness of TGNN.

Influence of Labeling Ratio. We vary the labeling ratio of
training data on PROTEINS and DD in Figure 2. From the
results, we can clearly see that the performance of all models
generally improves as the number of available labeled data in-
creases, demonstrating that adding more labeled data is an ef-
ficient way to boost the performance. Among these methods,
TGNN achieves the best results, showing that sufficiently in-
tegrating graph topology information from complementary
views can indeed benefit the performance.

Rate Methods OGB-HIV OGB-MUV

1%
InfoGraph 51.3± 3.8 50.1± 1.6
GraphCL 45.1± 5.7 50.8± 1.3

TGNN (Ours) 53.3 ± 4.1 52.8 ± 1.5

10%
InfoGraph 63.7± 1.2 51.3± 0.8
GraphCL 63.2± 0.5 51.1± 0.7

TGNN (Ours) 64.1 ± 0.8 53.5 ± 0.7

Table 2: Results on large-scale OGB datasets. (Test ROC-AUC on
OGB-HIV, OGB-MUV at 1% and 10% label rate respectively.)
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Figure 2: Results of TGNN and baselines with different labeling
ratios on two datasets PROTEINS and DD.

4.3 Ablation Study

We investigate a few variants to demonstrate the effect of ev-
ery part of our model: (1) MP-Sup trains an MPNN (i.e., fθ)
solely on labeled in a supervised manner. (2) GK-Sup trains
a graph kernel neural network (i.e., gφ) solely on labeled data.
(3) MP-Ensemble replaces the graph kernel module with an-
other message passing module with different initialization.
(4) GK-Ensemble replaces the message passing module with
another graph kernel module with different initialization. (5)
TGNN w/o Aug. removes the graph augmentation strategy
before feeding graphs into the twin modules.

We present the results of different model variants in Ta-
ble 3. First, we can clearly observe that on most datasets,
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Methods PROTEINS IMDB-B REDDIT-B

MP-Sup 63.3± 1.4 63.4± 2.1 69.8± 1.1
GK-Sup 62.6± 0.8 55.4± 1.7 65.3± 0.6
MP-Ensemble 68.1± 1.5 69.8± 1.2 73.7± 1.1
GK-Ensemble 66.9± 1.7 60.5± 1.8 70.8± 0.8
TGNN w/o Aug 69.3± 0.8 71.7± 1.3 75.8± 0.7

TGNN (Ours) 71.0 ± 0.7 72.8 ± 1.7 76.3 ± 1.3

Table 3: Ablation study of TGNN with its variants.
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Figure 3: Hyper-parameter sensitivity study of TGNN.

MP-Sup outperforms GK-Sup. Maybe the reason is that
the message passing module can utilize node attributes
while the graph kernel module fails. Second, MP-Ensemble
(GK-Ensemble) outperforms MP-Sup (GK-Sup), indicating
our consistency learning framework can improve the model
through ensemble learning. Third, our full model beats both
two ensemble models, indicating the superiority of explor-
ing similarity from complementary views. Finally, with the
graph augmentation, our full model achieves better perfor-
mance, showing that graph augmentation can produce gener-
alized graph representations beneficial to graph classification.

4.4 Hyper-parameter Study

We further examine the hyper-parameter sensitivity of our
TGNN w.r.t. different embedding dimensions of hidden lay-
ers d and the maximum length of random walk P as shown
in Figure 3. We first vary d in {8, 16, 32, 64, 128} with all
other hyper-parameters fixed. It is clear that the performance
saturates as the embedding dimensions reach around 64. This
is because a larger dimensionality brings a stronger represen-
tation ability at the early stage, but might lead to overfitting
as the continuously increasing of d. We further vary P in
{1, 2, 3, 4, 5, 6} while fixing all other hyper-parameters. We
observe that the performance tends to first increase and then
decrease. A too-small P would lead to limited topological
exploration space while a large P may introduce instability
and fail to distinguish graph similarity.

4.5 Case Study

We investigate the power of our graph kernel module to show
the superiority of explicitly exploring topology information.
First, we show two cases on REDDIT-M-5k in Figure 4,
where two unlabeled examples are annotated with both the
message passing module and graph kernel module. We can
find that both samples are classified into wrong categories by
fθ, while gφ revises the wrong prediction successfully, which

Message passing 

module !!

Graph kernel 

module ""
Ground Truth

0.053

0.618

0.001

0.226

0.102

0.167

0.001 0.001

0.763

0.068

Ground Truth

0.001

0.069

0.338

0.013

0.579

0.001 0.001

0.677

0.296

0.025

Figure 4: Visualize the power of graph kernel on REDDIT-M-5k.

Figure 5: Illustration of hidden graphs extracted from our graph ker-
nel module on PROTEINS.

demonstrates that our graph kernel module is an important
supplement for graph classification. The potential reason is
that the graph kernel module is able to capture clearer topol-
ogy information embedded in graph substructures. Further-
more, we visualize several hidden graphs derived from the
graph kernel module on PROTEINS. From Figure 5, we can
clearly see that our module is able to generate various kinds
of graph substructures, so as to effectively capture the rich
topological information in the dataset.

5 Conclusion

This paper presents a Twin Graph Neural Network (TGNN),
a joint optimization framework that combines the advantages
of graph neural networks and graph kernels. TGNN consists
of twin modules named message passing module and graph
kernel module, which explore graph topology information
from complementary views. Furthermore, a semi-supervised
framework is proposed to encourage the consistency between
two similarity distributions in different embedding spaces.
Extensive empirical studies show that our approach outper-
forms competitive baselines by a large margin.
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