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A B S T R A C T

Neural predictors (NPs) aim to swiftly evaluate architectures during the neural architecture search (NAS)
process. Precise evaluations with NPs heavily depend on the representation of training samples (i.e., the
architectures), as the representation determines how well the NP captures the intrinsic properties and intricate
dependencies of the architecture. Existing methods, which represent neural architectures as graph structures
or sequences, are inherently limited in their expressive capabilities. In this study, we explore the image
representation of neural architecture, describing the architecture in pixel space and using the long-range
modeling capability of attention mechanisms to construct connections among pixels and extract tangible
(tractable) architecture topology representation from them. Our attempt provides an efficient architecture
representation for NPs, combined with today’s powerful pre-training models, showing promising prospects.
Furthermore, recognizing that images alone may fall short in capturing configuration specifics, we design a
corresponding text representation to provide a more accurate complement. Our experimental analysis reveals
that the existing visual language model can efficiently identify the topological information in the pixel
space. Additionally, we propose a Dual-Input Multichannel Neural Predictor (DIMNP) that simultaneously
accepts multiple representations of architectures, facilitating information complementarity and accelerating
convergence of the NP. Extensive experiments on NAS-Bench-101, NAS-Bench-201, and DARTS datasets
demonstrate the superiority of DIMNP compared to the state-of-the-art NPs. In particular, on the NAS-
Bench-101 and NAS-Bench-201 search spaces, DIMNP achieves performance improvements of 0.01 and 0.52,
respectively, compared to the second-best algorithm on average.

1. Introduction

Rapid advancements in deep learning [1–5] have heightened the
complexity and diversity of neural network architectures, making tra-
ditional manual design methods inadequate for efficient optimization.
While Neural Architecture Search (NAS) [6–8] addresses these chal-
lenges, it is still limited by high computational costs and time con-
straints. As a result, Neural predictor (NP) has become one of the
most sought-after tools in NAS with its ability to evaluate architectures
rapidly [9]. The capability of the NP to make precise evaluations is
crucial for identifying the optimal architectures. Therefore, a well-
crafted representation of the neural architecture is indispensable, which
can substantially enhance the NP’s comprehension of the internal de-
pendencies within the architecture, thus improving its performance and
reliability. Current mainstream research on architectural representa-
tions can be classified into two categories: sequence-based and graph-
based methods. The sequence-based methods encode architectures as
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sequences or strings, where each character or symbol represents specific
network components or configurations [10,11]. For the graph-based
method, neural architectures are represented as directed acyclic graphs
(DAGs), where nodes and edges represent network operations and
connections, closely mirroring the actual structural layout of neural
networks [12,13].

However, the aforementioned encoding methods significantly limit
the expressive power of architectural representations and struggle to
establish global relationships within an architecture. Sequence-based
methods often fail to capture tight connections in complex structures
over long sequences, while graph-based methods can result in repre-
sentations that miss important internal dependencies, especially when
dealing with architectures that have many unconnected nodes, leading
to sparsity issues. Thus, developing a more comprehensive represen-
tation of neural architectures remains a crucial challenge. Inspired by
the success of pre-training visual models [16,17], an intuitive approach
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