
Dynamic Hypergraph Structure Learning for Traffic
Flow Forecasting

Yusheng Zhao1∗, Xiao Luo2∗, Wei Ju1,†, Chong Chen3, Xian-Sheng Hua3, Ming Zhang1,†
1School of Computer Science, Peking University,

2Department of Computer Science, University of California Los Angeles 3Terminus Group
1yusheng.zhao@stu.pku.edu.cn, 2xiaoluo@cs.ucla.edu, 1{juwei, mzhang cs}@pku.edu.cn,

3cheung1990@126.com, 3huaxiansheng@gmail.com

Abstract—This paper studies the problem of traffic flow
forecasting, which aims to predict future traffic conditions on
the basis of road networks and traffic conditions in the past.
The problem is typically solved by modeling complex spatio-
temporal correlations in traffic data using spatio-temporal graph
neural networks (GNNs). However, the performance of these
methods is still far from satisfactory since GNNs usually have
limited representation capacity when it comes to complex traffic
networks. Graphs, by nature, fall short in capturing non-pairwise
relations. Even worse, existing methods follow the paradigm
of message passing that aggregates neighborhood information
linearly, which fails to capture complicated spatio-temporal high-
order interactions. To tackle these issues, in this paper, we
propose a novel model named Dynamic Hypergraph Structure
Learning (DyHSL) for traffic flow prediction. To learn non-
pairwise relationships, our DyHSL extracts hypergraph struc-
tural information to model dynamics in the traffic networks, and
updates each node representation by aggregating messages from
its associated hyperedges. Additionally, to capture high-order
spatio-temporal relations in the road network, we introduce an
interactive graph convolution block, which further models the
neighborhood interaction for each node. Finally, we integrate
these two views into a holistic multi-scale correlation extraction
module, which conducts temporal pooling with different scales
to model different temporal patterns. Extensive experiments
on four popular traffic benchmark datasets demonstrate the
effectiveness of our proposed DyHSL compared with a broad
range of competing baselines.

Index Terms—dynamic hypergraph, hypergraph structure
learning, traffic flow forecasting

I. INTRODUCTION

Spatio-temporal forecasting [1] has been a basic topic with

a range of applications including traffic flow forecasting [2],

physical law analysis [3], [4] and disease spreading under-

standing [5]. Among various related practical problems, traffic

flow forecasting aims to predict future traffic conditions on the

basis of road networks and traffic conditions in the past [6].

This problem plays an important role in urban systems, which

can significantly benefit congestion management.

In literature, a fruitful line of traffic flow forecasting meth-

ods has been developed, which can be roughly divided into

physics-based methods and learning-based methods. Typically,

physics-based methods leverage coupled differential equations

to characterize traffic systems [7], [8]. They usually achieve

∗Equal contribution with order determined by flipping a coin.
†Corresponding authors.

External Event
(Car Accident)

Business Area

Residential Area

9:00 AM Monday

Hyperedges

Fig. 1: An illustration of the dynamic hypergraph structure in the
traffic network. The business area and the residential area both
could imply static hyperedges whereas external events could bring
in dynamic hyperedges.

superior performance in simulated data with theoretical guar-

antees. However, they often rely on a strong model assumption,

which is difficult to meet in complicated situations of the

real world [9]. In contrast, learning-based methods attempt to

utilize historical observations to optimize a machine learning

model, which has been popular among various solutions.

Early efforts attempt to incorporate traditional models such

as autoregressive integrated moving average [10] (ARIMA)

and support vector machine [11] (SVM) into this problem.

Recently, deep learning-based methods have achieved better

performance benefiting from the representation capacity of

deep neural networks. On the one hand, these methods usually

utilize graph neural networks [12] (GNNs) to extract structured

spatial relationships from road networks. On the other hand,

they utilize recurrent neural networks [13] (RNNs) or temporal

convolution networks [14] (TCNs) to extract temporal relation-

ships. By integrating different networks into spatio-temporal

GNNs [15], [16], they can provide accurate traffic predictions

2303

2023 IEEE 39th International Conference on Data Engineering (ICDE)

2375-026X/23/$31.00 ©2023 IEEE
DOI 10.1109/ICDE55515.2023.00178

20
23

 IE
EE

 3
9t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
at

a
En

gi
ne

er
in

g
(I

C
D

E)
 |

97
9-

8-
35

03
-2

22
7-

9/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

D
E5

55
15

.2
02

3.
00

17
8

Authorized licensed use limited to: Peking University. Downloaded on November 07,2023 at 09:26:10 UTC from IEEE Xplore. Restrictions apply.

with the exploration of both temporal and spatial information.

