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Abstract—In this paper, we study semi-supervised graph clas-
sification, a fundamental problem in data mining and machine
learning. The problem is typically solved by learning graph
neural networks with pseudo-labeling or knowledge distillation
to incorporate both labeled and unlabeled graphs. However,
these methods usually either suffer from overconfident and
biased pseudo-labels or suboptimal distillation caused by the
insufficient use of unlabeled data. Inspired by the recent progress
of contrastive learning and dual learning, we propose DualGraph,
a principled framework to leverage unlabeled graphs more
effectively for semi-supervised graph classification. DualGraph
consists of a prediction module and a retrieval module to model
graphs G and their labels y from opposite while complementary
views (i.e., p(y|G) and p(G|y) respectively). The two modules
are jointly trained via posterior regularization, which encourages
their inter-module consistency on unlabeled graphs. Moreover,
we improve model training for each module with a contrastive
learning framework to encourage the intra-module consistency
on unlabeled data. Experimental results on a range of publicly
accessible datasets reveal the effectiveness of our DualGraph.

Index Terms—Graph Classification, Graph Neural Networks,
Contrastive learning, Semi-supervised Learning

I. INTRODUCTION

Graphs have demonstrated increasing significance for repre-

senting structured and relational data in a variety of domains.

Graph classification, as a fundamental problem in machine

learning, attempts to predict the property of the whole graph,

which has been extensively studied recently and has many

downstream applications. Some important applications include

predicting the quantum mechanical properties [1] and assess-

ing the functionality of chemical compounds [2] (e.g., whether

the compound is mutagen or non-mutagen).

In literature, researchers have proposed many machine

learning techniques for graph classification [3]–[6]. Among

them, graph neural networks (GNNs) [7]–[9] achieve the best

results. The key idea of GNNs is to learn discriminative

graph representations using neighbor-aware message passing

algorithms [10]–[13]. To be particular, each node receives in-

formation from all of its neighbors, which is then aggregated to

incrementally update the node representation. At last, a readout

function is used to combine all of the node representations into

a graph-level representation. In this manner, the learned graph

representation can reflect the structural topology of the graph

for classification.

*Equal contribution with order determined by flipping a coin. This work
was done when Xiao Luo interned in Alibaba Group.

†Corresponding authors.

Despite their high performance, current GNN methods often

need a significant quantity of labeled data for training (e.g.,

molecules with known characteristics in chemical scenar-

ios). Nevertheless, annotated labels are often prohibitively

expensive [9]. For instance, labels are often generated using

the costly Density Functional Theory (DFT) calculations or

complicated experiments in chemical activities. Also, graph

annotation in some specific domains highly relies on domain

experts. Consequently, the labeled samples usually take a

tiny portion of the total training data, severely limiting the

performance of GNN models. In practice, there usually exist a

wealth of available unlabeled graphs. Although their properties

(i.e., labels) are unknown, their structures include information

that may help enhance the GNN-based encoders if these

unlabeled graphs can be properly used. As a consequence,

in this paper, we investigate the problem of semi-supervised

graph classification, which leverages both labeled data and

unlabeled data to predict graph properties.

Indeed, a few semi-supervised methods have been proposed

for graph classification, which combine GNNs with semi-

supervised learning techniques. In general, these methods can

be divided into two categories, i.e., pseudo-labeling methods

[14] and knowledge distillation methods [1], [15]. Pseudo-

labeling methods repeatedly annotate unlabeled graphs, and

treat graphs with high-confidence predictions as additional

training data to improve model training. For example, SEAL-

AI [14] annotates the unlabeled data with a GNN classifier

and then utilizes the most confident data to improve the other

classifier with pseudo-labels. Knowledge distillation methods

usually employ a teacher-student architecture [16], where the

teacher model usually takes the lead for learning discriminative

graph representations, the student model is fine-tuned for the

downstream task. For instance, InfoGraph [15] consists of

two encoders with the same architecture. Two encoders target

different objectives that are trained by maximizing the mutual

information of their representations.

However, the performance of existing semi-supervised

graph classification methods remains unsatisfactory due to

the following limitations. (1) Biased pseudo-labels. While

the pseudo-labeling methods annotate unlabeled samples as

extra training data, they are prone to generating overconfident

and skewed findings (e.g., incorrect pseudo-labels [14]) for

unlabeled data, especially when the amount of labeled data

is often scarce. (2) Insufficient use of unlabeled data. In the

teacher-student framework, the student model is usually fine-
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Prediction Module Retrieval Module

Label: World-news

Prediction Ranked List

Label: World-news

Fig. 1: Illustration of the two modules in DualGraph. Left: The

prediction module predicts the label distribution of a given

graph. Right: The retrieval module focuses on the dual task,

which aims to rank the graphs of each given label from a

ranked list by computing matching scores.

tuned in a supervised manner [1], where the unlabeled data

is not fully explored. This makes it hard to improve models

when labeled data is limited in practice. Therefore, we expect

an approach which is able to leverage unlabeled data more

efficiently and produce more reliable pseudo-labels for semi-

supervised graph classification.

Inspired by the recent success of techniques on contrastive

learning [17]–[19] and dual learning [20]–[23], in this paper

we propose a principled framework called the DualGraph for

semi-supervised graph classification. The key to graph classifi-

cation is to understand the relationship between graphs G and

their labels y. To better model such relationships, DualGraph

adopts a prediction module and a retrieval module, which are

motivated by two complementary perspectives. The prediction

module predicts the labels of given graphs and thus models

the distribution p(y|G), while the retrieval module retrieves

graphs of each given label and thereby models the distribution

p(G|y) as shown in Figure 1. In order to train both modules

jointly and let them mutually enhance each other, we propose

to maximize their inter-module consistency and intra-module

consistency on unlabeled graphs. For the inter-module consis-

tency, we leverage posterior regularization [24] and encourage

both modules to derive close joint distributions on graphs

and labels. In this way, both modules can mutually correct

and further produce more reliable pseudo-labels on unlabeled

graphs to benefit each other. For the intra-module consistency,

we leverage contrastive learning techniques, which ensure that

each single module gives consistent outputs on each unlabeled

graph and its corresponding augmented graph. Specifically,

we force the predicted labels from the prediction module to

be similar on original and augmented graphs, and meanwhile

the InfoNCE loss [18], [25] is used to ensure the consistency

of the matching scores from the retrieval module on both

of the original and augmented graphs. With this contrastive

learning framework on unlabeled graphs, DualGraph is able

to leverage unlabeled graphs more effectively compared with

existing methods. We further propose an EM-styled algorithm

for training DualGraph, and the algorithm alternates between

an E-step and an M-step. In the E-step, we fix the prediction

module and update the retrieval module, and in the M-step,

the retrieval module is fixed to update the prediction module.

We conduct extensive experiments on various widely-used

datasets to evaluate the DualGraph. Experimental results show

that DualGraph outperforms a wide range of state-of-the-art

methods under different settings. In summary, our primary

contributions are as follows:

• We propose a novel framework for semi-supervised graph

classification, consisting of a prediction module and a re-

trieval module to encourage the consistency on unlabeled

data and overcome the unreliability of pseudo-labels and

scarcity of labeled data.

