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Abstract—Point-of-Interest (POI) recommendation, which ben-
efits from the proliferation of GPS-enabled devices and location-
based social networks (LBSNs), plays an increasingly important
role in recommender systems. It aims to provide users with the
convenience to discover their interested places to visit based
on previous visits and current status. Most existing methods
usually merely leverage recurrent neural networks (RNNs) to
explore sequential influences for recommendation. Despite the
effectiveness, these methods not only neglect topological geo-
graphical influences among POIs, but also fail to model high-
order sequential substructures. To tackle the above issues, we
propose a Kernel-Based Graph Neural Network (KBGNN) for
next POI recommendation, which combines the characteristics
of both geographical and sequential influences in a collaborative
way. KBGNN consists of a geographical module and a sequential
module. On the one hand, we construct a geographical graph
and leverage a message passing neural network to capture
the topological geographical influences. On the other hand, we
explore high-order sequential substructures in the user-aware
sequential graph using a graph kernel neural network to capture
user preferences. Finally, a consistency learning framework is
introduced to jointly incorporate geographical and sequential
information extracted from two separate graphs. In this way,
the two modules effectively exchange knowledge to mutually
enhance each other. Extensive experiments conducted on two
real-world LBSN datasets demonstrate the superior performance
of our proposed method over the state-of-the-arts. Our codes are
available at https://github.com/Fang6ang/KBGNN.

Index Terms—Point-of-Interest Recommendation, Graph Neu-
ral Networks, Graph Kernels, Self-Supervised Learning

I. INTRODUCTION

Next Point-of-Interest (POI) recommendation [1]–[6] has

raised intensive attention in recent years due to the rapid

growth of Location-based Social Networks (LBSNs), such

as Yelp, Facebook Places, and Foursquare. Such location-

based services generate large volumes of historical check-in

sequences, which are valuable for service providers to analyze

user behavioral patterns in making every decision and thus

recommend the next POI a user may want to go. Therefore,

next POI recommendation plays a vital role in enhancing

user experience in both search efficiency and new interest

∗ Equal contribution with an alphabetical order.
† Corresponding authors.

Fig. 1. An illustration of geographical and sequential influences behind the
check-in behavior of a user. An observed visit to POIs is affected by both the
user’s historical sequence and the nearby POIs.

discovery, and has wide applications including location-based

advertising, route planning, and online food delivery.

By analyzing and understanding user mobile behaviors and

preferences of massive historical check-in sequences, there are

many approaches that have been proposed to make a personal-

ized POI recommendation from various aspects. Traditionally,

early models mainly focus on matrix factorization (MF) [1],

[2] and markov chains (MC) [7], [8]. To better model the

sequential dependencies of user POI sequences, researchers

adopt recurrent neural networks (RNNs) and their variants [4],

[9], [10] to better characterize the long periodic and short

sequential features of user trajectories. More recently, various

models [5], [11], [12] have exploited temporal and spatial

relations between movements to alleviate the data sparsity

of user check-in data. Besides, many state-of-the-art methods

enhance the quality of POI recommendation via incorporating

attention mechanism [13], [14] or knowledge graph [15] to

integrate this auxiliary information.

Although the aforementioned approaches acquire encour-

aging performance, it is of great significance to explore the

major driving forces of next POI recommendation. In fact,

we argue that geographical influence and sequential influence

are two key factors in POI recommendation. As shown in
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Fig. 1, the location “hotel” that the user visit is influenced

by its neighboring nodes from sequential and geographical

graphs. From the view of sequential graphs, users tend to

re-visit familiar POIs that have appeared in their behavior

sequences. For example, frequent visits to theaters may reveal

a user’s taste in art, which suggests that similar theaters are

more likely to be the next POI to visit. From the geographical

graph view, POIs with a short physical distance are intuitively

more attractive to users. For instance, a user who has just come

out of a downtown shopping mall has more chances to visit a

fast-food shop nearby for dinner, rather than his/her favorite

restaurant in the countryside. In summary, the two influences

affect user behaviors and preferences jointly. It naturally raises

a meaningful question: Are existing methods capable of fully
capturing these two key factors?

To answer this question, we need to deepen our understand-

ing of existing methods. Despite the versatility of these POI

recommenders, most existing approaches still suffer from two

key limitations: (i) Inability to explicitly explore topolog-
ical geographical influences among POIs. Most methods

usually regard geographical influences as spatial information

and incorporate this auxiliary knowledge into RNN-based

architectures. In addition, these approaches merely capture

geographical influences depending on physical distance or

successive relations among POIs. They are incapable of ex-

ploring the complex and topological geographical influences

among POI networks, which are essential for understanding

user preferences. (ii) Fail to model high-order sequential
substructures. Most works typically adopt RNN-based meth-

ods to model the sequential dependencies of historical user

behaviors. However, existing methods may fall short in captur-

ing high-order sequential substructures, which generally reflect

personalized user preferences. In our case, the high-order

sequential substructures could be several regular routines. For

example, a user may only visit three or four spots in succession

and then repeat this process, which may result in a ‘triangle’

or a ‘square’ on the map, respectively. There can be also other

high-order patterns due to various user preferences. As such,

we expect an approach which can better explore topological

geographical influences among POIs and meanwhile model

high-order sequential substructures.

