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Abstract—The powerful learning ability of a convolutional
neural network to perform functional classification provides
valuable clues for the discovery of biological problems and image
recognition. However, the mechanism of deep learning still lacks
satisfying interpretation and the convolutional neural network
is usually regarded as a black-box model. Consequently, it is
challenging to design deep learning models and adjust the hyper-
parameters for specific tasks without theoretical guidance. We
raise a new task of deep learning – 2-dimensional logo detecting
for computer vision and develop a novel model of convolutional
neural networks to solve the task. Furthermore, we interpret this
specific model from the point of view of statistical learning. With
the guidance of statistical interpretation, we can design the model
structure more efficiently and obtain better performances.

Index Terms—Convolutional neural network, Motif finding,
Interpretation, Probabilistic model

I. INTRODUCTION

Recently, the application of convolutional neural networks

has achieved great success in the field of image recognition

[1]–[3]. Many models with deep convolutional neural networks

have been proposed such as Deep Belief Network, [4], LSTM

[5], Alexnet [6], ResNet [7]. Because deep learning is an

effective method to solve supervised classification problems,

DeepBind [8] and DeepSEA [9] utilized convolutional neural

networks to predict RNA- and DNA-protein binding and

achieved encouraging results. As a great number of training

sets are drawn from high-throughput data, models of neural

networks can be trained without overfitting, which can get

accurate test results compared to traditional machine learning

methods such as gkm-SVM [10].

The convolutional neural networks used by DeepBind [8]

and DeepSEA [9] are similar to deep learning approaches in

computer vision [6], [11]. Recently, many methods in deep

learning such as data augmentation have been applied to pre-

dict DNA-protein binding [12]–[17] and get some results. The

major change of convolutional neural networks from computer

vision to genomics can be accomplished by considering a

window of genome sequences as an image. Each sequence is

transformed into a one-hot format. Specifically, it’s turned into

4×L matrix where each base pair in the sequence is denoted

as one of for one-hot vectors [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0]
and [0, 0, 0, 1] and then 1-D convolutional neural networks

can be utilized. In this way, the genomic task of modeling

†Equal Contribution. ∗Corresponding author.

DNA sequence protein binding specificity is analogous to the

computer vision task of two-class image classification where

we can utilize deep learning to help increase accuracy.

One of the main difficulties of deep learning is it lacks

interpretation (i.e. black-box systems [18]), which corresponds

to the choice of ‘gold standard’ [19]. Many attempts have been

done in specific networks [20], [21]. Opening the black box

of deep learning is meaningful for searching for better models

of neural networks.

In this paper, firstly, we promote the task of motif finding

to two-dimensional images and show our tasks are meaningful

for computer vision by defining logo images and motif finding

the task of those images. Besides, because of the connection

between DeepBind and the probabilistic model, we design

a model of neural networks to deal with the task of 2-D

motif finding and attempt to open up the black box of the

neural network. We utilize many classic probabilistic views

to interpret our models, such as hypothesis testing, Bayesian

view, and Gibbs sampling [22]. We give our model a simple

probabilistic interpretation and in this way, we can apply many

statistical views to the convolutional neural network and thus

optimize neural networks with the guidance of probabilistic

theory. Lastly, we will show many experiments to prove our

model is really useful for computer vision in both simulation

data and real data.

II. RELATED WORK

A. Deep learning for motif inference

The deep learning method for motif inference can be catego-

rized into two groups – CNN-based and RNN-based methods.

As for the CNN-based model(may contain RNN), DeepBind

[8] is the first CNN-based model to predict DNA-protein bind-

ing and since then deep learning has been widely utilized in

this field for its great performance. [23] shows that deploying

more convolutional kernels is always beneficial. iDeepA [24]

applies an attention mechanism to automatically search for

important positions. DeeperBind [25] and iDeepS [14] add an

LSTM layer on DeepBind to learn long dependency within

sequences to further improve the prediction performance. As

for the RNN-based model, KEGRU [26] identifies TF binding

sites by combining the Bidirectional Gated Recurrent Unit

(GRU) network with k-mer embedding. Besides model selec-

tion, CONCISE [27] and iDeep [28] integrate other informa-

tion(e.g. structured information) into predicting RBP-binding
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sites and preference. Other work includes data augmentation

[12], circular filters [29] and convolutional kernel networks

[15], [16], [30].