However, there are two significant shortcomings in existing

traffic flow forecasting methods, which induce suboptimal

performance. i) Unable to capture dynamic non-pairwise rela-
tionships. Existing methods often utilize graphs to characterize

relations in the dynamic traffic system, which can merely

capture pairwise relations. However, there could be abundant

non-pairwise structural relations in the system. As is shown in

Fig. 1, a car accident could influence a range of locations in

the dynamic traffic network, and the model needs to capture

this dynamic and non-pairwise impact. Similarly, locations

around the residential area or the business area could share

similar traffic conditions, and pairwise relationship modeling

is inefficient when it comes to multiple nodes sharing similar

properties. Therefore, the incapability of relation description

limits the performance of spatio-temporal GNNs. (2) Unable to
adequately explore high-order relationships. Current methods

often utilize GNNs to extract spatial features at each time

step and aggregate the features across each time step using

RNNs or TCNs [6], [15], [16]. These methods usually follow

the paradigm of message passing to aggregate neighborhood

information linearly. Actually, real traffic data is complex

and there could be abundant high-order information in the

neighborhood of each observation. The failure of modeling

high-order spatio-temporal correlations hinders the model’s

capacity to make accurate traffic predictions.

To tackle the aforementioned drawbacks, we propose a

novel method named Dynamic Hypergraph Structure Learning

(DyHSL) for traffic flow prediction. To begin with, we extend

prior road information into temporal graphs containing both

spatial and temporal edges, which facilitates the exploration

of spatio-temporal correlations using graph convolution. To

model dynamic non-pairwise relations, we propose a Dynamic

Hypergraph Structure Learning (DHSL) block that constructs

a hypergraph among observations in the spatio-temporal net-

work. To reduce the model parameters, the incidence matrix of

the hypergraph is deduced from the node state representations

at every timestamp. Then, a hypergraph convolution paradigm

is proposed to update node representations using informa-

tion from their associated hyperedges, which captures more

complex relationships in the traffic network. Additionally, to

explore high-order spatio-temporal relationships in the road

network, we introduce an Interactive Graph Convolution (IGC)

block, which explores neighborhood interaction using both

combination and aggregation operators. The neighborhood

interaction vector is then combined with the neighborhood

embedding from linear aggregation to update node represen-

tations. In the end, we integrate these two blocks into a Multi-

scale Holistic Correlation Extraction (MHCE) module, which

first conducts temporal pooling with different granularity to

model temporal patterns at different scales, Then, the data

is fed into the two blocks, i.e., DHSL block and IGC block

in parallel and their outputs are aggregated to update state

representations iteratively. Extensive experiments on three

popular traffic datasets demonstrate that our proposed DyHSL

is capable of achieving superior performance compared with

various state-of-the-art methods in different settings. In sum-

mary, the contributions of this paper are three-fold:

• We propose a novel model named DyHSL for traffic

flow prediction, which models dynamic non-pairwise

relationships using hypergraph structure learning and

then conducts hypergraph convolution to capture more

complex relationships in the traffic network.

• To explore high-order spatio-temporal relationships in the

road network, DyHSL introduces an interactive graph

convolution block where node embeddings in the neigh-

borhood are aggregated non-linearly.

• Comprehensive experiments are conducted on four well-

known datasets and the results demonstrate that DyHSL

consistently outperforms various competing baselines.

II. RELATED WORK

A. Graph Neural Networks

Graph neural networks (GNNs) have emerged as an effec-

tive tool which extend the deep neural networks to handle

structured data [12], [17]–[22], and have been extensively

employed in a variety of applications including graph classifi-

cation [23], node classification [24] and link prediction [25].

Generally, existing GNN methods inherently follow an itera-

tive message-passing paradigm [26] which recursively converts

graphs into a low-dimensional embedding space to capture

the structural information and node attributes. Recently, a

range of GNN variants have been proposed to better extract

spatial relationships among the structured data. For example,

Bilinear GNN [24] attempts to model the interactions between

neighboring nodes during message passing to enhance its rep-

resentation capacity. SimP-GCN [27] seeks to preserve node

similarity with sufficient exploration of the graph structure.