Towards this end, this paper proposes a joint kernel-

based graph neural network for next POI recommendation

(KBGNN), which integrates the characteristics of geographical

and sequential influences in a collaborative way. The key idea

of KBGNN is to combine the advantages of both worlds,

and further enhance user experience in both search efficiency

and new interest discovery. To achieve this goal effectively,

we introduce two modules, i.e., a geographical module and a

sequential module. For the geographical module, we construct

a geographical graph and leverage a message passing neural

network to capture the topological geographical influences.

For the sequential module, we explore high-order sequen-

tial substructures in the user-aware sequential graph using

a graph kernel neural network to capture user preferences.

It is ideal to combine two modules in a complementary

way to enhance recommendations. To effectively train both

modules, we introduce a consistency learning framework to

jointly incorporate geographical and sequential information

extracted from two separate graphs. In this way, the two

modules effectively exchange joint knowledge to mutually

enhance each other. We validate the effectiveness of KBGNN

on two real-world datasets. Extensive experimental results

demonstrate that our proposed KBGNN model achieves high

recommendation accuracy and robustness to data sparsity.

The main contributions of this paper are as follows:

• We propose a joint kernel-based graph neural network

for next POI recommendation, which consists of a ge-

ographical module and a sequential module to well ex-

plore topological geographical influences and meanwhile

model high-order sequential substructures.

• We develop a consistency learning framework to combine

the advantages of the geographical module and sequential

module jointly, such that they can mutually enhance each

other via knowledge communication.

• We conduct comprehensive experiments to evaluate the

performance of the proposed KBGNN model over two

real-world datasets. The results show the superiority of

our KBGNN model in POI recommendation by compar-

ing it with the state-of-the-art techniques.

II. RELATED WORK

A. Next POI Recommendation

The next POI recommendation has been an important topic

in location-based services, which aims to recommend the next

possible visited POI for users based on their historical check-in

sequences. Existing approaches for next POI recommendation

can be divided into Matrix Factorization (MF) based [1]–

[3] and Neural Network based [4], [5], [9]–[12]. Most tra-

ditional methods are based on MF and the main purpose is

to factorize the user-POI interaction matrix to approximately

learn user and item latent representation respectively. Recent

POI recommendation models are mainly based on recurrent

neural networks (RNNs) and their variants [4], [9], [10], which

achieve wide attention due to their superior performance.

DeepMove [9] firstly leverages a recurrent layer to learn short-

term sequential regularity from highly correlated trajectories,

and then captures long-term periodicity with an attention

layer. The state-of-the-art models [16], [17] further introduce

spatiotemporal information to improve model performance.

LSTPM [17] leverages geo-dilated RNNs to fully explore the

temporal and spatial correlations among POIs. Nevertheless,

spatial information is typically derived from user behavior

sequences and often fails to be explicitly captured from the ge-

ographical graph. With KBGNN, besides exploring topological

geographical influences among POIs from the geographical

graph, we also benefit from sequential graph to capture high-

order sequential substructures.

B. GNN-based Recommendation

Graph Neural Networks (GNNs) have become widely ac-

knowledged powerful architectures for modeling recommen-
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Fig. 2. Illustration of the proposed KBGNN framework. A) Construction of geographical and sequential graphs; B) Geographical and sequential modules
that encode two corresponding graphs and generate the semantic representations; C) Calculate Lcon to encourage the consistency between two modules; D)
Prediction layer that combines the two semantic representations and target POI embedding ht to make CTR predictions.

dation data. GNN-based methods [18]–[21] are founded on

the information aggregation mechanism of GNNs. By stacking

GNN layers, the model is empowered to capture the complex

and high-order graph connectivity. To capture high-order col-

laborative user-item signals, NGCF [22] and its variant Light-

GCN [23] leverage the high-order relations on the interaction

graph to enhance the recommendation quality. DSGL [24]

uses dynamic sequential graphs to capture the evolutionary

dynamics of user’s behavior sequences. GEAPR [25] inte-

grates various factors with an attention mechanism to improve

the recommendation interpretability. GSTN [26] incorporates

user spatial and temporal dependencies based on graph em-

bedding. Despite effectiveness, our work aims at combining

the advantages of geographical and sequential influences in a

collaborative way, while their works fail to model two different

high-order interaction information jointly via GNNs.