• We leverage dual learning with posterior regularization

to encourage the inter-module consistency and take ad-

vantage of contrastive learning to encourage the intra-

module consistency. Furthermore, an EM-styled algo-

rithm is proposed to alternatively optimize both modules

for consistency enhancement.

• We conduct extensive experiments on a variety of pub-

licly available datasets to evaluate the DualGraph. Exper-

imental results and a case study validate the efficacy of

the proposed framework under different settings.

II. RELATED WORK

A. Semi-supervised Graph Classification

Graph Classification. Predicting the properties of graphs is

a fundamental issue in a variety of areas, including chemistry

and biology [1], [2]. Traditional methods such as graph kernels

[26]–[28], which decompose graphs into substructures and

use kernel functions to capture the graph similarity, have

achieved great success. However, these methods suffer from

poor scalability owing to the ineffective handcrafted features.

Inspired by the progress of graph neural networks (GNNs),

researchers have discovered their potential in a wide range

of fields [11]–[13]. Variants of GNNs have been proposed

for this problem [15], [29], [30]. Among these methods, the

node representations are propagated and updated using the

representations of their neighbors, following the scheme of

message passing. Finally, the graph-level representations can

be obtained via graph pooling functions [5], [6] for down-

stream applications. Nonetheless, these approaches usually

require a large amount of labeled data for training. Also,

annotating labels is often too expensive, rendering them unsuit-

able for real-world applications. To tackle this issue, our work

studies semi-supervised graph classification, fully leveraging

the unlabeled data and overcoming the labeled data scarcity.

Semi-supervised learning. Our work is related to semi-

supervised learning. Pseudo-labeling is an early technique

in this vein. It adopts a trained classifier to predict the

label distributions of the unlabeled samples and expand the

training set with well-classified data. For instance, the entropy
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minimization strategy [31] enforces the classifier to make pre-

dictions with low entropy on unlabeled data. Another common

technique of semi-supervised learning is consistency learning

[32]–[36]. These approaches assume that the model should

output consistency predictions when fed perturbation to input

samples. Among these, the temporal ensembling model [32],

for example, utilizes an exponential moving average strategy

where a mean teacher model [37] averages the parameters of

networks to provide a stable prediction.

Furthermore, a few researches for semi-supervised graph

classification [1], [14], [15], [19], [38] have been proposed.

These works are often either based on pseudo-labeling or

knowledge distillation. However, they may easily suffer from

biased pseudo-labels and the suboptimal distillation resulting

from insufficient use of unlabeled data. Compared with these

works, our proposed DualGraph benefits from dual learning

and contrastive learning, consisting of a prediction module

and a retrieval module to encourage the inter-module and intra-

module consistency on unlabeled graphs, and hence overcomes

the unreliability of pseudo-labels and scarcity of labeled data.

B. Contrastive Learning for Graph Neural Networks

Contrastive learning (CL) is based on the principle of utiliz-

ing self-supervised information between contrastive pairs pro-

duced via random perturbation of the original data [18], [25].

Recent efforts have been made to apply CL to GNNs [15],

[39]–[43]. As a pioneering effort, DGI [39] augments the

original graph by simply shuffling node features and then

offers a contrastive objective of maximizing the mutual in-

formation between node representations and the global graph

representation. InfoGraph [15] blends supervised learning and

unsupervised learning in the semi-supervised setting by em-

ploying a mean teacher approach [37]. This method consists

of two encoders that are trained by maximizing the mutual

information of their representations. Zhu et al. [43] developed

adaptive graph augmentations to incorporate different priors of

the topological and semantic property of graphs. Despite the

advance of graph CL techniques, the problem of incorporating

graph contrastive learning into the semi-supervised scenario

has been critical and less unexplored. In this paper, we propose

a novel contrastive learning framework to encourage the intra-

module consistency in a semi-supervised way, while existing

works fail to adapt to this setting.

C. Dual Learning

Another category of related work is dual learning [20]–

[23], [44], which can be generalized to the concept of simul-

taneously learning the primal and dual modules to mutually

enhance each other. For instance, English-French translation

with French-English translation [20], code generation with

code summarization [45], visual question answering with

visual question generation [23] can all be combined together

to exploit the duality of two tasks. Our proposed DualGraph

extends the idea of dual learning into the graph-structured

data. In our work, predicting the label of given graphs and

retrieving the graphs of each given label are treated as dual

tasks which can be enhanced collaboratively. In contrast to

their supervised settings, we incorporate dual learning into

semi-supervised scenarios and propose a novel framework to

effectively alleviate the biased pseudo-labels. To the best of

our knowledge, we are the first to perform dual learning for

the graph classification task.

III. PROBLEM DEFINITION

In this section, we will provide formal definitions of termi-

nologies in this paper for the sake of clarity. Then we formalize

the problem definition.

Definition 1: Graph. Denote a graph as G = (V,E,X),
where V represents the vertex set and E represents the edge

set. We use xv to denote the attribute vector of the node v and

X ∈ R|V |×d represents the node attribute matrix, and d is the

dimension of the attribute vector.

Semi-supervised graph classification is a fundamental prob-

lem in machine learning and data mining that has various

applications, including predicting the quantum mechanical

properties of molecules and analyzing the functionality of

chemical compounds. Given labeled and unlabeled graphs,

semi-supervised graph classification attempts to predict the

label distributions of unlabeled graphs. Formally, we define

the semi-supervised graph classification as follows:

Definition 2: Semi-supervised Graph Classification. Con-

sider a set of graphs G = {GL,GU}, where labeled graphs

are GL =
{
G1, · · · , G|GL|

}
and unlabeled graphs are GU ={

G|GL|+1, · · · , G|GL|+|GU |
}

. Let YL = {y1, · · · , y|GL|} rep-

resent the labels corresponding to GL, and T = {(Gi, yi)}|
GL|
i=1

denote the graph-label pair. Semi-supervised graph classifica-

tion aims to learn a multi-class classification model that can

annotate labels to unlabeled graphs GU .

IV. METHODOLOGY

Next, we introduce our proposed framework DualGraph.

A. Framework Overview

The paper proposes the DualGraph for semi-supervised

graph classification based on dual contrastive learning. Ex-

isting methods typically learn graph neural networks with

pseudo-labeling or knowledge distillation. However, these

methods usually either suffer from biased pseudo-labels or

the suboptimal distillation resulting from the insufficient use

of unlabeled data. As a result, their performance is not yet

satisfactory when the labeled data is very limited.

In order to make better use of unlabeled graphs and generate

more reliable pseudo-labels, DualGraph leverages the idea

of dual learning and contrastive learning. More specifically,

DualGraph has a prediction module to predict graph labels

and a retrieval module to retrieve graphs of a given label. The

two modules are trained by maximizing their inter-module and

intra-module consistency on unlabeled graphs. To encourage

the inter-module consistency, we leverage dual learning with

posterior regularization to let both modules reach agreement

on the categories of unlabeled graphs. This further allows

both modules to provide cleaner pseudo-labels of unlabeled

701

Authorized licensed use limited to: Peking University. Downloaded on October 11,2022 at 03:35:38 UTC from IEEE Xplore.  Restrictions apply. 



