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Abstract. Hashing has been widely used to approximate the nearest
neighbor search for image retrieval due to its high computation efficiency
and low storage requirement. With the development of deep learning, a
series of deep supervised methods were proposed for end-to-end binary
code learning. However, the similarity between each pair of images is
simply defined by whether they belong to the same class or contain com-
mon objects, which ignores the heterogeneity within the class. Therefore,
those existing methods have not fully addressed the problem and their
results are far from satisfactory. Besides, it is difficult and impractical
to apply those methods to large-scale datasets. In this paper, we pro-
pose a brand new perspective to look into the nature of deep supervised
hashing and show that classification models can be directly utilized to
generate hashing codes. We also provide a new deep hashing architec-
ture called Deep Supervised Hashing by Classification(DSHC) which
takes advantage of both inter-class and intra-class heterogeneity. Exper-
iments on benchmark datasets show that our method outperforms the
state-of-the-art supervised hashing methods on accuracy and efficiency.
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1 Introduction

In recent years, hundreds of thousands of images are generated in the real world
every day, making it extremely difficult to find the relevant images. Due to the ef-
fectiveness of deep convolution neural networks, images either in the database or
the query image can be well represented by real-valued features. Therefore image
retrieval can be addressed as an approximating nearest neighbor(ANN) search-
ing problem for the sake of computational efficiency and high retrieval quan-
tity. Compared to the traditional content-based methods, hashing methods has
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shown its superiority for data compression, which transforms high-dimensional
media data into the generated binary representation[4, 11]. There are a number
of learning-to-hashing methods for efficient ANN searching[14], which mainly
fall into unsupervised methods[4, 13] and supervised methods[11, 12]. As the de-
velopment of deep learning, deep hashing methods have prevailed and shown
competitive performance for their ability to learn image representation[7]. By
transferring deep representation learned by deep neural networks, effective hash
codes are obtained by controlling the loss function. Specifically, they can learn
similar-preserving representations and control quantization error for continuous
representation by converting into binary codes. These methods can also be di-
vided into three schemes, pairwise label based methods[1, 9], triplet label based
methods[24] and point-wise classification schemes[10, 21], respectively. It’s no-
ticed that the above schemes can be mixed and utilized together[8]. Recently,
several methods have added label information into their models and achieved
great success[8].

Although these existing methods have achieved considerable progress, two
significant drawbacks have not been fully addressed yet. The supervised hashing
methods are usually guided by a similarity matrix S, while the definition of S
is quite simple. Specifically, sij = 1 if image i and image j belong to the same
class or contain common objects, and sij = 0 otherwise. Definitely, this way of
definition is reasonable in a sense since images of the same category are consid-
ered to be the same. However, there are usually many sub-classes in the same
class, and there should be some differences between different sub-classes. If all
the sub-classes are forced to be regarded as the same, the obtained hash codes
will be very unstable [15], so that the extension results on the test set will be
poor. Therefore, the existing methods do not fully proceed from the perspective
of image retrieval, and thus leading to unsatisfied retrieval accuracy. On the
other hand, we notice that the schemes mentioned above often include complex
pairwise loss functions, which means training on large datasets is difficult. There-
fore, VGG-Net[16] is often used in deep supervised hashing task for the sake of
speeding. If deeper models like ResNet are used [5], we need to replace the loss
function of deep hashing with simpler forms such as those in the classification
problem.

To address the two disadvantages mentioned above, we investigate the rela-
tionship between deep supervised hashing and classification problems. It turns
out that that high-quality binary codes can be generated by deep classification
models. For single-label datasets, we can construct the mapping relationship be-
tween the classification result and the hash code in some ways, making the ham-
ming distance between different classes of hash codes relatively large, while the
hamming distance between the subclasses of the same class relatively small. For
multi-label datasets, it is very natural to regard the predicted multi-shot labels
as the final hash codes, since the dissimilarity of two images is well captured
by the hamming distance. Following this idea, we proposed Deep Supervised
Hashing by Classification(DSHC), a novel deep hashing model that can gener-
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ate effective and concentrated hash codes to enable effective and efficient image
retrieval. The main contributions of DSHC are outlined as follows:

– DSHC is an end-to-end hash codes generation framework containing three
main components: 1) a standard deep convolutional neural network(CNN)
such as ResNet101 or ResNeXt, 2) a novel classification loss based on cross-
entropy that helps to divide the origin classed into several sub-classes by their
features and 3) a heuristic mapping from sub-labels to hash codes making
the hash codes of the sub-classed with the same label approach in Hamming
space.