III. PROBLEM FORMULATION & PRELIMINARY

A. Problem Definition

Definition 1: (Point-of-Interest) A POI is a spatial site (e.g.,

a restaurant) associated with two attributes: a unique identifier

v and geographical coordinates (longitude, latitude) tuple,

i.e., (lonv, latv).

Definition 2: (Check-in Sequence) Denote the user set

U = {u1, u2, ..., u|U|}, and the POI set V = {v1, v2, ..., v|V|}.
For each user u ∈ U , his/her historical check-in sequence is

organized into a list su = [vu,1, vu,2, ..., vu,t−1], containing the

t−1 POIs he/she has checked-in before, sorted by timestamp.

Problem Statement. Given a set of POIs V and a set of users

U , each u ∈ U has check-in sequence su. This paper studies

location-based click-through-rate (CTR) prediction for next

POI recommendation, which aims to leverage geographical

and sequential information in user’s historical behaviors. Given

user u and target POI v, the goal of location-based CTR

prediction is to predict the probability for u to check-in v next,

formulated as ŷuv = F (u, v|su; θ), where F is the learnable

function parameterized by θ.

B. Graph Kernels

Graph kernels are originally introduced by [27], which are

instances of the R-convolution framework [28], and the basic

idea is to decompose graphs into high-order substructures and

capture the graph similarity via kernel functions.

Definition 3: (Graph Kernels) Given two graphs G = (V, E)
and G′ = (V ′, E ′), the graph kernel K(G,G′) measures the

similarity between them and is defined as:

K (G,G′) =
∑
v∈V

∑
v′∈V′

kbase (fG (v) , fG′ (v′)) , (1)

where the base kernel kbase is used to compare substructures

centered at nodes v and v′ (i.e., the inner product on Hilbert

space), and fG(v) is the feature vector counting the number of

appearances of each substructure (e.g., subtrees [29], random

walk [30], [31], paths [32], graphlets [33]) in the graph G.

IV. METHODOLOGY

A. Overview

The paper proposes the KBGNN for next POI recommen-

dation, which jointly leverages geographical and sequential

influences for CTR prediction on the target POI. We argue that

geographical influence and sequential influence are two of the

major driving forces in POI recommendation. However, exist-

ing methods typically fail to explore topological geographical

influences among POIs and meanwhile show the inability to

model high-order sequential substructures.
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To better explore high-order interaction information in user

behavior sequences, KBGNN integrates the key factors of geo-

graphical influence and sequential influence. More specifically,

KBGNN has a geographical module to capture the topological

geographical influences and a sequential module to explore

high-order sequential substructures. To effectively train both

modules, a consistency learning framework is introduced to

incorporate geographical and sequential information jointly.

The two modules are optimized by distilling the knowledge

from each other and providing mutual supervision signals. The

overall framework of KBGNN is shown in Fig. 2.

B. The Geographical Module
1) Construction of Geographical Graph: In view of the

fact that nearby things are more related than distant things.

Technically, we first calculate the physical distance between

POIs from their unique location and construct a geographical

graph Gg = {V, Eg, Ag}, where edge eg = (vi, vj) ∈ Eg
indicates the distance between vi and vj less than a specific

distance threshold Δd. The edge weight matrix Ag(i, j) means

the physical distance between POI vi and vj in kilometers.

The construction of Gg depicts the prior knowledge of user

preferences, i.e., users prefer to visit neighboring POIs with

close physical distance.

2) Message Passing Neural Network for Geographical
Graph: Due to the remarkable success of GNNs in capturing

high-order relations on the graph topology, given the con-

structed geographical graph Gg , we further leverage message

passing neural networks [18] to explore complex and topolog-

ical distance-based geographical influences.
Technically, for a pair of neighboring POIs vi, vj , the

message from vi to vj on l-th layer is defined as:

m
(l)
j←i =

1√|Ni||Nj |
w(dij)W

(l)h
(l−1)
i , (2)

where W (l) ∈ R
D×D are trainable weight matrices. h

(l−1)
i

represents POI representations from the (l − 1)-th layer of

GNNs. h
(0)
i is often initialized as POI’s embedding X (i.e.,

h
(0)
i = xi, ∀vi ∈ V). To better explore the geographical

influence in Gg , the message is desired to reveal the distance

influence between POIs, we hence introduce distance kernel

w(dij) = e−d2
ij which decays exponentially as vi and vj be-

come farther apart, where dij represents the distance between

vi and vj . Intuitively, POIs which are closer tend to share more

similarities than distant ones. Additionally, here we use the

same graph convolutional rule based on symmetric normalized

Laplacian as GCN [18], where Ni and Nj denote the first-hop

neighbors for vi and vj on Gg respectively.
To generate effective POI representations based on message-

passing mechanism, the process of neighbor aggregation and

information update is defined as:

h
(l)
j = LeakyReLU(m

(l)
j←j +

∑
i∈Nvj

m
(l)
j←i), (3)

where Nvj are neighbors to node vj , and m
(l)
j←j = W (l)h

(l−1)
j

is the message generated by self-connection of node vj .