B. Convolutional neural networks

Convolutional Neural Networks (CNNs), a special type of

Neural Networks, have shown significant performance im-

provement in several Image Processing and Computer Vision

competitions, such as ImageNet [6]. The powerful and ef-

fective learning ability of deep CNN is mainly derived from

the utilization of multiple feature extraction stages that can

automatically learn feature representations from the original

images. In 2012, A. Krizhevsky et al. [6] drew attention to the

public by AlexNet network which achieved a top-5 error rate

of 15.3% outperforming the previous best traditional model

in the ImageNet dataset. Since the 2012 milestone, many

researchers have tried to go deeper into the sequences of

convolution layers to achieve better performance. In 2014, K.

Simonyan & A. Zisserman [31] introduced the 16-layers VGG

model that chains multiple convolution layers to win this com-

petition. The same year, M. Lin et al. [32] has developed the

concept of “inception modules” which is further exploited by

C. Szegedy et al. [33] who proposed a deeper network called

GoogLeNet with 22 layers. The main common trend to design

convolutional neural network models is the increasing network

depth. However, as the depth increased, networks involved

an increasing error rate due to the difficulties of optimizing

extremely deep models. K. He et al. [34] proposed ResNet

network by residual learning to further deepen the network to

101 layers. To avoid the tedious network architectures design,

B. Zoph and Q.V. Le [35] proposed a new concept called

Neural Architecture Search (NAS) which searches state-of-the-

art networks automatically. After that, various NAS networks

have been released to the community, such as PNAS [36],

ENAS [37], EfficientNet [38] and so on. And these classic

network architectures further become the backbone networks

in other tasks, such as image retrieval [2] and object detection

[39].

III. MATERIALS AND METHODS

A. Logo image

In the field of computer vision, a task similar to motif

finding is to detect whether images have a specific logo.

The task of detecting logo images is to predict whether an

image contains a specific logo. The position of the logo

called motif in each image is uncertain. In this way, we can

promote predicting DNA-protein binding to a two-dimensional

situation. For example, Figure 1 shows a positive and a

negative sample respectively, given the example image motif

is a cross.

Assume we have a black and white image, which is divided

into M ×N pixels. Similar to the motif finding problem, we

represent it by a M ×N matrix X = (xi,j) with one channel,

and the value of a pixel is 0 or 1. xi,j = 1 if the pixel in at

the ith row and jth column is white;otherwise,xi,j = 0.

Fig. 1. Left: A positive sample. Right: A negative sample.

Every single channel image has a complementary matrix

X′ whose value of each pixel of an image is opposite to the

value of the corresponding pixel of the original image (i.e.

X′(i, j) = 1−X(i, j), ∀i, j) to present the probability of the

pixel to be black. For simplicity, we can only consider the first

matrix and omit its complementary matrix. In this way, with

the assumption that every pixel of an original image in the

region of a motif is independent and obeys specific Bernoulli

distribution, every pixel outside the region of motif obeys

background distribution, we can calculate log-likelihood:

Pr(Image| Model )

=
∏

(i,j)/∈MR

Pr (xi,j |BG)
∏

(i,j)∈MR

Pr (xi,j |MR) . (1)

where MR refers to the region of motif which is assumed to

be square, BG refers to background distribution which is often

assumed to be uniform distributed, and xi,j refers to value (i.e

0 or 1) of a pixel at position (i, j).
If we ignore background distribution, we can have a simple

form of log-likelihood, which has related to the convolutional

operation. Position weight matrix (PWM) can be defined to

be a square matrix that records the probability of the value of

each pixel equals 1 in the region of a motif. That is to say,

convolutional operation obtains scores of candidate regions of

a motif. With the idea above, a classification model of the

convolutional neural network can be designed.

B. A parameterized convolutional neural network architecture

As shown in Figure 2, the model of neural network for this

task is quite simple. The input is a M ×N matrix where M
and N denote the size of the image. Each pixel of the image

is 0 or 1.

The first layer of the network is a 2-D convolutional layer,

which can be considered as a motif scanner. The predeter-

mined size of filters needs to correspond to the size of the

region of the motif and usually needs to be larger. The output

of each neuron on a convolutional layer is the convolution of

the kernel matrix and the part of the input within the neuron’s

window size. Usually, the window size needs to be an odd

number. An activation layer follows to filter negative scores

which may disturb results.
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Fig. 2. Architecture of convolutional neural networks

The second layer is a global max-pooling layer, one for

each convolutional layer(i.e each filter). Each of these max-

pooling layers only outputs the maximum value of all of its

convolutional layer outputs. This operation helps to identify

whether the motif modeled by each convolutional operation

exists in the input image or not.