HGCN [28] uses graph capsules to obtain the hierarchical

semantics. The differences between our DyHSL and HGCN

lie in three points: (i) Our DyHSL focuses on dynamic graph

learning but HGCN tackles the static graph. (ii) HGCN builds

disentangled graph capsules by underlying heterogeneous fac-

tors. In contrast, our DyHSL learns temporal hypergraphs

via low-rank matrix decomposition, which is efficient and

can simultaneously capture complicated spatial and temporal

relationships for effective traffic flow forecasting. (iii) Our

method utilizes hypergraphs to model complex high-order

traffic relationships while HGCN utilizes graph capsules to

obtain the hierarchical semantics.

B. Hypergraph Neural Networks

As a generalized form of graphs, a hypergraph consists

of a collection of nodes and hyperedges [29], [30]. Unlike

graph-structured data, hypergraphs can describe non-pairwise

connections due to the fact that each hyperedge can link to

many nodes. Due to the rising number of complex structured

data in a variety of applications, such as recommender sys-

tems [31], link prediction [32], and community detection [33],

hypergraph learning has recently attracted more attention.

Since hypergraphs are a generalized form of graphs, these

approaches are often an extension of graph neural networks.

2304

Authorized licensed use limited to: Peking University. Downloaded on November 07,2023 at 09:26:10 UTC from IEEE Xplore. Restrictions apply.

Using the concept of p-Laplacians [34], the early work aims to

extend spectral methods on graphs to hypergraphs. Hypergraph

neural network (HGNN) [35] is the first spatial approach

on hypergraph learning that can discover latent node repre-

sentations via the study of high-order structural information.

However, the majority of these works concentrate on static

hypergraphs.

Recent efforts have been undertaken to learn from dynamic

hypergraphs to address this issue. Dynamic hypergraph neural

networks (DHGNN) [36] is the first effort to tackle the

development of hyperedges; it builds dynamic hypergraphs

and iteratively performs hypergraph convolution. Compared

to DHGNN that builds hypergraphs using kNN and K-Means

algorithm to cluster node features, our DyHSL explicitly learns

the structure of the hypergraph based on low rank matrix

decomposition, which is more efficient and effective. Dynamic

hypergraph convolutional network (DyHCN) [37] provides

spatio-temporal hypergraph convolution that investigates high-

order correlations using the attention mechanism in the dy-

namic hypergraph. However, current studies usually focus on

learning from hypergraphs, while our model use hypergraph

structural learning to uncover dynamically complicated corre-

lations in the traffic network.

C. Traffic Flow Forecasting

In recent years, traffic flow forecasting has received a surge

of interest and a number of spatio-temporal forecasting meth-

ods have been proposed to solve this problem [38]–[42]. The

bulk of solutions to this problem is based on machine learn-

ing algorithms, which predict future traffic conditions based

on spatio-temporal data gathered from numerous sensors.

Traditional methods include k-nearest neighbors algorithm

(kNN) [43], autoregressive integrated moving average [44]

(ARIMA) and support vector machines [11] (SVM) are often

incapable of sufficiently modeling spatial relationships. With

the development of deep neural networks, deep learning-based

methods have become the mainstream solutions. The essence

of these methods is to model the spatio-temporal correlations

in the traffic data using deep neural networks. Among various

neural network architectures, graph neural networks (GNNs)

are well-suited for extracting structured spatial relationships

in road networks while sequential neural networks can easily

extract temporal relationships [6].

Recently, various spatio-temporal GNN methods have been

proposed, capturing complicated spatial and temporal rela-

tionships for effective traffic prediction [6], [15], [16], [45],

[46]. For instance, STSGCN [45] constructs a spatio-temporal

graph and perform localized graph convolution on it. Com-

pared to STSGCN which focuses on capturing pairwise and

localized spatio-temporal dependencies, the proposed DyHSL

learns the hypergraph structure underlying the traffic data,

which helps the model to capture long-range and non-pairwise

relations. ASTGCN [46] incorporates the attention mechanism

into spatio-temporal graphs. However, this causes quadratic

complexity, whereas the proposed DyHSL achieves linear

complexity with respect to both the size of the graph and the

TABLE I: Summary of notations and descriptions.

Notations Descriptions

G = (V,E,A) Graph

T The length of observations

X Graph signal tensor

G = (V, E) Hypergraph

Λ Incidence matrix

GH Temporal graph

ht
i,(l)

State representation in prior graph convolution

Â Adjacent matrix of the temporal graph

Ā Normalized adjacent matrix of the temporal graph

F Node embedding matrix in the first block

R Node embedding matrix in the second block

Δε
l The holistic state representation matrix

γi Final global embedding

input length of observations (see IV-D). LRGCN [47] is also

proposed to encode the spatio-temporal graph more efficiently.