The message-passing phase runs for L layers, and we

use the representations of the L-th layer as the geographical

encoding of all the POIs in V:

Hg = [h
(L)
1 ;h

(L)
2 ; ...;h

(L)
|V| ]. (4)

In practice, given a user u with check-in behavior sequence

su, his/her geographical encoding Hg,u is the list of the

geographical representations of all the POIs that appear in su.

Here we assume that the geographical preferences of users can

be captured by aggregating the high-order geographical POI

representations in his/her check-in behaviors.

To produce effective semantic representations of user ge-

ographical preferences for capturing topological geographical

influences, we propose to leverage a multi-head self-attention

mechanism to better aggregate different POIs. The semantic

geographical representations can be formulated as:

αr
i =

(Qr · h(L)
i )�(Kr · h(L)

i )√
d/R

, α̂r
i =

expαr
i∑|su|

j=1 expα
r
j

eg,u =
R

‖
r=1

|su|∑
i=1

α̂r
iV

r · h(L)
i ,

(5)

where Qr,Kr and V r ∈ R
(d/R)×d are query, key and value

transformation matrices, respectively. α̂r
i is viewed as the

importance of the i-th representation. R is the number of

heads, ‖ is the concatenation operator. Finally, we aggregate

different POIs representations of the whole geographical graph

to obtain a semantic geographical representation eg,u.

C. The Sequential Module

1) Construction of Sequential Graph: In addition to geo-

graphical graph influencing user behaviors, intrinsic character-

istics of POIs are critical factors that affect user preferences.

We therefore construct a sequential graph Gs,u = {Vs,u, Es,u}
given a user u and his/her historical check-in sequence su.

Each edge es,u = 〈vi, vj〉 ∈ Gs,u represents the user’s succes-

sive check-ins from vi to vj . The construction of Gs,u describes

the sequential dependencies of users’ check-in behaviors.

2) Graph Kernel Neural Network for Sequential Graph:
Owing to the fact that behavior sequences of the users contain

not only the information about their successive preferences on

POIs, but also several possible regular routines, which implies

the path dependency and some specific substructure patterns

(i.e., ‘triangle’ or a ‘square’). Inspired by the superiority of

graph kernels [27], [30], [34], [35] in capturing high-order

substructures (e.g., random walk [30], [36]), we propose to

leverage a random walk graph kernel to explicitly explore

sequential influences and path dependencies on Gs,u.

To efficiently compute the random walk kernels, here we

introduce the direct product graph defined as below.

Definition 4: (Direct Product Graph) Given two graphs G =
(V, E) and G′ = (V ′, E ′), define the graph direct product graph

G× = (V×, E×), where V× = {(v, v′) : v ∈ V ∧ v′ ∈ V ′} and

E× = {{(v, v′) , (u, u′)} : {v, u} ∈ E ∧ {v′, u′} ∈ E ′}.

224



Note that a random walk on G× can be interpreted as a

simultaneous walk on graphs G and G′ [37]. The p-step (p ∈
N) random walk kernel between G and G′ that counts all

simultaneous random walks is thus defined as:

k(p) (G,G′) = e�Ap
×e, (6)

where e is an all-one vector, A× is adjacency matrix of G×.

Motivated by filters in convolutional neural networks, we

introduce a set of trainable graph filters to extract the structural

information (i.e., sequential patterns) of the sequential graph.

Definition 5: (Graph Filter) The i-th graph filter G′i is a

graph with ni nodes and we parametrize each graph filter with

a trainable adjacency matrix Ai ∈ R
ni×ni .

These graph filters are expected to learn high-order sub-

structures (e.g., random walk, paths) that capture high-order

sequential patterns of user preferences.

Inspired by the fact that the random walk kernels quantify

the similarity of two graphs based on the number of common

walks in the two graphs [30], we compare each sequential

graph of the user against graph filters with a differentiable

function from the random walk kernel.

Then, given different random walk lengths P = {0, . . . , P}
and a set of graph filters Gh = {G′1, . . . , G′N}, we can con-

struct a matrix H ∈ R
N×(P+1) where Hij = k(j−1)(Gs,u, G

′
i)

for each sequential graph Gs,u. Finally, the matrix H is

flattened and fed into a fully-connected layer to produce a

semantic sequential representation denoted as es,u:

es,u = CONCAT
(
Hi,j

∣∣∣ ∀i ∈ N, j ∈ P
)
. (7)

In this way, we are capable of exploring high-order se-

quential substructures in the user-aware sequential graph via a

graph kernel neural network to capture user preferences. By vi-

sualizing the graph filters in experiments, we further show the

superiority in capturing high-order sequential substructures.