The last layer is a fully-connected layer of size 1, with

sigmoid activation, which corresponds to the last results,

positive or negative. A probability of being a positive sample

can arrive. Besides, another fully connected layer may be

added to be the third layer if the model desired to need to be

complex. Hidden layers are aimed to increase models’ ability

of learning complex tasks. And a dropout layer [40] can be

chosen on the third layer to randomly mask portions of its

output to avoid overfitting.

C. Probability interpretation of the model

For simplicity, we assume that all the positive samples share

the same and only one motif. The number of filters is set to 1,

and hidden layers are omitted. Our discussion can be promoted

to more complicated situations similarly.

1) Transformation between kernel and PWM: In this part,

we describe an exact kernel-to-PWM transformation, which

consists of the following steps:

1) Assume we have a kernel W.

2) Choose an arbitrary base of logarithm b(b > 1). There

is no other restriction on b.
3) Calculate the exponential transformed kernel C, that is

ci,j = bwi,j , for all {i, j} in {1, 2, · · · , L}.
4) Normalize matrix C with its complementary matrix to

get the PWM matrix P(W, b)=
ci,j

1+ci,j
.

Then by Theorem 1 in the next section, we have:

(X ∗W)i,j = logb Pr(X[i : (i+ L− 1), j : (j + L− 1)]|P(W, b))

+ d(W, b)

In other words, the convolution by W is exactly the sum

of a constant and the log-likelihood of the PWM transformed

on X.

On the other hand, from a PWM(with the restriction that

no 0’s or 1’s are present), a kernel that is generated by the

following steps is capable of classifying pictures in the same

way as the PWM.

1) Assume we have a PWM P.

2) Choose an arbitrary base of logarithm b(b > 1). There

is no other restriction on b.
3) Normalize matrix P,we can simply taking C = P.

4) Calculate the logarithm transformed W, that is wi,j =
logb ci,j , for all i, j in {1, 2, · · · , L}.

5) Add a positive shift to make sure all elements are non-

negative if necessary.

If the positive simple obeys some certain PWM in the region

of motif, one kernel can be calculated from PWM, which is

called the exact kernel. Besides when testing, convolutional

operation obtains scores of candidate motif regions which

form a score-matrix. The activation layer is utilized a negative

score which corresponds to deleting improper filters. Pooling

operation retains the biggest score in some certain regions and

the score corresponds to log-likelihood. Because of the bigger

log-likelihood, the bigger score is, by some trained linear

transformation which is monotonous, the score is transformed

into log-ratio before sigmoid activation, and then into the

probability of being a positive sample. From log-likelihood

to the last probability, monotone transformation keeps that the

bigger log-likelihood, the bigger last probability of being a

positive sample, which is desired.

2) Hypothesis testing: Here, we use the view of the hypoth-

esis testing to interpret our CNN. From the architecture of a

neural network, we find that because our last classification is

whether the probability is bigger than 0.5, the classification is

equal to whether the biggest score is larger than some trained

threshold. The null hypothesis can be set to be :

H0 : label of sample is positive. vs

H1 : label of sample is negative.

The test statistic T is the biggest (i.e.score the output of

pooling layer). The rejection region is {T < k}, where k is a

trained threshold.
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With the constraint of type I error, type II error can be

compared between different models. What’s more, the learned

kernel corresponds to the test statistic T , and the weight of

the fully connected layer corresponds to the trained threshold.

Given a testing level α, we can learn a maximal k so that

Pr(T < k) = α when H0 is true.

3) Bayesian view: From the Bayesian view, the learning

weights of a neural network are similar to learning prior

information without a test sample. A training set is like a

model’s teacher and gives tutors without dependence on testing

samples. Combined with test samples, posterior distribution

can arrive and we can get results.

4) Exact kernel: Exact kernel can be transformed from true

PWM and in the contrast, PWM can also be obtained from

the learned kernel. The 1-D situation has been proved for

predicting DNA-protein binding [41], which can be promoted

to a 2-D situation. If a true model (i.e. true PWM)exists it’s

evident that using log-likelihood combined with true PWM is

the best testing method. As a result, kernel transformed from

true PWM is the most effective kernel from the convolutional

neural network. Without consideration of scale, the exact

kernel has the form of

K(i, j) = logP (i, j)− log 1/2, ∀i, j
5) Upper bound of accuracy: Assume we know the region

and exact value of motif. Then, we can give an estimation

of the upper bound of the accuracy. We use a PWM matrix

P = pi,j , (i, j) ∈ {1, 2, · · · , L} to present a motif of size L.