However, it tends to capture local and pairwise relationships

both spatially and temporally. Compared to LRGCN, the

proposed DyHSL can capture longer dependencies among

multiple nodes with dynamic hypergraph structure learning.

Hypergraphs have also been used in spatio-temporal fore-

casting [48], [49]. However, most existing works (e.g. HGC-

RNN [48] and DSTHGCN [49]) require a predefined hy-

pergraph as input, whereas our DyHSL learns the structure

underlying the spatio-temporal data. More detailed descrip-

tions of these spatio-temporal GNN methods can be found in

Section V-A3.

III. PRELIMINARIES

A. Problem Definition

In the problem of traffic flow forecasting, we are provided

with a road network and historical traffic data. The road

network is denoted as a weighted graph G = (V,E,A) where

V denotes a set of N nodes representing different locations

in the road network. E denotes a set of edges, which can be

summarized in the weight adjacent matrix A ∈ R
N×N . We

characterize historical traffic observations into a graph signal

tensor X = [X1,X2, · · · ,XT] ∈ R
T×N×F where T denotes

the length of observations and F denotes the dimension of

node attributes. We aim to learn a function that maps the

historical T observations to predict the next T ′ step traffic

conditions. In formulation,

[Xt0−T+1, · · · , Xt0 ;G] −→
[
X̂t0+1, X̂t0+2, · · · , X̂t0+T ′

]
.

(1)

Besides, the notations used in this paper are shown in Table I

for clarity.

2305

Authorized licensed use limited to: Peking University. Downloaded on November 07,2023 at 09:26:10 UTC from IEEE Xplore. Restrictions apply.

Spatio-Temporal Graph

Graph Tensor

Tim
e

Temporal Graph
Construction

Prior G
raph C

onvolution M
odule

Tem
poral Pooling

Hypergraph
Structure Learning

Interactive Graph
Convolution

A
ggregate

Multi-Scale Holistic Correlation Extraction

C
oncatenate &

 Fuse

M
LP

Prediction

Fig. 2: Overview of our proposed DyHSL. DyHSL first generates temporal graphs based on the road network for prior graph convolution.
In the multi-scale structured feature extraction module, we first utilize temporal pooling to aggregate data at different scales, and then feed
hidden representations into both the hypergraph structure learning block and the neighborhood interaction block, followed by aggregation at
every iteration. Finally, we fuse the output of different pooling sizes to output the final prediction.

B. Hypergraph

A hypergraph can be denoted as G = (V, E) where V
denotes the node set and E denotes the hyperedge set. Different

from a graph, a hypergraph allows multiple nodes to be con-

nected with a hyperedge. Similarly, a node can be associated

with multiple hyperedges. Hence, we utilize a incidence matrix

Λ ∈ R
|V|×|E| to characterize the structure of a hypergraph.

Formally, for v ∈ V and e ∈ E , we have:

Λ(v, e) =

{
1, if v ∈ e,

0, otherwise.
(2)

We can simply extend the incidence matrix into a weighed

form,

Λ(v, e) =

{
w(v, e), if v ∈ e,

0, otherwise,
(3)

where w(v, e) denotes the interaction score of node v and

hyperedge e.

IV. METHODOLOGY

This work proposes a novel model named DyHSL for traffic

flow forecasting. Our DyHSL first extends road information

into temporal graphs containing both spatial and temporal

edges, followed by graph convolution. To model dynamic non-

pairwise relationships, we introduce a Dynamic Hypergraph

Structure Learning (DHSL) block to construct a temporal

hypergraph where nodes are all observations at all timestamps.

To reduce the model parameters, the temporal hypergraph inci-

dence matrix is deduced from each node state representation in

a low-rank form. Then, we introduce hypergraph convolution

to update node representations using information from their

associated hyperedges. Moreover, we introduce an Interactive

Graph Convolution (IGC) block to explore high-order spatio-

temporal relationships in the road network. In this block, the

neighborhood interaction is measured by both combination and

aggregation operators to update node representations. Finally,

we integrate these two blocks into a holistic multi-scale

correlation extraction module, which first conducts temporal

local pooling with different scales to model different temporal

patterns, and then feeds data into two blocks parallelly. The

framework of the model is illustrated in Fig. 2.