– To the best of our knowledge, DSHC is the first method that addresses deep
supervised hashing as a classification problem and looks into the heterogene-
ity within the class.

– Comprehensive empirical evidence and analysis show that the proposed DSHC
can generate compact binary codes and obtain state-of-the-art results on
both CIFAR-10 and NUS-WIDE image retrieval benchmarks.

2 Related work

Existing hashing methods can be divided into two categories: unsupervised hash-
ing and supervised hashing methods. We can refer to [14] for a comprehensive
survey. In unsupervised hashing methods, data points are encoded to binary
codes by training from unlabeled data. Typical methods are based on recon-
struction error minimization or graph learning[19, 4]. Supervised hashing fur-
ther makes use of supervised information such as pair-wise similarity and label
information to generate compact and discriminative hash codes. Across similar
pairs of data points, nonlinear or discrete binary hash codes are generated by
minimizing the Hamming distances and vice versa across dissimilar pairs [11,
15].

Deep hash learning demonstrates their superiority over shallow learning
methods in the field of image retrieval through powerful representations. Specif-
ically, Deep Supervised Discrete Hashing[8] combines CNN model with a prob-
ability model to preserve pairwise similarity and regress labels using hash codes
simultaneously. Deep Hashing Network[25] proposes the first end-to-end frame-
work which jointly preserves pairwise similarity and reduces the quantization
error between data points and binary codes. To satisfy Hamming space retrieval,
DPSH [9] introduces a novel cross-entropy loss for similarity-preserving and the
quantization loss for controlling hashing quality. However, these methods are
difficult to apply to large-scale datasets that ignore heterogeneity within classes.
Recently, [22] uses a self-learning strategy and improves the performance.

Image Classification Tasks including single-label and multi-label have
been made impressive progress by using deep convolutional neural networks.
Single-label image classification, paying attention to assign a label from a prede-
fined set to an image, has been extensively studied. The performance of single-
label image classification has surpassed human in ImageNet dataset [5]. However,
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multi-label image classification is a more practical and general problem, because
the majority of images in the real-world contain more than one object from
different categories.

A simple and straightforward way for multi-label image classification is train-
ing an independent binary classifier for each class. However, this method does
not consider the relationship among classes! Indeed, the relationship between dif-
ferent labels can be considered by graph neural networks[2]. Additionally, Wang
et al [17] adopted recurrent neural network(RNN) to encode labels into embed-
ded label vectors, which can employ the correlation between labels. Recently, the
attention mechanism and label balancing have been introduced to discover the
label correlation for multi-label image classification. Different from other hash
methods, this paper treats the generation of hash codes as a classification task.

3 Approach

Fig. 1. Overview of our proposed method: The CNN layers perform feature extracting
followed by fully connected layer with soft-max to output (CH+1)C sub-classes. There
are (CH + 1) sub-class contained for each class. And each sub-class will be mapped
into a hash code with length CH. The multi-hot labels are employed to optimize the
network. (Best viewed in color.)

3.1 Problem Formulation

In the problem of image retrieval, given a dataset O = {oi}ni=1, oi = (xi, li),
in which xi is the feature of the i-th image, and li = [li1, · · · , liC ] is the label
annotation assigned to the i-th image, in which C is the number of classes.
The similarity label sij = 1 implies the i-th image and the j-th image are
similar, otherwise sij = 0. The similar pairs are constructed by the image labels,
i.e. two images will be considered similar if they have at least one common
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label. The goal of deep hashing is to learn a non-linear hash function: f : o →
h ∈ {−1, 1}L, encoding each sample o into compact L- bit hash code h where
original similarities between sample pairs are well preserved. For computational
consideration, the distance between different hash codes is Hamming distance,
which can be formulated as

disH (hi,hj) =
1

2
(L− 〈hi,hj〉)

where <,> denotes the inner product of hash codes.