Moreover, we use the kernel described above, that is K(i, j) =
log pi,j − log 1/2, ∀i, j. Then our score of convolution is:

S =

L∑
i=1

L∑
j=1

Xi,j log 2pi,j

where Xi,j are independent random variables generated from

Bernoulli distribution B(1, pi,j). So the accuracy of classifica-

tion is the probability of Pr(S ≥ k), which is the probability

of S bigger than k. Where k is learned from the hypothesis

test described above. As all pi,j is known, the distribution of

S is known and we can approximate it by numerical methods

and estimate it.

6) Benefits of multiple kernels for convolutional neural
network: Kernels can be called detectors and convolutional

operation play the same role as ”motif scan” operation in

a PWM-based model. However, as the discussion above,

the coefficients of motif detector matrices are arbitrary and

under no hard constraints but correspond to the coefficients of

specific PWM.

Deep neural networks perform best when trained with

more parameters (in our case, motif detectors) than is exactly

required to model the data, which is because of the way

models are randomly initialized at training start, and to the

uncertainty of gradient descent learning. Besides, models of

neural networks are not convex, which can’t promise loss

function can converge to a globally optimal solution rather

than a locally optimal solution. For example, if an image

has one true motif, training with one kernel will often fail

to model the data and get accurate results, whereas training

with 16 kernels will succeed much more frequently to get

accurate results. However, in this case, we may not directly

get true PWM because the information of true PWM may be

divided into several motif detectors. For the 1-D situation, it

has been shown that more motif detectors lead to better and

robust results [23].

7) Size of motif detectors: The size of motif detectors is

a hyper-parameter that needs to be pre-decided. The size is

related to the true size of the motif. However, if the size pre-

decided is small than the real size, it may lead to failing

to model the data when the number of motif detectors is

not enough, while smaller motifs can still be learned with

irrelevant positions having near-zero coefficients. As a result,

often we choose the size of kernels is 2 times larger than

the estimated size. Too large kernels may lead to much more

calculation for training data, which is consuming.

8) Calculating PWMs: There are two methods to get

PWMs. One method is utilizing exact transform for the kernel

to get PWMs. Another method is the same as DeepBind [8].

We can generate a PWM from a detector’s(i.e. kernel) response

to actual sequences. We feed all sequences from the testing

set through the convolutional layer and align all the sequences

that passed the given threshold. And then position frequency

matrix can be obtained and approximate PWM.

9) Multiple convolutional layers: In the field of image

recognition, usually deeper networks perform better than net-

works with wider filters [42], which is the reason that size of

filters usually is set to be 3×3 or 5×5. Deeper networks have

wider receptive field [43] while a simple model outperforms

in motif discovery [23]. Multiple convolutional layers without

activation are equal to only one convolutional layer with the

size of filters same as the size of the receptive field. The only

difference is that multiple convolutional layers add additional

unequal weights automatically to filters. Generally, with the

ReLU activation layer, multiple convolutional layers can learn

more integrated information from complex models while the

true rules of motif detecting only need one convolutional layer.

Adding more convolutional layers increases the complexity

of neural networks, deviates the embedded true rules of the

model, and sacrifices the good interpretability of the model.

D. Gibbs sampling for general images

For general images whose values of pixels are between 0
and 1, Gibbs sampling [44] can be utilized. For the value of

each pixel, we can consider the value to be the probability of

the value being 1 with the assumption that values of pixels

obey the Bernoulli distribution. Then for every pixel, we can

sample logo images with values 0 or 1 according to the

probability and thus generate a large number of images. For

example, if a value of one pixel is 0.8, we can sample this pixel

with the assumption that value obeys Bernoulli distribution

with probability 0.8, and if we sample a lot of times, the

expectation of frequency at this pixel being 1 is 0.8 according

to the law of large numbers [45]. If a real-world image contains
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many logos, we can find that the expectation of scores equals

the neural network output with the input. In this way, our

model can also be promoted to deal with general images.

IV. THEORETICAL PROOF

Let A = (ai,j) be a matrix. We use A[i1 : i2, j1 : j2] to

represent the sub-matrix of A generated by extracting rows

from i1 to i2, and columns from j1 to j2. We use a matrix W
to represent an arbitrary kernel. The shape of W is usually

L× L, where L is the size of the kernel.