D. Joint Optimization Framework

In this section, we discuss how to integrate two modules

jointly to explore topological geographical influences and

meanwhile model high-order sequential substructures.

After encoding the two constructed graphs from the user’s

check-in sequences via two modules. How to integrate this two

complementary information is a crucial concern. Due to the

difference in behavior semantics extracted from the sequential

module and geographical module respectively, it is necessary

to need a way to combine the advantages of both sequential

and geographical influences. However, due to the data sparsity

of check-in behaviors, directly aligning the semantic represen-

tations may lead to sub-optimal performance. To alleviate the

issue, we propose to enhance each user behavior sequence

via comparing its similarities to other behavior sequences in

embedding spaces of two modules. In this way, the embedding

spaces from two modules can be matched in a soft manner and

achieve a smooth consistency.

Technically, we begin to sample a range of the behavior

sequences {su1
, su2

, . . . , suM
} as anchors and then leverage

a memory bank to store them. Then, we embed them with

both the geographical module and the sequential module, re-

sulting in semantic geographical representations and semantic

sequential representations, respectively. Unfortunately, we find

that there is a dilemma, where we need a large number of

anchors with substantial variability to cover the vicinity of

the whole dataset, while processing such massive sequences

simultaneously is computationally costly. To circumvent this,

the memory bank is maintained as a queue that is dynamically

modified by anchor sequences from the most recent iterations.

In particular, we generate two semantic representations

using both the geographical module and the sequential module

for each sequence. Then the pairwise similarity between its

embedding with all the anchor embeddings in both embedding

spaces. The similarity distribution between each sequence and

all anchors for the geographical module is written as:

pmg,u =
Φ(eg,u, eg,um

)∑M
m′=1 Φ(eg,u, eg,um′ )

, (8)

where Φ(·, ·) = exp (cos(·, ·)/τ) is implemented by the

popular exponential temperature-scaled cosine metric to mea-

sure the similarity and τ denotes the temperature set to 0.5
following [38]. cos(·, ·) denotes the cosine metric. Similarly,

we can produce the similarity for the sequential module as:

pms,u =
Φ(es,u, es,um

)∑M
m′=1 Φ(es,u, es,um′ )

, (9)

In the end, we attempt to maximize the consistency between

two derived distributions, i.e., ps,u = [p1s,u, . . . , p
M
s,u] and

pg,u = [p1g,u, . . . , p
M
g,u] , which can allow the knowledge from

two modules to communicate with each other for harmonious

structures in both embedding spaces. The final consistency loss

is formulated as follows:

Lcon =
1

|U|
∑
u∈U

1

2
(D(ps,u‖pg,u) +D(pg,u‖ps,u)) , (10)

where D(·‖·) is implemented using the Kullback-Leibler di-

vergence to measure the difference between two distributions.

Comparison with Contrastive Learning. Although our con-

sistency learning contains similar parts to contrastive learning,

they have the following differences: (i) Contrastive learning

involves two views by data augmentation while our con-

sistency learning involves two modules to mine information

from complementary views; (ii) Contrastive learning usually

maximizes the mutual information while our consistency

learning attempts to minimize the distribution difference; (iii)

Contrastive learning employs a “hard” manner to achieve

alignment from two views in the same embedding space while

our consistency learning allows the discordance of two spaces

and employs a “soft” manner to achieve semantics consistency.

E. Training Algorithm

To better improve the CTR prediction [39], [40], we inte-

grate the semantic representations derived from two modules

according to the current target POI vt. Specifically, we con-

catenate the semantic geographical representation eg,u and the
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Algorithm 1: Learning Algorithm of KBGNN

Input: POI set V
Initialize: Distance matrix Ag; Model parameters

Construct Gg based on Ag;

while not converged do
Sample POI sequence su = [v1, v2, ..., v|su|] and

the corresponding target POI vt;
Construct geographical graph Gg,u and sequential

graph Gs,u;

/* Eq.5, Eq.7 */
Obtain semantic representations eg,u, es,u;

/* Eq.10, Eq.12 */
Compute objective function Lrec,Lcon;

/* Eq.13 */
Optimize framework via L = Lrec + β ∗ Lcon

end

semantic sequential representation es,u, along with target vt’s
geographical representation ht. Afterward, a two-layer multi-

layer perceptron (MLP) and a sigmoid function σ are applied

to predict the probability of target POI vt being clicked:

ŷ = σ(MLP([eg,u, es,u, ht])). (11)

Given the ground-truth click-through rate y ∈ {0, 1}, the

objective function of supervised CTR prediction is evaluated

via binary cross-entropy loss defined as:

Lrec = −
∑
(u,vt)

y log ŷ + (1− y) log(1− ŷ). (12)

The self-supervised consistency learning proceeds as described

in Eq. 10, acting as an auxiliary task that is unified into a joint

learning objective to enhance the next POI recommendation.