Labeled Graphs Unlabeled Graphs

Supervision Self-Supervision Annotation

Add 

Prediction Module

Retrieval Module

Fig. 2: A diagram of our framework. DualGraph consists

of a prediction module and a retrieval module, which are

trained with both supervision and self-supervision in a semi-

supervised environment. Moreover, they collaborate to gener-

ate newly labeled data, which is then utilized to enhance both

modules as supervised signals.

graphs to benefit each other. For the intra-module consistency,

we encourage each module to give similar output on an

unlabeled graph and its augmented graphs. In this way, each

module is able to leverage unlabeled graphs more sufficiently

to regularize the GNN-based encoders.

Formally, our framework is composed of a prediction mod-

ule Pθ and a retrieval module Qφ, in which θ and φ are

the model parameters. Here the prediction module attempts

to predict the label for a given labeled graph. Therefore, it

models the probability pθ(y|G) for graph-label pair (G, y). By

contrast, the retrieval module retrieves relevant graphs with

the given label y by producing the probability qφ(G|y) for

a graph-label pair (G, y). The overall objective function is

provided below:

L = LP + LQ + LC (1)

Our objective function contains three terms in total. In LP

and LQ, we utilize both labeled graphs and unlabeled graphs to

train the prediction module and the retrieval module, respec-

tively. As for the collaborative objective LC , we make full

use of two modules to collaboratively select highly confident

unlabeled graphs as additional labeled graphs for supervised

training. An illustration of our DualGraph is shown in Figure

2 and we will go through the specifics of each component.

B. GNN-based Encoder

Graph neural networks (GNNs) [10], [29], [46] have re-

cently emerged as promising approaches to learn the repre-

sentation of graph-structured data. The embedding vector for

node v at the k-th layer is denoted by hk
v . Prevailing methods

for learning graph representations are based on graph neural

networks with neural message passing mechanisms. To be

more specific, for each node v ∈ V , firstly the embedding

vectors from the neighbors of v at layer k− 1 are aggregated.

The node representation hk
v is then computed iteratively by

combining the embedding of v in the last layer with the

aggregated neighbor embedding to the embedding of v of the

current layer. Formally, the embedding of node v in the k-th

layer is calculated as follows:

h
(k)
N(v) = A(k)

θe

({
h(k−1)
u , ∀u ∈ N(v)

})
(2)

h(k)
v = C(k)

θe

(
h(k−1)
v ,h

(k)
N(v)

)
(3)

where N(v) denotes the neighbors of v. Here A(k)
θe

and C(k)
θe

denote the aggregation and combination functions in the k-th

layer, respectively. Finally, the graph-level representation can

be attained by aggregating all node representations in the K-th

layer with a readout function. Formally,

fθe (G) = READOUT
({

hK
v

}
v∈V

)
(4)

in which fθe (G) is the graph-level representation, θe is the

parameter of encoder, and READOUT represents averaging

or a more sophisticated graph-level pooling function [5], [6],

[30]. In this paper, we follow InfoGraph [15] and adopt GIN

[29] to learn node representation due to its powerful expression

ability. For conciseness, the sum operation is used to produce

the graph-level representation.

C. Semi-supervised Contrastive Prediction Module

In our framework, the prediction module Pθ focuses on

the primary task of predicting graph labels. We begin by

using the GNN-based encoder mentioned earlier to get the

graph embedding z for each graph G. After that, a multi-layer

perception (MLP) classifier Hθh(·) is used to predict the labels

for the labeled graphs. Formally,

z = fθe(G) (5)

pθ(y|G) = Hθh(z) = Hθh(fθe(G)) (6)

Here θ = {θe, θh}, where θe represents parameters of the en-

coder and θh represents parameters of the MLP classifier. The

prediction module consists of a supervised prediction objective

(SP) and a self-supervised prediction objective (SSP). As for

SP, given a graph G and its relation label y, the prediction

module seeks to maximize the probability of y for graph

G. The prediction module is trained using the labeled data

provided, with the objective of minimizing the cross-entropy

loss function specified below:

LSP = E(G,y)∈T [− log pθ(y | G)] (7)

As discussed in the introduction, when labeled data is

limited, the supervised loss can hardly achieve satisfactory

performance. Inspired by the recent graph contrastive learning

methods [19], [43], we seek to boost the performance via

contrastive learning. However, existing contrastive learning

methods usually target the representation in an unsupervised

setting, which depend on a large number of pairwise repre-

sentation comparison and thus do not fit the semi-supervised

scenario. Here in SSP, we describe an alternative where we

enforce consistency of predicted label for original and aug-

mented graphs in Figure 3. We first produce the different views
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Fig. 3: Illustration of self-supervised learning for the prediction

module (SSP). We first assign soft assignments to original

graphs and their augmented graphs. The soft assignments are

produced using a soft similarity classifier that measures the

similarity to a mini-batch of labeled samples. The sharpening

operation aims to produce the target prediction with a high

degree of purity. Finally, we perform consistency learning

by comparing the prediction of one view to the sharpened

prediction of the other view.

for unlabeled graphs and then generate the label distributions

non-parametrically by comparing the representations of the

graph views to those of a batch of labeled graphs. Lastly, we

maximize the consistency of label distributions for different

views with a well-designed sharpen operation. Our method

can be interpreted as a way of contrasting between original

and augmented graphs by comparing their predicted label

distributions instead of their features, which ensures that

different views of the same unlabeled instance are assigned

similar pseudo-labels [47] and helps produce discriminative

representations to improve the module performance [17].

More precisely, we first perform graph augmentation to

generate another graph view from the original graphs. Specif-

ically, we adopt four typical types of basic graph alteration

procedures [19], [48] as shown in Figure 4 as follows:

• Edge deletion: We randomly delete several edges from

the graph following an i.i.d uniform distribution. It is

premised on the assumption that semantic information is

resistant to variations in edge connection patterns.

• Node deletion: We randomly pick some nodes and delete

them from the graph, along with all connected edges. The

dropping probability of each node also follows a default

i.i.d. uniform distribution.

• Attribute masking: We randomly sample certain nodes

and then randomly mask some of their attributes. It is

based on the premise that the graph representation is

likely to be robust with the partial vertex attributes.

• Subgraph: We use a random walk to sample a subgraph

from the graph. It is predicated on the premise that the

semantics of the graph can be maintained to a large extent

in its local structure.

In our framework, we generate an augmented graph G′
j for

Edge deletion

Node deletion

Subgraph

Attribute masking

Fig. 4: Illustration of four types of basic graph alteration

operations. We use four distinct types of fundamental graph

alteration procedures to construct positive pairs of graphs.

each unlabeled graph Gj by randomly selecting one of the four

augmentation procedures. Then we get their representations

by GNN-based encoder respectively, i.e., zj = fθe(Gj) and

z′j = fθe(G
′
j). Here we seek to enhance the consistency of

label distributions for two views with the help of labeled data.