We use a matrix X to represent an arbitrary input black and

white picture. The picture is divide into M ×N grids. In our

model, we simply assume min{M,N} ≥ L, that is the input

pictures are not smaller than the kernels.

As for every grid of the picture is either black or white, the

matrix X can be written as:

xi,j =

{
1, if the grid at the ith row and jth column is white

0, otherwise.

We use a L × L matrix P called PMW to represent any

motif of size L in a picture. It should be a PWT(Position

Weight Tensor) with two layers. The second layer of the

tensor is complementary to the first one because the picture

is black and white. Thus we can simplify tensor to a matrix

for convenience. For the (i, j)-th element of P, pi,j = Pr(the

i-th row and j-th column of the motif are white).

We define X ∗W as the discrete convolution with matrix

W on matrix X.

(X ∗W)i,j :=
L∑

u=1

L∑
v=1

xi+u−1,j+v−1wu,v

We define Pr(X|P(W, b)) as the probability that the picture

represent by matrix X is generated from the PWM P(W, b)
with Bernoulli distribution.

Theorem1. Given W, b > 0, we can transform them into

the PWM P = P(W, b) use the method described above.

Then, ∀X, we have:

(X ∗W)i,j = logb Pr(X[i : (i+ L− 1), j :
(j + L− 1)] | P(W, b)) + d(W, b)

where d(W, b) is a constant only depends on W and b.

Proof. By the definition of PWM and the independence,

a picture is generate from a PWM is the production of

probability of ”the color at each position in that picture” at

the same position in the PWM. We use the following formula:

Pr(X[i : (i+ L− 1), j : (j + L− 1)] | P(W, b))

=
∏

{u,v}∈T1

(P(W, b)u,v)
∏

{u,v}∈T2

(1−P(W, b)u,v)

where

T1 = {(u, v)|(u, v) ∈ [1, 2, · · · , L]× [1, 2, · · · , L];xi+u,j+v = 1},
T2 = {(u, v)|(u, v) ∈ [1, 2, · · · , L]× [1, 2, · · · , L];xi+u,j+v = 0}.

Taking the logarithm with base b, we can get:

logb Pr(X[i : (i+ L− 1), j : (j + L− 1)] | P(W, b))

=
∑

{u,v}∈T1

logb (P(W, b)u,v) +
∑

{u,v}∈T2

logb (1−P(W, b)u,v)

(2)

On the other hand, from the convolution we have:

(X ∗W)i,j =

L∑
u=1

L∑
v=1

xi+u−1,j+v−1wu,v =
∑

{u,v}∈T1

wu,v.

By the transformation way descried above, we have wu,v =
logb cu,v and P(W, b)=

ci,j
1+ci,j

.

(X ∗W)i,j =
∑

{u,v}∈T1

logb
P(W, b)u,v

1−P(W, b)u,v

=
∑

{u,v}∈T1

logb P(W, b)u,v

−
∑

{u,v}∈T1

logb (1−P(W, b)u,v) .

As the definition of sets T1 and T2,we know that T1 ∩T2 = ∅
and T1 ∪ T2 = [1, 2, · · · , L]× [1, 2, · · · , L]. That is:

(X ∗W)i,j =
∑

{u,v}∈T1

logb (P(W, b)u,v)

+
∑

{u,v}∈T2

logb(1− P(W, b)u,v)

−
L∑

i′=1

L∑
j′=1

logb (1−P(W, b)i′,j′) .

(3)

Comparing Eq.2 and Eq.3, we can finish the proof by setting

d(W, b) = −
L∑

i′=1

L∑
j′=1

logb(1−P(W, b)i′,j′).

V. EXPERIMENTS AND DISCUSSION

A. Simulation data

In this section, we verify our model by simulation data.

True PWM is below, whose shape is like a cross. Background

distribution is assumed to be Bernoulli distribution with a

probability 0.5. Label 1 represents that the image has the given

motif, while label 0 represents that pixels of the image are

exactly random. The proportion of positive samples is half in

both the training set and in the testing set. The size of the

convolutional filter is 7× 7, which is exactly equal to the size

of the motif. Our given square PWM is shaped like a cross

with probability p and other grids of a motif with probability

1 − p. Three experiments are conducted with p = 0.99, 0.9
and 0.8 respectively.

First, we choose the simplest neural networks with only

one kernel in the convolutional layer and without a hidden

layer. The exact kernel can be obtained from PWM. First, a

great accuracy can be obtained if an exact kernel is utilized

because only two parameters of the last layer need learning.