The overall objective of the joint learning can be written as:

L = Lrec + β ∗ Lcon, (13)

where β is the tuning parameter used to control the magnitude

of self-supervised consistency learning and supervised CTR

prediction, which sets β = 0.01 in practice. The overall

process of KBGNN is presented in Algorithm 1.

V. EXPERIMENT

In this section, we conduct extensive experiments on two

real-world POI recommendation datasets to investigate the

effectiveness and robustness of the proposed KBGNN. We

attempt to answer the following research questions:

• RQ1: How well does our KBGNN perform against the

baseline models on CTR prediction? Does consistency

learning help under cold-start settings?

• RQ2: How does each part of the model affect the

recommendation? How do hyper-parameters influence the

model performance?

• RQ3: Does KBGNN model topological geographical

influences of POIs via the geographical module? What

high-order substructures are captured by the sequential

module? Can two modules visualize the actual case?

TABLE I
BASIC STATISTICS FOR OUR TWO DATASETS.

Dataset #User #POI Interactions Avg.SeqLen

Tokyo 2,293 61,858 573,703 250.20

New York 1,083 38,333 227,428 210.00

A. Experiment Setup

a) Datasets: We conduct experiments on two industrial

POI recommendation datasets [41], which are drawn from

the users’ check-in histories on Foursquare1. The datasets

contain user check-ins from two cities, namely Foursquare
Tokyo (TKY) and New York (NYC). The check-in records

are collected in two cities from 12 April 2012 to 16 February

2013. The statistics of datasets are shown in Table I.

We sort each user’s check-in sequence in chronological

order. The last POI visited by each user is reserved as the

evaluation set, with the rest of the POIs in the sequence serving

as training data. The evaluation set is randomly split into

equal-sized test and validation sets.

b) Baselines: We compare the proposed KBGNN with

a wide range of baselines. To ensure the diversity, we select

the current state-of-the-art baselines from three categories: (1)

Traditional sequential-based models for CTR prediction; (2)

Graph-based models that leverage GNNs for recommenda-

tion; (3) POI recommendation methods that incorporate the

geographical influence when making predictions.

(i) Sequential-based models:
• DIN [39]: It is one of the most classical sequential-based

models for CTR prediction that proposes target attention

via outer product between the target item and user history.

• DIEN [40]: This model is a variant of DIN that leverages

the Gated Recurrent Unit (GRU) to model the evolving

history of user interests.

(ii) GNN-based models:
• SR-GNN [42]: It is a session recommendation model

that adopts Gated Graph Neural Networks (GGNN) to

propagate information on the transmission graph of items.

• NGCF [22]: It is a graph-based collaborate filtering

recommendation model. NGCF propagates on user-item

bipartite graph to capture collaborative signals.

• LightGCN [23]: It is a variant of NGCF, which achieves

superior results for graph-based recommendation.

(iii) POI recommendation models:
• GeoIE [16]: It models the geographical influence of the

historical POIs on the current target with two sets of

locational embeddings.

• LSTPM [17]: It proposes geo-dilated LSTM structure

to expand LSTM to capture both temporal and spatial

similarities between POIs.

1https://sites.google.com/site/yangdingqi/home/foursquare-dataset
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TABLE II
PERFORMANCE COMPARISON OF ALL COMPARED METHODS.

Model
Tokyo NYC

AUC↑ Logloss↓ AUC Logloss

DIN 0.8623 0.4174 0.8015 0.5203
DIEN 0.8643 0.4544 0.8062 0.5582

SR-GNN 0.8867 0.4481 0.8491 0.5262
NGCF 0.8899 0.4436 0.8461 0.4788

LightGCN 0.8998 0.4348 0.8729 0.4815

GeoIE 0.9083 0.4203 0.8769 0.4810
LSTPM 0.8745 0.4374 0.8568 0.4821
GSTN 0.8906 0.4312 0.8521 0.5323

Ours 0.9387 0.3147 0.9189 0.3620

• GSTN [26]: It models the transmission between POIs on

a graph. GSTN represents the POIs on graphs by min-

imizing the difference between conditional transmission

probability and empirical probability.

We adopt AUC and Logloss as evaluation metrics to evalu-

ate the mentioned models for CTR prediction. The embedding

size of hidden layers of all models is fixed to 64. For the

KBGNN, the consistency weight β is set to 0.01. The threshold

distance Δd when constructing the geographical POI graph is

set to 0.5 km. We summarize the performance of each model

by the average over three randomly initialized experiments.