Since the classifier Hθh(·) may be inaccurate due to overfitting

in the absence of adequate labeled data, we use a non-

parametrically classifier by comparing the distance between

unlabeled graph and labeled graph. To begin, we define a soft

similarity classifier based on distance as follows:

π (zj , L) =
∑

(G,y)∈T

(
d (zj , fθe(G))∑

(G,y)∈T d (zj , fθe(G))

)
y (8)

where y is the one-hot ground truth label vector of graph

G. In our work, d(zi, zj) is exponential temperature-scaled

cosine exp(zTi zj/‖zi‖‖zj‖τ) following [18] and τ is set

to 0.5 indicated in [18]. In practice, we sample b labeled

graphs from graph-label pair set T as support set B. The soft

assignments for unlabeled graph Gj and its augmentation G′
j

are formulated as:

pj = π (zj , B) =
∑

(G,y)∈B

(
d (zj , fθe(G))∑

(G,y)∈B d (zj , fθe(G))

)
y

(9)

p′j = π
(
z′j , B

)
=

∑
(G,y)∈B

(
d
(
z′j , fθe(G)

)
∑

(G,y)∈B d
(
z′j , fθe(G)

)
)
y

(10)

Our soft prediction is more reliable since it makes use of

the labeled graph non-parametrically instead of the unreliable

classifier. Inspired by [49], we refine the soft predictions to

get a target prediction by a sharpening function ρ:

[ρ (pj)]c :=
[pj ]

1/T
c∑C

c=1 [pj ]
1/T
c

, c = 1, . . . , C (11)

where T is a temperature parameter set to 0.5 following [49]

and C is the number of classes. The sharpening operation can

produce the strengthened target distribution since it increases

the purity of the prediction and places a greater focus on data

points with a confident prediction.
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Finally, we optimize the prediction by learning from their

high confidence assignment (i.e., target distribution). To be

more precise, we train our model by matching the soft assign-

ment to the target distribution. Since we have two perspectives

of predictions for each unlabeled graph, we compare the

prediction from one view with the sharpened prediction from

the other view. Formally,

LSSP = EGj∈GU [H
(
ρ (pj) , p

′
j

)
+H

(
ρ
(
p′j
)
, pj

)
] (12)

Considering that sharpening operations can produce target

distributions close to one-hot format, we use the cross-entropy

loss term for H . While the KL-divergence loss term may also

be adopted, we find worse performance. Our self-supervised

loss makes use of the labeled data to generate predictions,

which can be viewed as a hybrid of pseudo-labeling [50] and

consistency learning [33]. Unlike traditional pseudo-labeling

techniques [50], [51] which maintain artificial labels whose

largest class probability is above a preset threshold, we use a

sharpening operation [49], retaining the maximum amount of

information for the unlabeled data. Consistency learning [32],

[33] makes use of unlabeled data by making the assumption

that when perturbed views of the same sample are fed into

the model, the model should output similar predictions. We

perform consistency learning by comparing the prediction of

one view to the sharpened prediction of the other view, which

helps generate highly confident and transformation-invariant

predictions. The final objective function for the prediction

module is formulated as:

LP = LSP + LSSP (13)

D. Semi-supervised Contrastive Retrieval Module

The retrieval module Qφ aims to select a list of graphs with

a given label. This is similar to retrieving a set of samples

from a database given a query in the field of information.

In our case, “sample” and “query” refer to graph and label,

respectively. The retrieval task is capable of providing a com-

plementary view for the prediction module (i.e., p(y|G) and

p(G|y) respectively), which may assist in obtaining accurate

pseudo labels for unlabeled data to enhance the prediction

module. In this part, we train a retrieval module Qφ to

approximate p(G|y).
Recent learning-to-rank models [52], [53] usually calcu-

late the joint probability qφ(G, y), which is proportional to

qφ(G|y) when the probability of observing label q(y) is fixed.

Similar to the prediction module, our retrieval module also

includes a supervised retrieval objective (SR) and a self-

supervised retrieval objective (SSR). As for SR, we use the

labeled graphs by minimizing the following objective function:

LSR = E(G,y)∈T [− log qφ(Q, y)] (14)

However, it is intractable to directly optimize LSR, since

the condition
∑

(G,y)∈T qφ(Q, y) requires traveling over all

graph-label pairs in L to calculate the partition function. As a

consequence, we follow the existing learning-to-rank models

GNN-based 
Encoder 

Label Embeddings

GNN-based 
Encoder 

GNN-based 
Encoder
GNN-based 
Encoder

Matching Score

Matching Score 

Ranked List 
for Label 

Graph
Representation 

Graph
Representation 

Unlabeled Graph 

Augmented Graph 

Fig. 5: Illustration of the self-supervised learning for the

retrieval module. We first produce matching scores for original

graphs and their augmented graphs by taking the inner product

of label embeddings and graph embeddings. Then for a mini-

batch, the InfoNCE loss is adopted to ensure the matching

scores of two views are consistent.

[52], [53], and let qφ(Q, y) output a score to estimate the

matching degree of the graph-label pair (Q, y) instead of

enforcing qφ(Q, y) as a valid distribution. In our framework,

we adopt the pointwise method [54], [55] to train the retrieval

models with labeled data, which posits that each graph-label

pair is assigned a score that measures their matching degree.

Thus, the scores are used to determine the rank of each sample

given a label. Specifically, the score is regarded as a binary

supervised signal to indicate whether the graph G matches a

label y. Each labeled graph is paired up with all labels, with

a binary signal to indicate whether they are matching. In our

framework, we start with a GNN-based encoder fφe
(·) to get

the embedding vector for each graph G:

w = fφe(G) (15)

Then each label y is mapped to its label embedding y which

has the same dimension as w. We adopt a learning-to-rank

layer, which takes the inner product qφ(G|y) = σ(wTy) as the

matching score. Here σ(·) is the sigmoid activation function

and y is the embeddings for label y. Then the loss objective

is formulated as:

E(G,y)∈T
[
– log σ

(
w�y

)]
+E(G,y′)/∈T

[
– log

(
1− σ

(
w�y′))]

(16)

where (G, y′) pairs up the graph G with incorrect label y′,
w is the graph embedding for G. As for SSR in Figure 5,

similarly, we expect that the matching scores of the original

graph and its augmentation are consistent. Formally, after

getting the embedding wj and w′
j of two graph views, we

get the matching score vector as formulated:

sj = σ(wT
j Y), s′j = σ(w′T

j Y) (17)

where Y = [y1, . . . ,yC ] and sj denotes the matching score

for all labels. Then for a mini-batch B, we adopt the InfoNCE

704

Authorized licensed use limited to: Peking University. Downloaded on October 11,2022 at 03:35:38 UTC from IEEE Xplore.  Restrictions apply. 



loss [18] to enforce the matching scores of two views sj and

s′j are consistent. Formally,

LSSR = EGj∈GU−log
exp

(
sTj s

′
j/τ

)
exp

(
sTj s

′
j/τ

)
+

∑
Gj′∈B exp

(
sTj sj′/τ

)
(18)

where τ is the shared temperature parameter set to 0.5. The

final objective function for the retrieval module is

LR = LSR + LSSR (19)

E. Collaborative Interaction Module

We have introduced the formulation of prediction and re-

trieval modules and how they are trained separately in a semi-

supervised way by minimizing the objective function. Pseudo-

labeling is a common technique that aims to fully exploit

well-classified samples by selecting unlabeled data with high

confidence of prediction and then treating them as labeled data

[56], which boosts the model performance in semi-supervised

learning. However, a single module may overfit and then

produce overconfident results. When the uncertain samples

have a wrong pseudo label during self-labeling, the model

gradually becomes overconfident in its later prediction since

the noise from misclassification accumulates and degrades

the performance [57]. To overcome this drawback, in this

section, we want to combine the advantages of two modules

via collaborative interaction by encouraging the inter-module

consistency on unlabeled data.