A. Prior Graph Encoder

To begin, we utilize a prior graph encoder to capture

basic spatio-temporal information from the road network. In

our encoder, we first build a temporal graph based on road

networks and then conduct prior graph convolution for node

state representations.

Temporal Graph Construction. Previous methods usually

perform graph convolutional operation at every time step

on road networks (or other pre-defined graphs) [6], [50] to

learn spatial correlations. However, they are unable to receive

temporal information from other time steps during graph

convolution, failing to model spatio-temporal interactions si-

multaneously. To tackle this issue, we introduce temporal

graphs where nodes are observations determined by time-

location pairs and are connected by both temporal edges and

spatial edges. In this manner, spatio-temporal relationships

could be modeled jointly during graph convolution.

In particular, T time steps yield TN nodes {vt}t∈[1:T],v∈V
totally in the temporal graph GH . At each time step, the

spatial edges are identical to those in the original road network

whereas the temporal edges exist when two observations

are consecutive. In formulation, the adjacent matrix Â ∈
RTN×TN with self-loop is derived as:

Â(vti , v
t′
j) =

⎧⎨
⎩

Aij t = t′,
1 i = j, t′ = t+ 1 or t,
0 otherwise.

(4)

Prior Graph Convolution. Then, we present our graph convo-

lution which learns joint spatio-temporal relationships in traffic

data. Considering that temporal information has been inserted

into temporal graphs, we utilize a standard graph convolution

2306

Authorized licensed use limited to: Peking University. Downloaded on November 07,2023 at 09:26:10 UTC from IEEE Xplore. Restrictions apply.

layer obeying the message passing mechanism [12] here. In

detail, for each observation, we update its representation by

aggregating the state embedding vectors of all its neighbors

including itself at the previous layer. In formulation, the state

representation of vti at the l-th layer ht
i,(l) is calculated as

follows:

ht
i,(l) = φ(

∑
vt′
j ∈N (vt

i)

Ā(vti , v
t′
j)f

t′
j,(l−1)W), (5)

where Ā(vti , v
t′
j) denotes the normalized adjacency matrix

with
∑

j,t′ Ā(v
t
i , v

t′
j) = 1. φ(·) is a non-linear activation

function. f t′
j,(l−1) denotes the feature of node j at time t′ and

layer l−1, which is initially constructed by adding both spatial

and temporal embeddings (representing the location and the

time of a node respectively) to the original feature of the

traffic network. After Lp-layer prior graph convolution, we

can obtain the hidden state embedding of node i at the t-th
time step ht

i = ht
i,(Lp)

.

Temporal Graph

Incidence Matrix

Hyperedge
propagation

Temporal
Graph Feature

Nodes

Hyperedges

Matrices

Fig. 3: The Dynamic Hypergraph Structure Learning (DHSL) block
in DyHSL. We first utilize node features to generate a low-rank
incidence matrix. The hypergraph convolution operation first fuses
information from connected nodes into hyperedge representations
and then reconstructs node representation using associated hyperedge
representations.

B. Dynamic Hypergraph Structure Learning

Nevertheless, traffic systems are influenced by the road

network and dynamic traffic conditions in tandem. Conse-

quently, we need to model the real-time traffic situation based

on hidden embeddings. Previous methods are mostly based

on dynamic graphs/hypergraphs, which have drawbacks like

requiring predefined structues [48], [49], high computation

cost [28], [46] or failing to capture non-pairwise relations [45],

[47]. To tackle this, we turn to temporal hypergraphs for

complex relation modeling where each node is also an ob-

servation at a given timestamp. Moreover, we explicitly learn

the hypergraph structure in a low-rank manner.

Temporal Hypergraph Structure Learning. To explore dy-

namic complex relationships in traffic networks, we introduce

learnable hypergraph structure matrices, which are optimized

jointly with network parameters. To decrease the parameters

and release overfitting, we seek to utilize matrix decomposition

to construct a low-rank structure matrix.

In detail, the incidence matrix of the temporal hypergraph

is formalized as Λ ∈ R
NT×I where I is the number of

the hyperedge. We decompose the matrix into two low-rank

matrices using their hidden state representations as follows:

Λ = HW (6)

where H ∈ R
NT×d is derived by stacking all state represen-

tations and W ∈ R
d×I is learnable weight matrix. In this

way, learning the incidence matrix merely introduce O(I×d)
parameters (d << NT), which can significantly improve the

model efficiency.