B. Performance Comparison (RQ1)

a) Overall Comparison: We first train and evaluate the

proposed model and baselines on two full datasets. From the

results shown in table II, we can observe that:

• Superiority of geographical influences: It can be seen that

there is a clear advantage for models that leverage geograph-

ical information to assist recommendation (GeoIE, LSTPM,

GSTN and our model) over other baseline methods. These

results show that it is essential to consider the geographical

influences of different POIs when recommending the next-

to-visit POI. Specifically, GeoIE achieves the best perfor-

mance among all baselines, which shows the importance of

modeling locational similarities between POIs.

• Superiority of Graph Neural Networks: There is a com-

mon improvement made by GNN-based models (SR-GNN,

NGCF, LightGCN and KBGNN) compared with traditional

sequential-based models (DIN and DIEN). The results

demonstrate the strong capability of GNNs to capture the

high-order connectivity between nodes of different POIs.

While sequential-based methods are faced with challenges

brought by long sequences, GNN-based models function

well with the help of rich neighborhood similarities.

• Overall, our proposed KBGNN outperforms all the baseline

methods significantly on both datasets. To be specific, the

testing AUC is improved by more than 3.3% and 4.5%,

and the testing Logloss is improved by 23% and 24% on

Tokyo and NYC respectively over the best of the baselines.

KBGNN achieves the state-of-the-art performance, which
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Fig. 3. Performance comparison under cold-start settings. The data sparsity
of the train set is ranged from 20% of the data (one fold of all splits) to
100% (whole train set).

proves the effectiveness of combining two GNN modules to

recommend the next-to-visit POIs.

b) Cold-start Settings: Due to the issue of data spar-

sity, i.e. cold-start problem, which remains a tough chal-

lenge in real-world recommendations, we want to figure out

whether the proposed KBGNN can alleviate this effect with

the knowledge of the sequential and geographical semantic

representations. Towards this end, we divide the full train set

into five folds equally and take one to five folds each time,

corresponding to 20%, 40%, 60%, 80%, and full train set,

respectively. All models are trained on these subsets of the

train set to simulate the cold-start settings with varying degrees

of data sparsity. The results illustrated in Fig. 3 show that:

• The data sparsity problem has made the performance drop

severely for all methods. Surprisingly, KBGNN consistently

outperforms all baselines under different data sparsity set-

tings, which demonstrates the robustness and reliability of

our joint framework. Moreover, we can see that our model

achieves high enough performance when the training data is

extremely sparse (from 20% to 40%), which pushes away

the other baselines, sufficiently showing the superiority of

knowledge intra-communication between two modules.

• Generally, models that leverage geographical information

(GeoIE, LSTPM, and KBGNN) perform better on the

data with high sparsity. Maybe the reason is that when

the interaction information is partly missing, the model

could still fully utilize the locational feature of all POIs

to make a recommendation. This observation indicates that

geographical influence plays an essential role when faced

with challenges brought by data sparsity.
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Fig. 4. Performance of KBGNN on two datasets without sequential graph
(w/o Seq-graph) and without geographical graph (w/o Geo-graph).

C. Ablation and Hyper-parameter Study (RQ2)
To further investigate the contribution of each part of the

proposed KBGNN, we conduct the ablation study and hyper-

parameter study, which reveal the actual mechanism behind

the whole process when making recommendations.

a) Ablation Study of Two GNN Modules: The KBGNN

extracts semantic features from two different graphs. It is

necessary to figure out how the two GNN modules cooperate.

We conduct ablation studies against these two modules by

removing one of the GNN modules each time. To be specific,

we only train one of the modules via the supervised signals,

which means the constraints of consistency learning are also

removed. The results summarized in Fig. 4 reveal that:

• Overall, the results of KBGNN are consistently better than

all the other two variants, indicating that both the geo-

graphical and the sequential modules are effective for rec-

ommendation. It further verifies that geographical influence

and sequential influence are two of the key factors in POI

recommendation, which aligns with our expectations.

• Geographical influences are more essential for next POI

recommendation. Specifically, the model would suffer a

more severe performance decline when the geographical

module is removed (w/o Geo-graph), compared with the

model with the sequential module removed (w/o Seq-graph).

These results indicate that geographical influences play a

more vital role when deciding where to visit next.

b) Hyper-parameter Study of Two GNN Modules: Since

we propose to design a message passing graph neural network

for the geographical graph and a graph kernel neural network

for the sequential graph, it is necessary to study the sensitivity

of hyper-parameters within two modules. Specifically, we

conduct experiments with different numbers of GNN layers,

as well as different steps for random walk graph kernel. From

the results in Fig. 5, we observe that:

• The message passing neural network that encodes topo-

logical geographical influences plays an essential role in

recommendation. As shown in Fig. 5(a) and Fig. 5(b), we

can see that the model would degenerate into an attention

network when the number of GNN layers is set to 0 (i.e.,

without any GNNs), which proves the importance of the

message passing neural network for the geographical graph.