Note that the retrieval module is also able to annotate

unlabeled data as follows:

qφ(y|G) =
qφ(G|y)qφ(y)

qφ(G)
(20)

Formally, we minimize the KL divergence of prediction

distribution from two modules:

LC = EG∈GUKL (qφ(y | G)‖pθ(y | G)) (21)

In this way, two modules are trained jointly and exchange

their guesses for unlabeled data, which produces consistent and

confident results. Following the framework of Posterior Reg-

ularization [24] which imposes constraints from the desired

distribution on probabilistic distribution, we formulate the

alternation optimization akin to the form of EM algorithm by

regrading qφ(y) as the desired distribution. To be specific, we

approach the optimization process by sampling from unlabeled

data and accepting the confident samples that both modules

agree on. Next, we introduce the details of the EM algorithm.

E step. In the E-step, we update the retrieval module Qφ

with the fixed prediction module Pθ. However, directly min-

imizing KL divergence is very tough. Following the weak-

sleep algorithm [58], we minimize the reversed KL divergence

KL (pθ(y | G)‖qφ(y | G)), which shares the same optimal

solution as in the KL divergence. By integrating LQ and LC

as the overall loss and then taking the derivative with respect

to the module parameter φ, we obtain the gradient for φ in

the following formulation:

∇φL = ∇φLR + EG∈GU ,y∼pθ(y|G) [∇φ– log qφ(y | G)] (22)

where the gradient comes additional unlabeled data annotated

by the retrieval module Qφ, apart from the supervised loss and

self-supervised loss. Note that

Eqφ(y|G) [∇θ log qφ(y | G)] = 0 (23)

Since we expect both two modules to collaboratively anno-

tate unlabeled data, we modify the gradient as follows:

∇φL = ∇φLR+EG∈GU ,y∼(pθ(y|G)+qφ(y|G)) [∇φ– log qφ(y | G)]
(24)

Even though the gradient remains the same as in Eq.22,

the new gradient leverages both modules to collaboratively

produce confident results for unlabeled data, which releases the

noise in a single module and therefore boosts the performance.

Note that without any label information, we assume a uniform

distribution for unlabeled graph qφ(G). Consequently, we can

replace qφ(y|G) with qφ(G, y). Similarly, directly calculating

qφ(G, y) is infeasible. As a result, we use the pointwise loss

in Eq.16 instead.

M step. In the M-step, we update the prediction module Pθ

with the fixed retrieval module Qφ. Similarly, the gradient for

θ can be calculated as follows:

∇θL = ∇θLP+EG∈GU ,y∼(qφ(y|G)+pθ(y|G)) [∇θ– log pθ(y | G)]
(25)

In summary, two modules are updated alternatively by min-

imizing the overall loss L with regard to φ and θ, which corre-

sponds to E step and M step, respectively. During each step, we

incorporate confident unlabeled data for supervised learning

besides self-supervised learning. To be specific, we sample

confidence annotated data from unlabeled data at both E and M

steps. Following the Eq.24 and Eq.25, the sampling is from the

distribution G ∈ LU , y ∼ (qφ(y | G) + pθ(y | G)), which is

equivalent to the distribution (G, y) ∼ (qφ(G, y) + pθ(G, y)).
From the distribution, we adopt a hybrid strategy where

a sample will be selected as confident samples only if it

is considered credible by both the prediction and retrieval

module. In the prediction module, we first assume a uniform

distribution for unlabeled graph p(G). Then given an unlabeled

graph G and its predicted label y, we rank these samples based

on the probability of predicting y and take top-m samples

from the ranked list as the credible samples. As for retrieval

module, sampling comes from the distribution qφ(G, y) and

we have qφ(G, y) = qφ(G|y)q(y) from Bayes Rule. For

the first term, given a label y, the retrieval module traverses

through each unlabeled sample G and produces a matching

score qφ(Q, y) ∝ qφ(G|y), which results in a ranked list for

each label y. For the second term, q(y) can be considered

as prior knowledge that constrains the label distribution for

the retrieved samples. Practically, we assign q(y) with label

distribution from the labeled dataset. For each label, we select
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Algorithm 1 Training Algorithm of DualGraph

Input: Labeled data GL, unlabeled data GU .

Parameter: Prediction module parameter θ and retrieval

module parameter φ
Output: Jointly learned pθ (y|G)

1: Initialize model parameter θ and φ on data GL and GU

with Eq.13 and Eq.19.

2: while not convergence do
3: Annotate unlabeled data GU from the distribution

(G, y) ∼ (qφ(G, y) + pθ(G, y))
4: // E-step

5: Optimize model parameter φ with Eq.24.

6: // M-step

7: Optimize model parameter θ with Eq.25.

8: end while

my = mq(y) samples. To be specific, the top my samples

from the ranked list for label y are selected as credible

samples. Finally, following the hybrid strategy, after both

modules collect a set of credible samples, the intersection of

them is regarded as the final set.

The training algorithm for DualGraph is summarized in

Algorithm 1. The whole algorithm processes in an iterative

manner. In each iteration, we produce an additional set of

annotated samples from the unlabeled set with both prediction

and retrieval modules collaboratively. The iterative process

ends when the model convergences or all of the unlabeled

data is exhausted.

V. EXPERIMENTS

In this section, we first introduce the experimental settings,

then conduct extensive experiments to validate the effective-

ness of our proposed method. We aim to answer the following

research questions:

• RQ1: Compared with state-of-the-art models, does our

model DualGraph achieve better performance for semi-

supervised graph classification?

• RQ2: How do the different components of the model

contribute to the performance?

• RQ3: How do the model hyper-parameters in DualGraph

impact the final performance?

• RQ4: How do the different encoder architectures and

types of augmentation impact the performance?

• RQ5: Is there any supplementary analysis that can vali-

date the superiority of DualGraph?

A. Experimental Settings

1) Datasets: We use eight well-known benchmark datasets1

following [15], [19], [48], To be specific, there are three

bioinformatics datasets (i.e., PROTEINS [59], MSRC21 [60]

and DD [61]), four social network datasets (i.e., IMDB-B,

IMDB-M, REDDIT-B, REDDIT-M-5k [62]) and one scientific

1https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets

TABLE I: Details of dataset statistics.