3.2 Mapping sub-classes to hash codes

As mentioned in the introduction, we’d like to construct a mapping from sub-
classes to hash codes, such that the hamming distances in the same class are
relatively smaller than those between classes. Suppose we have C classes and
each class can be divided into m sub-classes. And for j-th sub-class of i-th class,
it has a unique hash code mapping pij . Then we define

Dinter =
∑
i1

∑
i2 6=i1

(
∑
j1

∑
j2

distH(pi1j1 , pi2j2))

Dintra =
∑
i

∑
j1

∑
j2

distH(pij1 , pij2)

as the total inter-class and intra-class distances respectively. Given the code
length L, we aim to find C ×m hash codes such that

Dintra −Dinter (1)

is minimized. However, finding the global optimization of the objective func-
tion 1 is NP-hard, so we proposed a space partition based method to get an
approximate solution of it.

As shown in Figure 1, suppose the hamming space with dimension L is well
separated into m sub-spaces, each sub-space corresponding to a class. For each
subspace i, suppose there’s a center point pi, which can be viewed as the bench-
mark code of class i. Then for each subclass of class i, we just substitute one
position of pi, thus every sub-class is mapped to a unique hash code eventually.
It is easy to check that all hamming distances in the same class are smaller than
or equal to 2. So we can get high-quality hash codes if the hamming distances
between center points are much larger than 2.

The most critical step is to construct the center points that are well separated.
To make this purpose, we proposed two methods named Center Point-Based
Construction (CPBC) and K-means Based Construction (KBC). The idea of
CPBC is simple but effective. Specifically, assume each class has a sub-hash
code with a length of H, and the total code length is CH. For a center point pi,
the i-th sub-hash code(length H) is all set to be 1 and other sub-hash codes are
−1. Then all the center points can be determined, while the Hamming distance
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between any two of them is equal to 2H. We can see that hash codes generated
by CPBC are generally well separated through T-SNE clustering (see Figure
2). For CPBC, we have to choose a relatively big H to get high-quality center
points. KBC is proposed to generate relatively shorter but high-quality center
points. First, we choose C initial points with a given hash code length L, and
all the 2K points are clustered into C groups by K-means. Then the resulted in
C clustering centroids are viewed as C center points. Since each cluster contains
many more points than the number of subclasses, all subclasses are only mapping
to a small ball centered in the corresponding center point. Theoretically, KPC
needs a shorter hash code than CPBC, but we found that the effect is difficult to
guarantee in the numeric experiments. So we always use CPBC when comparing
with other methods.

Fig. 2. T-SNE clustering visualization of hash codes generated by CPBC with CI-
FAR10 data set. Axes represent the first two dimensions of t-SNE embedding.

3.3 Loss function

Our model converts learning to hash into a classification problem by introducing
multiple subclasses for each superclass. To learn a novel function that maps each
subclass to a unique hash code, all we need is to determine which subclass each
image belongs to. In this section, we will see that the first loss is the cross-entropy
loss for a single-label dataset, while the second loss is the binary cross-entropy
and soft-margin loss for a multi-label dataset.

For the single-label image classification, the cross-entropy loss is usually em-
ployed [5]. Suppose there are C classes in the training dataset and sub-hash
code with length H for each class, the whole length of the hash code is CH. In
intra-class, one of the hash codes can be replaced to generate CH sub-classes.
Thus (CH + 1)C classes will be contained in the soft-max output. Correspond-
ingly, the one-hot ground truth will be converted into the multi-hot, in which
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the (CH + 1) label points are assigned to 1/H or otherwise set to 0. Here we
use 1/H instead of 1/(CH + 1) for computation. Formally, the loss function is :

Lce = −
(CH+1)C∑

c=1

yc log(pc), (2)

where yc ∈ {0, 1/H} is the ground truth and pc is the predicted probability dis-
tribution. Due to considering the robustness of the model, the top-K prediction
probabilities are chosen to generate the corresponding hash codes. And the final
hash code can be calculated by the average of K hash codes.

As for the multi-label image classification, the labels are multi-hot values
which are contained in the ground truth so that they can be utilized to express
the hash code directly. There are relatively large Hamming distances between
intra-class and relatively small Hamming distances within inter-class. Besides,
our method can explore the correlation between classes rather than predict cor-
rectly as long as one label is matched. Since the loss with soft margin is intro-
duced to address the multi-label classification task, the loss is computed as:

Lx,y = −
N∑
i=1

yi log((1 + exp(−xi))
−1)+

(1− yi) log((1 + exp(xi))
−1),

(3)

where yi ∈ {1,−1} express positive or negative class. xi and N are the pre-
dicted probability and the batch size of data in the training phase, respectively.