As the number of GNN layers increases, the performance

would first increase to the optimum before saturation, which

later decrease to some degree due to the over-smoothing.
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Fig. 5. Performance comparison w.r.t. different number of GNN layers and
random walk steps.
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Fig. 6. Performance comparison w.r.t. different settings of β.

• The step of random walk would also affect the performance

according to Fig. 5(c) and Fig. 5(d). As the random walk

step varies from 1 to 5, the AUC would first increase and

then decrease slowly. The results indicate that a proper ran-

dom walk step could assist graph kernels in better exploring

high-order sequential substructures of users’ behaviors.

c) Influence of Consistency Weight: Since we consider to

combine the consistency and recommendation loss in Eq. 13,

we further investigate the influence of the hyper-parameter β.

Specifically, we train the KBGNN when β varies from 0 to 5.

From the results shown in Fig. 6, it can be seen that:

• A larger β would encourage stronger consistency between

the two GNN modules, which typically leads to better model

performance. However, an extreme weight on consistency

(greater than 10−1) will weaken the model capability and

deteriorate the recommendation performance.

d) Influence of Consistency Loss: The consistency loss

Lcon is proposed to exchange knowledge between two GNN

modules. To further the superiority of the consistency learning

framework, we conduct experiments to compare the proposed

Lcon with other widely-used contrastive losses. To be specific,

we compare the model performance when the Lcon is replaced

with InfoNCE loss and mean squared error (MSE) loss re-
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Fig. 7. Performance comparison w.r.t. different types of Lcon.

(a) Sequential Module (b) Geographical Module

Fig. 8. Geographical distribution of the top-recommended next-to-visit POIs.
The trajectory of the user 24 is marked with green circles, and the top-scored
POIs by two modules are marked with blue and red circles, respectively.

spectively. The results are shown in Fig. 7. We summarize the

results and draw the following conclusions:

• The performance of KBGNN suffers from the decline signif-

icantly when there is no Lcon applied (w/o Lcon), compared

with the model with different forms of contrastive loss,

which suggests that the knowledge intra-communication

between two modules is beneficial for recommendation.

• Compared with InfoNCE and MSE, which emphasize on

encouraging the similarities between two graph representa-

tions in a hard way, our proposed consistency loss achieves

the best performance on both datasets. The results indicate

that soft alignment between similarity distributions from two

views can better encourage consistency learning.

D. Case Study (RQ3)

The two modules are built upon different GNN architec-

tures, which empower them to capture respective semantics

from two kinds of graphs. We conduct a case study on

Foursquare NYC dataset to intuitively illustrate the difference

between two modules. We randomly choose the user 24 to

visualize his visiting trajectory on the city map of New York as

well as the top-50 recommended POIs based on two semantic

representations. The results in Fig. 8 show the difference in

the geographical distribution of POIs recommended using two

modules. It can be observed that POIs recommended by the

sequential module in Fig. 8(a) tend to disperse around the

user’s historical visited POIs, while the POIs recommended

by the geographical module in Fig. 8(b) form a clear cluster

near the last visited POI of the selected user, which is a market

on Amsterdam Avenue. The difference demonstrates that se-

quential and geographical modules are capable of representing

(a)

Deli Sculpture Park

Theatre Hardware Store

Subway

(b)

(c)

Outdoors

Flea Market Bakery

Plaza

Hotel

(d)

Fig. 9. Visualization of graph filters from the sequential module on NYC.

different characteristics of a user’s visiting history, thus lever-

aging information from both modules becomes complementary

to make proper recommendations based on both influences.

Furthermore, to show the superiority of capturing high-

order sequential substructures via the graph kernel neural

network, here we visualize the learned graph filters from user

sequences in Fig. 9. Graph filters empower the sequential

module with the capability to capture various substructures

behind the user behavior sequences. We extract two typical

substructure patterns from the user’s historical sequence in

Fig. 9(b) and Fig. 9(d). The illustrated “pentagon” and “star”

structured substructures can be captured by graph filters shown

in Fig. 9(a) and Fig. 9(c) respectively. As user preferences may

exhibit different patterns, the various graph filters from the

sequential module have shown an excellent ability to explore

high-order sequential substructures via graph kernels.

VI. CONCLUSION

This paper presents a Kernel-Based Graph Neural Network

framework (KBGNN) for next POI recommendation, which

captures geographical and sequential influences from historical

behaviors to recommend next-to-visit POIs. To make better

use of the knowledge from both sides, KBGNN is built upon

two modules which encode a pair of complementary graphs

to extract geographical and sequential influences respectively.

We further introduce a self-supervised loss which encourages

the consistency between the two modules via exchanging

knowledge to mutually enhance each other. Experiments on

two datasets demonstrate the effectiveness of our KBGNN.
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