Datasets Category Graph Size Avg.Nodes Avg.Edges

PROTEINS Bioinformatics 1113 39.06 72.82
MSRC21 Bioinformatics 563 77.52 198.32
DD Bioinformatics 1178 284.32 715.66
IMDB-B Social Networks 1000 19.77 96.53
IMDB-M Social Networks 1500 13.00 65.94
REDDIT-B Social Networks 2000 429.63 497.75
REDDIT-M-5k Social Networks 4999 508.52 594.87
COLLAB Scientific Collaboration 5000 74.49 2457.78

collaboration dataset (i.e., COLLAB [62]). For bioinformatics

datasets, we seek to categorize proteins into enzymes and

non-enzymes. For IMDB-B and IMDB-M, they are movie-

collaboration datasets which contain actors/actresses ego-

networks and we aim to predict their genres. For REDDIT-

B and REDDIT-M-5k, they consist of user ego-networks and

the task is to predict each user’s community. For COLLAB,

we aim to predict each researcher’s subfield of Physics based

on their collaboration ego-networks. When node attributes are

not available, all-ones encoding is used as input node features

in the datasets following Sun et.al [15]. The detailed statistics

are summarized in Table I.

2) Train/valid/test splits: To effectively apply the datasets

to our semi-supervised scenarios, it is essential to divide the

datasets in a reasonable way. Specifically, we first split graphs

in each dataset into three groups: the training set, validation

set, and test set with the ratio of 7:1:2. We further sample 2/7

of the graphs in the training set as the labeled set and utilized

the remaining graphs as the unlabeled set. In our experiment,

50% of the labeled set is available for training as default to

show the superiority of our approach in the semi-supervised

scenario with limited labeled data. Also, we will vary the

amounts of the labeled set in the subsequent experiments. The

validation set is for hyper-parameter selection and we report

the performance on the test set.

3) Baselines: The proposed DualGraph is compared to the

following approaches, which fall into three categories: tradi-

tional graph approaches, traditional semi-supervised learning

approaches and graph-specific semi-supervised learning ap-

proaches. The first category includes Graphlet Kernel [27],

Shortest Path Kernel (SP) [26], Weisfeiler-Lehman Kernel

(WL) [28], Deep Graph Kernel (DG) [62], Sub2Vec [63]

and Graph2Vec [64]. Traditional semi-supervised approaches

include EntMin [31], Π-Model [37], Mean-Teacher [37],

VAT [35]. The last category includes InfoGraph [15],

ASGN [1], JOAO [65] and CuCo [48]. To provide rigorous

comparative analysis, we use the same underlying architecture

(i.e., GIN [29]) when comparing traditional semi-supervised

learning methods. As for JOAO and CuCo, we first get graph-

level representation by graph contrastive learning and then

train a multi-layer perception (MLP) classifier by labeled data

as suggested in their papers [19], [48]. The parameters for all

baseline methods are initialized as in the corresponding papers,

and then were carefully tuned to achieve optimal performance.
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TABLE II: Summary of performance on eight benchmark graph classification datasets in terms of accuracy in percentage

with standard deviations over five runs. The best performance is highlighted in boldface. Our proposed method DualGraph

outperforms all the baseline methods in most cases.

Methods PROTEINS MSRC21 DD IMDB-B IMDB-M REDDIT-B REDDIT-M-5k COLLAB

Graphlet Kernel 64.8± 2.3 24.2± 2.8 53.2± 1.4 54.5± 1.7 32.3± 2.4 57.8± 2.7 34.3± 0.8 55.7± 1.1
SP Kernel 65.2± 2.6 29.7± 3.1 55.3± 2.1 52.0± 1.6 37.7± 1.9 68.3± 3.7 30.4± 1.3 64.1± 1.3
WL Kernel 63.5± 1.6 30.7± 2.9 57.3± 1.2 58.1± 2.3 33.3± 1.4 61.8± 1.3 37.0± 0.9 62.9± 0.7
DG Kernel 64.4± 1.7 33.1± 2.7 60.5± 0.8 55.6± 2.2 34.6± 1.3 66.2± 2.4 36.5± 2.4 61.3± 1.2
Sub2Vec 52.7± 4.5 18.3± 6.2 46.4± 3.2 44.9± 3.5 31.8± 2.7 63.5± 2.3 35.1± 1.5 60.8± 1.4
Graph2Vec 63.1± 1.8 28.4± 3.2 53.7± 1.6 61.2± 2.6 38.1± 2.2 67.7± 2.3 38.1± 1.4 63.6± 0.9

EntMin 62.7± 2.7 32.1± 3.3 59.8± 1.3 67.1± 3.7 37.4± 1.2 66.9± 3.5 38.7± 2.8 63.8± 1.6
Π-Model 63.2± 1.2 34.3± 2.8 61.8± 1.8 67.0± 3.4 39.0± 3.5 67.1± 2.9 39.0± 1.1 63.7± 1.0
Mean-Teacher 64.3± 2.1 34.6± 2.6 60.6± 1.8 66.4± 2.7 38.8± 3.6 68.7± 1.3 39.2± 2.1 63.6± 1.4
VAT 64.1± 1.2 33.8± 3.4 59.9± 2.6 67.2± 2.9 39.6± 1.4 70.8± 4.1 38.9± 3.2 64.1± 1.1

InfoGraph 68.2± 0.7 40.6 ± 2.4 67.5± 1.4 71.8± 2.3 42.3± 1.8 75.2± 2.4 41.5± 1.7 65.7± 0.4
ASGN 67.7± 1.2 38.0± 2.5 68.5± 0.6 70.6± 1.4 41.2± 1.4 73.1± 2.3 42.2± 0.8 65.3± 0.8
JOAO 68.7± 0.9 35.4± 2.5 67.9± 1.3 71.0± 1.9 42.6± 1.5 74.8± 1.6 42.1± 1.2 65.8± 0.4
CuCo 67.9± 1.8 37.2± 2.6 68.3± 1.1 71.6± 1.4 42.1± 1.3 75.2± 1.6 41.9± 2.2 66.0± 1.3

DualGraph 70.1 ± 1.2 37.3± 2.3 69.8 ± 0.8 72.1 ± 0.7 44.8 ± 0.4 75.4 ± 1.4 42.9 ± 1.4 67.2 ± 0.6

4) Parameter Settings: For our DualGraph, we utilize

GIN [29] to parameterize the GNN encoder for both pre-

diction and retrieval modules, which involves three graph

convolutional layers and one sum-pooling layer, followed by

the softmax function. The batch size is set to 64 and the

number of epochs is set to 20 for all datasets. The embedding

dimension of hidden layers is 32 for bioinformatics datasets

and 64 for datasets of other categories. We train pθ and qφ
with Adam optimizer [66] with initial learning rate 0.01 and

weight decay 0.0005 in each iteration. We tune all hyper-

parameters on the validation set through grid search. We fix

the number of annotated instances m per iteration. Since the

DualGraph model takes the joint selection of prediction and

retrieval modules, retrieving a fixed amount of instances m is

not guaranteed. To solve this problem, we start with a retrieval

upper bound m′ = m for both modules to select instances.

We iteratively increase the upper bound (m′ = 1.25m′) until

we can sample m unique instances from the joint set. In

our experiment, m is set to 10% of the number of original

unlabeled instances, corresponding to the sampling ratio r
(10% by default), which means that the unlabeled data is

exhausted after ten iterations. We conduct five runs of training

and testing under different random seeds and report the mean

accuracy and standard deviation.