4 Experiments

The performance of our proposed approach is evaluated on two public bench-
mark datasets: CIFAR-10[6] and NUS-WIDE[3] comparing with state-of-the-art
methods.

4.1 Datasets and Settings

CIFAR-10 CIFAR-10 is a dataset containing 10 object categories, each with
6000 images (resolution of 32× 32). We sampled 1, 000 images per class (10, 000
images in total) as the query set and the remaining 50, 000 images were utilized
as the training set and database for retrieval.

NUS-WIDE NUS-WIDE is a public multi-label image dataset consisting
of 269, 648 images. Each image is manually annotated using some of the 81
ground truth concepts for evaluating retrieval models. Following [8], we picked a
subset of 195, 834 images associated with 21 most frequent labels. We randomly
sampled 2, 100 images as query sets and the remaining images were treated as
the training set.
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The retrieval quality is evaluated by the following four evaluation metrics:
Mean Average Precision(MAP), Precision-Recall curves, Precision curves con-
cerning hamming radius, and Recall curves for hamming radius. We measure the
goodness of the result by comprehensively calculating MAP. For NUS-WIDE,
for each bit, the distance needs to be different when the values are all 1s or all
0s when calculating the distance between two images. As a result, we convert
−1 to 0 in hash codes and the distance between two images is still in the form
of Equation in Sec3.1.

Our methods are compared with a list of classical or state-of-the-art super-
vised methods, including DSDH[8], DPSH[9], VDSH[23], DSLH[22], DTSH[18],
RMLH[20] and unsupervised hashing methods including SH[19], ITQ[4].

For CIFAR10, we utilize ResNet50 and replace the last layers with the corre-
sponding number of nodes, with the learning rate 0.1. We also rerun the source
code of DPSH and DSDH. The number of total epochs is 160 since we found all
models can fit very well afterward. For NUS-WIDE, we utilize ResNet 101 and
the learning rate is set to 0.1 which decreases every 6 epochs.

4.2 Performance

Fig. 3. Precision curves, Recall curves respect to hamming radius and Precision-Recall
curves when code length is 30. In the first two figures, the x axis represents the Ham-
ming distance(radius), and the y axis represents the average precision and recall. The
last figure is the curve of precision and recall.

Table 1 shows the results of different hashing methods on two benchmark
data sets when the code length is about 32 and 24, respectively. Here, for our
method, the code length is a little smaller than 32, but they are comparable
because the last two or three bits can be filled with zero for all images. Figure
3 and Table 1 shows the Precision-Recall curves, Precision curves, and Recall
curves respectively for different methods (code length of 30 and 60 bits).

We find that on the two benchmark datasets, DSHC outperforms all the com-
pared baseline methods. What’s more, unsupervised traditional hashing methods
show poor performances, which implies that labels and the strong representation
ability of deep learning are significant for learning to the hash. Compared with
DSDH which regresses the labels with hash codes, our method directly utilizes
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CIFAR10 NUS-WIDE

Method Published Year MAP Length(bits) MAP Length(bits)

DSHC Ours 0.9431 30 0.844 21
DSLH 2020 0.802 32 0.798 32
RMLH 2019 0.816 32 0.823 32
DSDH∗ 2017 0.939(0.802) 32(30) 0.814 24
DPSH∗ 2016 0.781(0.887) 32(30) 0.722 24
DTSH 2016 0.925 32 0.776 24
VDSH 2017 0.844 32 0.564 24
ITQ 2012 0.172 32 0.468 24
SH 2009 0.126 32 0.406 24

Table 1. MAP for different methods on CIFAR10 dataset and NUS-WIDE dataset.
The MAP for the NUS-WIDE dataset is calculated based on the top 50000 returned
neighbors. We re-run the source codes of DSDH and DPSH with code length 30, shown
in the brackets while other results are from their papers.

the labels to produce sub-labels, showing superiority from the increment of per-
formance. Compared with DPSH, our model is based on a deeper model such
as ResNet50 for the sake of getting rid of the pairwise loss whose computation
cost increases greatly. As shown in Table 2, our method takes the advantage of
a deeper model like ResNet but with less training time, which implies it can
easily extend to large-scale image datasets. The figures show that when code
length varies from 60 to 30, the performance of our method is stable while those
of DPSH and DSDH are sensitive to the code length. Besides, when the code
length is 60, the average recall for the code distance 0 in our model is about 0.024
while the value of DPSH is about 0.724. In other words, most images with the
same labels in DPSH are projected into the same hash codes while our method
can retrieval the most similar images within the class.