In this situation, we believe the upper bound of accuracy can
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TABLE I
ACCURACY OF MODELS IN SIMULATION DATA

Different probability in PWM Exact kernel Learned kernel

0.99/0.01 1.0000 1.0000
0.9/0.1 0.9360 0.9690
0.8/0.2 0.7040 0.7760

Fig. 3. Trained kernel (Left) and exact kernel (Right) with p = 0.8

be obtained because parameters can be fully learned without

consideration of overfitting or under-fitting. And then we

utilize one variable kernel and train a whole model.

We found that by trained kernel will approximate the exact

kernel without scaling. At least, the positive and negative

numbers in both kernels are corresponding. Sometimes learned

kernel may have a gap to the exact kernel, which is considered

as the best kernel. This fact shows that training images with

one motif with only one kernel may lead to poor results which

are not desired. Because simulation data has a true model,

our accuracy obtained with the exact kernel is considered to

approximate the upper bound of this model with the Monte

Carlo method. What’s more, the exact kernel results in a faster

convergence, which is expected for fewer parameters.

However, we found that the learned kernel will result in

more accuracy than the exact kernel, which is out of our

expectation. We guess that because of the pseudo-randomness

of simulation data, deep learning studies this property which

results in high accuracy. For a lower accuracy with p = 0.8,

we will utilize this data to compare different models of neural

networks. what’s more, the learned kernel has a symmetrical

structure, and for the cross, the value of the center is somewhat

smaller than the value of boundary, which we guess results

from the influence of points around.

B. Comparison for different numbers of filters

Next, we test with our simulation data for comparison

of different numbers of filters. For one model, only one

kernel is utilized and for another, 32 kernels are utilized in a

convolutional layer. The accuracy for the two models is 0.7760

and 0.7980 respectively. It’s shown that although multiple

kernels can’t have a direct transformation to real PWM, they

have benefits to increasing accuracy, which verifies what we

discuss above. What’s more, we advise that to reduce the

amount of calculation, we prefer to increasing the number of

filters rather than the size of filters because the latter may

cause a large calculation.

C. Comparison with or without multiple convolutional layers

For multiple convolutional layers, to keep the same size

of the receptive field, we utilize 3 convolutional layers with

filters size 3. For each layer, the number of filters is 16. The

number of parameters for the whole model is 4769 while the

one-layer model has 801 parameters. However, the accuracy

for models of multiple convolutional layers is 0.7680 lower

than the original accuracy 0.7980, which shows that more

parameters lead to a bad result.

This result is similar to the 1-D result for DNA-binding

prediction [23]. For the general task of image recognition,

for the same size of the receptive field, a deeper model of

the neural network may have better accuracy. We believe

for this task with a true model, one convolutional layer has

statistical interpretation which multiple convolutional layers

with activation ruin this architecture. What’s more, multiple

convolutional layers bring in a large calculation which disrupts

us.

D. Results of real data

In this part, we will utilize our model in a real data set.

The MNIST digit classification task is composed of 28 × 28
images of the 10 handwritten digits [46].

Our model has only one convolutional layer with 128 filters

of size 15 × 15 and a fully connected layer of size 256.

A dropout layer [40] with a rate 0.9 is used on the third

layer output to avoid overfitting. The last layer is also a fully

connected layer with a size 10. The soft-max activation will

arrive at the probability of different labels. We believe that

every label of digits has its motifs, which is reasonable. For

example, digit eight has two circles which can be considered

as its motifs. We train our model with 30000 epochs, and

0.9563 accuracy can be obtained, which shows that our neural

network can deal with the specific task of image recognition.

What’s more, with a probabilistic interpretation of our model,

our model of the neural network is good at dealing with images

with noise, which shows the good robustness of our model.

The MNIST digit classification task is not typical enough to

show our model’s advantages.

VI. CONCLUSION

In this paper, we successfully promote the motif finding

problem of sequences to a 2-D situation and raise a new task

for image classification – motif finding problem of logo im-

ages. The model of DeepBind is still utilized and promoted to a

2-D situation. Because of the good interpretation of DeepBind,

we can get convolutional neural networks an interpretation

in this model. Statistical ideas combined with deep learning

give guidance to the adjustment of hyper-parameters and

structure design of neural networks. Since deep learning can

get accurate results in many classification problems, recently it

has much successful application in the field of computational

biology [47]–[49]. Statistical Learning can be combined with

deep learning for specific models, which may help open up the

black box of deep learning. We believe our interpretation for
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the convolutional neural network can be promoted and applied

to help improve the results obtained.
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