B. Performance Comparison (RQ1)

In Table II, we provide the compared results of semi-

supervised graph classification using half of the labeled set.

We make the following observations from the results.

• It can be seen that the majority of traditional graph

approaches perform worse than other methods, indicating

that the strong representation-learning capability of graph

neural network methods enables the extraction of more

meaningful information from structured and relational

data for classification.

• The approaches that leverage traditional semi-supervised

learning techniques perform worse than the graph-specific

semi-supervised learning approaches, demonstrating that

graph methods designed specifically for semi-supervised

scenarios are superior to traditional graph methods and

more beneficial to complex graph-related tasks such as

classification and regression.

• Graph contrastive learning methods (CuCo and JOAO)

achieve the best accuracy in most cases among previous

competing approaches. The potential reason may be that

they can leverage the unlabeled data more effectively

compared to traditional graph approaches, which are not

tailored for semi-supervised graph classification. Info-

Graph and ASGN, in particular, are not as effective

as them mostly. Perhaps this is due to their inability

to explore unlabeled material with diverse priors. As a

consequence, they will lose some important information

to some degree, resulting in poor performance.

• Our proposed DualGraph achieves the best performance

on most of the datasets, validating the efficacy of our

framework. We attribute the remarkable performance to

two factors based on the findings: (1) Introduction of dual

learning. Instead of replicating another prediction module

as co-training, DualGraph introduces the dual retrieval

module. Two modules are jointly trained and complement

each other to enhance inter-module consistency. (2) Intro-

duction of semi-supervised contrastive learning. Instead

of adopting the previous contrastive learning framework

[18], we introduce a novel semi-supervised contrastive

learning framework for both modules, which improves

the performance for each individual module.

Performance on Different Amounts of Labeled Data. In

Figure 6, we tune the rates of the labeled data for training

to illustrate the performance of different approaches. We

take the four representative datasets (i.e., PROTEINS, DD,

IMDB-B and REDDIT-M-5k) as examples. Of note, traditional
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Fig. 6: Performance on four datasets with various amounts of the labeled data (i.e., 25%, 50% and 100% labeled data) and all

the unlabeled data. The best performance is highlighted in boldface. Increasing labeled data results in better performance.
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Fig. 7: Performance comparisons w.r.t. the amount of unla-

beled data. In most cases, increasing unlabeled data results in

better performance.

methods are not included since they do not show competitive

performance. The results show that as the number of available

labeled instances grows, the performance of all approaches

improves, suggesting that adding more labeled data is an

effective way to enhance performance. In most cases, the

proposed DualGraph achieves the best performance among all

the approaches, indicating that explicitly integrating both dual

learning and contrastive learning into graph classification can

improve the performance of current GNN-based models.

Performance on Different Amounts of Unlabeled Data.
Given the difficulty and expense of obtaining data annotation,

a proper model should be able to make sufficient use of a

large amount of unlabeled data to improve the performance.

As a consequence, we vary different sizes of unlabeled data to

compare the performance of traditional semi-supervised learn-

ing approaches and graph-specific semi-supervised learning

approaches. We select the IMDB-B and COLLAB datasets as

instance, and plot the test accuracy at each rate (i.e., 20%,

40%, 60%, 80% and 100%) in Figure 7. From the result,

we observe that more unlabeled data can benefit InfoGraph,

ASGN and DualGraph consistently, whereas the performance

of other approaches could fluctuate as the quantity of unlabeled

data rises. Moreover, the curve of DualGraph is mostly on top

of the other models’ curves, demonstrating that our DualGraph

can make full use of the unlabeled data in most of the settings.

C. Ablation Study (RQ2)

In this part, we conduct ablation experiments to understand

the effectiveness of each component. Particularly, we introduce

a few model variants as follows:

• GNN-Sup: We only use the prediction module with the

supervision of the labeled data. (i.e., L = LSP )

• GNN-Pred: We only use the prediction module without

annotating the unlabeled data. (i.e., L = LP )

• GNN-Pred-ST: We remove the retrieval module and op-

timize the prediction module with self-training [56]. To

be precise, the model is first trained to annotate the

unlabeled data; then the most confident pseudo-labeled

data is treated as extra training data in the next iteration.

• GNN-Pred-Co: We adopt the co-training scheme [67] by

replacing the retrieval module with the prediction module

with different initialization. Specifically, the model selects

the annotated data as extra labeled data based on the

agreement of two modules in each iteration.

• DualGraph w/o Intra: We remove the intra-module con-

sistency in two modules. (i.e., LP = LSP , LR = LSR)

• DualGraph w/o Inter: We remove the inter-module con-

sistency. To be specific, we feed the pseudo-labels pro-

duced by one module into the other module without

adopting the consistency loss LC .

The results are recorded in Table III. We summarize the

following findings: (1) GNN-Pred is superior to GNN-Sup,

which hence illustrates the importance of making full use of

contrastive learning for unlabeled samples in the prediction

module. (2) From the comparison of GNN-Pred-ST and GNN-

Pred, self-training benefit the performance gain, which is in

accordance with the findings in previous work [56]. (3) We

can observe a consistent performance gain when comparing

ensemble model GNN-Pred-Co with self-training model GNN-

Pred-ST, which implies that dual learning can be beneficial

to improve the performance. (4) GNN-Pred-Co shows worse

performance compared with the Full Model, indicating that

the retrieval module (dual task) is critical for the framework.

Since two tasks are jointly optimized and complement each

other to enhance inter-module consistency, our framework

achieves better performance compared with the co-training

scheme [67]. (5) From the comparison of DualGraph w/o Intra

and the Full Model, we can see that contrastive learning is

indeed a crucial and effective component in our framework

and can be beneficial to improve the performance. (6) From

the comparison of DualGraph w/o Inter and the Full Model,

which demonstrates the advantage of the intersection strategy
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TABLE III: Ablation study of several model variants (in %). The best performance is highlighted in boldface. The results show

the contribution of different components in the proposed framework.

Methods PROTEINS MSRC21 DD IMDB-B IMDB-M REDDIT-B REDDIT-M-5k COLLAB

GNN-Sup 63.3± 1.4 29.8± 2.7 62.5± 1.5 63.4± 2.1 39.2± 1.6 69.8± 1.1 38.6± 2.5 61.7± 1.5
GNN-Pred 64.3± 1.8 31.9± 3.2 61.7± 1.7 67.4± 1.4 40.5± 1.8 68.6± 1.6 39.0± 1.8 63.7± 1.2
GNN-Pred-ST 67.6± 0.6 32.9± 1.8 65.4± 2.7 67.6± 2.4 39.1± 0.5 71.8± 1.7 38.9± 2.4 65.7± 1.9
GNN-Pred-Co 68.1± 2.9 33.3± 4.5 66.9± 2.8 69.5± 1.2 41.8± 2.3 74.6± 0.8 39.9± 1.9 66.5± 0.4
DualGraph w/o Intra 68.5± 1.5 33.7± 4.8 69.3± 2.1 68.0± 1.2 39.3± 2.8 75.2± 0.7 39.4± 2.8 66.7± 0.4
DualGraph w/o Inter 68.7± 2.3 34.8± 2.3 68.1± 1.7 69.4± 3.5 42.1± 2.8 73.4± 1.3 41.0± 2.7 65.5± 1.0

Full Model 70.1 ± 1.2 37.3 ± 2.3 69.8 ± 0.8 72.1 ± 0.7 44.8 ± 0.4 75.4 ± 1.4 42.9 ± 1.4 67.2 ± 0.6
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Fig. 8: Performance comparisons w.r.t. the embedding dimensions of hidden layers.
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Fig. 9: Performance comparisons w.r.t. the sampling ratio.

to ease the effect of incorrect label annotations, enabling our

DualGraph to obtain the superior performance.