Method MAP Runtime(Last Ten epochs)

DSHC 0.9437 409.27
DPSH 0.8990 600.30
DSDH 0.8786 352.64

Table 2. MAP for different methods on CIFAR10 dataset (60-bit hash codes)

Since NUS-WIDE is annotated with multi-labels, we directly use the classifi-
cation binary output as hash codes. The results show that this kind of hash code
works quite well and performs much better than other methods. A reasonable
explanation is that the binary classification output has already captured the
intra-class heterogeneity of the dataset. What’s more, the multi-labeled classi-
fication model considers the relationship between sub-labels while most deep
hash methods only consider the similarity between the two images. We also try
extra experimental settings in the paper of DSDH: the number of query images
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is 2100 and 10500 images in total are used for training. Corresponding results
are shown in Table 1. Small though the training set is, our method still achieves
better performance than others.

4.3 Results with different code length

We also compare the performance of our model with different code lengths.
Taking the CIFAR10 dataset, for instance, the result is shown in Table 3. When
a short hash code is used, CPBC is not able to partition the space well, resulting
in poor performance. When the hash code length is large enough (e.g. above
30), the MAP of our model is quite stable. Under the condition of a complex
dataset, more hash bits will be needed for acceptable performance. It is worth
noting that the length of the hash code doesn’t influence the running time.

Length MAP Runtime

10 0.3599 408.21
20 0.8264 427.09
30 0.9431 420.92
60 0.9437 409.27

Table 3. MAP and Runtime(Last Ten epochs) for different length

4.4 Comparison between CPBC and KBC

As mentioned above, the performance of our method is difficult to guarantee
when the hash code length is small (e.g., 10). However, if KBC is used to obtain
the centroids, its performance is acceptable even if the hash code length is as
small as 10, while CPBC is difficult to separate the Hamming space well. As
shown in table 4, we set the threshold to 3. 950 points out of 1024 points in
the KBC model are filtered, while the model using CPBC leaves 110 points.
The model using KBC performs much better than CPBC, which means that the
model using KBC can successfully select several groups with larger distances
in Hamming space. However, when the hash code length is large enough, it is
recommended to use the CPBC model for simplification.

Length Method MAP@5000 Number of sub-classes

10 CPBC 0.5238 110
10 KBC 0.8980 74(filter 950)

Table 4. MAP@5000 for CPBC and KBC methods
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5 Discussion

From the results, our classification method shows superior performance com-
pared to state-of-the-art methods when the labels of the images are known.
Also, it can handle large-scale datasets without dealing with pairwise losses,
thus speeding up the computation. More importantly, when the classification
output is directly transformed into hash codes in NUS-WIDE, this suggests that
the classification model may be the key to deep supervised hashing.

Sometimes, similarity information is the only supervised information. We
have two methods to obtain the labels of images. First, if the real model is
simple, we can find images that contain only one label and get the exact specific
label from the similarity. Second, if the real model is complex, we can construct
a similarity graph based on the information and then derive the final labels
by graph clustering (e.g., Markov clustering). From the clustering results, we
can derive the label for each image. However, the results are limited by the
performance of clustering, which is difficult to promise.

6 Conclusion

In this paper, we investigate the relationship between deep supervised hash-
ing and classification problems and find that high-quality hash codes can be
generated by deep classification models. We propose a new supervised hashing
method named DSHC, which consists of a classification module and a transfor-
mation module, and exploits inter-and intra-class heterogeneity. Based on the
performance of several benchmark datasets, DSHC proves to be a promising
approach. Further research can focus on designing an efficient ANN search algo-
rithm based on hash codes generated by DSHC.
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