D. Parameter Sensitivity (RQ3)

In this part, we examine the sensitivity of the DualGraph

to hyper-parameters. Specifically, we investigate the effect of

varying embedding dimensions of hidden layer and sampling

ratio in our framework on four datasets in different settings.

Here we vary the amounts of the labeled data (i.e., 25%, 50%

and 100% labeled data) for each dataset.

Effect of Different Embedding Dimensions. We begin with

analyzing the impact of the embedding dimensions of hidden

layers d. It is well known that the higher the value of the

embedding dimensions, the larger the capacity of the model.

Therefore, we anticipate the model performing well as dimen-

sion rises. All other parameters are fixed to the ones that pro-

vide the best results and d is varied in {8, 16, 32, 64, 128, 256}.

Figure 8 reveals the performance. It can be found that the

larger embedding dimension of hidden layers often contributes

to higher accuracy before saturation. However, the too-large

dimension may degrade the performance owing to overfitting

induced by the redundancy of parameters.

Effect of Different Sampling Ratios. Then we analyze

the effect of different sampling ratios ρ. We fix all other

parameters and vary ρ in {10%, 20%, 40%, 60%, 80%, 100%},

results are shown in Figure 9. We observe that when ρ is small

(e.g., 10% and 20%), the performance is stable relatively in

different settings while a larger sampling ratio generally leads

to worse performance. The reason is that a larger sampling

ratio weakens the strength of iterative optimization, which

aligns with our expectations.

E. Further Analysis (RQ4)

Furthermore, we investigate the impact of different encoder

architectures and different types of graph augmentation.

Effect of Different Encoder Architectures. Here we study

the effect of different encoder architectures. We select four

types of popular graph neural networks (i.e., GCN [10],

GraphSAGE [68], GAT [46] and GIN [29]) and compare their

performance on four datasets in Figure 10. We can observe

that GIN consistently outperforms other base models on four

datasets, which validates the effectiveness of GIN with strong

representation ability. This justifies the reason why we choose

GIN as the base model for all GNN-based methods.
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TABLE IV: Comparisons when contrasting different types of augmentation (in %). The best performance is highlighted in

boldface. Random operation can be generally more beneficial than other deterministic augmentations on most datasets.

Methods PROTEINS MSRC21 DD IMDB-B IMDB-M REDDIT-B REDDIT-M-5k COLLAB

Edge deletion 67.7± 2.1 32.7± 2.1 68.0± 0.8 70.0± 1.3 41.4± 0.9 74.8± 1.2 41.9± 1.3 66.3± 0.8
Node deletion 69.6± 1.6 35.4± 2.4 69.2± 1.4 71.4± 0.8 44.1± 0.5 75.8 ± 0.7 42.5± 1.5 66.7± 0.5
Attribute masking 68.9± 1.3 35.7± 1.9 68.8± 1.5 70.8± 0.7 43.9± 0.4 74.3± 1.4 41.6± 1.5 66.4± 0.6
Subgraph 70.3 ± 1.0 36.6± 1.8 69.4± 0.7 71.7± 0.5 44.5± 0.8 74.9± 1.4 42.5± 1.7 66.7± 0.8
Random 70.1± 1.2 37.3 ± 2.3 69.8 ± 0.8 72.1 ± 0.7 44.8 ± 0.4 75.4± 1.4 42.9 ± 1.4 67.2 ± 0.6
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Fig. 10: DualGraph with different encoder architectures.
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Fig. 11: Analysis of quality of newly annotated instances at

each iteration. Left: Convergence curve of accuracy (in %) for

different methods. Right: Accuracy of the annotated samples in

each iteration. Both are evaluated on the PROTEINS dataset.

Effect of Different Types of Graph Augmentation. We also

conduct research to validate the necessity of selecting graph

modification operations at random during graph augmentation.

We compare this to the following deterministic augmentation

setting. We generate augmented graphs by doing this process

once for each type of operation, such as edge deletion,

node deletion, attribute masking and subgraph. The average

accuracy for each operation in our framework is shown in

Table IV. As can be observed, deterministic selection performs

worse than random selection in most cases. The reason is that

augmented graphs generated by executing random alteration

procedures are more difficult to distinguish from the original

graph. Contrastive learning can learn more effective and stable

graph-level representations through more challenging tasks.

F. Case Study (RQ5)

To explore the fundamental cause for performance gain in

DualGraph, we undertake an experiment to test the following

hypothesis. A natural hypothesis is that the performance

improvement is due primarily to the quality of the retrieved

instances. It is under discussion how this “quality” can be

defined as an objective metric. Quality is defined in our study

as the accuracy of retrieved instances. Since we know the

ground-truth labels of the “unlabeled data”, we can evaluate

the accuracy technically.

To test this hypothesis, we devised the following experi-

ments. We assess the accuracy of semi-supervised methods

trained in an iterative manner (Self-Training, Co-training and

DualGraph) on the test set in each iteration, as well as the

accuracy of its promoted pseudo-labeled instances.

Figure 11 depicts the outcomes of the experiments. When

comparing the accuracy of retrieved instances in each iteration

between DualGraph and other semi-supervised methods, the

accuracy for retrieved instances in each iteration is typically

greater, implying that DualGraph can pick examples of higher

quality, which contributes to each iteration’s performance

improvement. Furthermore, we can see that the accuracy of

the unlabeled samples in each iteration in our framework

is greater, demonstrating that our framework is capable of

selecting reliable and confident signals from unlabeled data.

Lastly, for DualGraph, we can see the empirical convergence

of the accuracy during alternative updating.

VI. CONCLUSION

In this paper, we investigate the problem of semi-supervised

graph classification, which is fundamental in graph data

mining and propose a novel method termed the DualGraph.

DualGraph is a principled framework, which consists of a

prediction module and a retrieval module to encourage the

consistency on unlabeled data and overcome the unreliability

of pseudo-labels and scarcity of labeled data. Both modules

are jointly optimized to mutually enhance each other with

an EM-styled algorithm. Specifically, we leverage posterior

regularization to encourage the inter-module consistency and

take advantage of contrastive learning to encourage the intra-

module consistency. Experimental results on various widely-

used datasets validate the superiority of our proposed frame-

work. In future work, we will broaden the scope of our

DualGraph to various promising domains including molecular

networks and recommender systems.
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