Temporal Hypergraph Convolution. Then, we introduce

a hypergraph convolution paradigm for learning from the

temporal hypergraph, which can extract high-order complex

information from dynamic traffic networks. To be specific, at

every layer, we first generate each hyperedge embedding by

aggregating information from all its connected nodes. Then,

hypergraph embeddings are used to update node embedding

for high-order correlation learning in the traffic network. The

overall process is summarized in Fig. 3.

In the matrix form, the hyperedge embedding matrix E ∈
R

I×d is derived from the state representation matrix and the

incidence matrix:

E = φ(UΛTH) +ΛTH. (7)

where we additionally introduce a learnable matrix UH ∈
R

I×I to characterize the implicit relations among hyperedges.

Then, these hyperedge embeddings are aggregated to generate

the node embedding matrix:

F = ΛE = Λ(φ(UΛTH) +ΛTH). (8)

In this way, we can learn complex non-pairwise correlation

in the traffic network at each timestamp by stacking LH

hypergraph convolution layers, which outputs the updated

node embedding matrix F = BLOCKH(H) ∈ R
NT×d.

C. Interactive Graph Convolution

Additionally, there is still abundant high-order spatio-

temporal correlation in the road network, which cannot be

captured by our prior graph convolution. Hence, we introduce

another block that utilizes interactive neighborhood aggrega-

tion which fully models high-order information in the temporal

graph using both combination and aggregation operators. In

this way, we can learn the signals under the co-occurrence of

neighbors.

2307

Authorized licensed use limited to: Peking University. Downloaded on November 07,2023 at 09:26:10 UTC from IEEE Xplore. Restrictions apply.

Temporal Graph

Linear Aggregation

Interactive Aggregation

Combine

Fig. 4: The Interactive Graph Convolution (IGC) block in DyHSL.
During interactive aggregation, we first model the interaction of
neighboring node pairs and then aggregate all these pairs into inter-
active aggregation. Moreover, we utilize standard linear aggregation
and concatenate the outputs from both lines.

In detail, we recall the temporal graph GH but further

model the interaction of vt
′
j and vt

′′
j′ from N (vti). Formally,

given each state representation ht
i, its interactive representation

vector is written as follows:

πt
i = AGG({COM(ht′

j ,h
t′′
j′), ∀vt

′
j , v

t′′
j′ ∈ N (vti)}), (9)

where COM calculates the coupled representation for each

node pair and AGG aggregates all neighborhood node pairs

for each central node, which needs to be permutation-invariant.

In this work, we utilize separate projectors followed by

Hadamard produce to implement COM and sum-pooling

followed by an activation function to implement AGG:

πt
i = φ(

∑
vt′
j ,vt′′

j′ ∈N (vt
i)

Āit,jt′ Āit,j′t′′h
t′
j W1 � ht′′

j′ W2), (10)

where � denotes the Hadamard product of two vectors, W1

and W2 denotes a learnable weight matrix. Eq. 10 can be

rewritten as:

φ(
∑

vt′
j ∈N (vt

i)

Āit,jt′h
t′
j W1 �

∑
vt′
j ∈N (vt

i)

Āit,jt′h
t′
j W2). (11)

Moreover, we also incorporate linear aggregation of the

neighborhood into our block, which can also provide basic

information about the road network. Hence, the updated tem-

poral state representation rti is formulated as follows:

rti = πt
i + φ(

∑
vt′
j ∈N (vt

i)

Āit,jt′h
t′
j W3). (12)

Finally, we can derive the updated state representation

matrix R = BLOCKI(H) ∈ R
NT×d where each line of the

matrix corresponds to each observation. The whole procedure

of this block is illustrated in Fig. 4.

D. Multi-scale Holistic Correlation Extraction

In this part, we integrate two introduced blocks into a

holistic complex correlation extraction framework. These two

blocks can play a complementary role since hypergraph struc-

ture learning tends to extract dynamic signals beyond pairwise

relationships whereas interactive graph convolution tends to

learn from high-order relationships on the basis of the road

network. Motivated by diverse patterns in the traffic network,

we first conduct local pooling on the embedding sequences

using different window sizes and then extract correlation at

different scales using the two blocks.

In particular, after prior graph convolution, we first deter-

mine a few candidates of window sizes. Taking the window

size ε as an example, we generate a list of subsequence embed-

dings for each node using local-max pooling, {δ1i , · · · , δT/ε
i },

where δki = Pool(hkε−ε+1
i , · · · ,hkε

i). Then, we feed the

concatenated subsequence embeddings Δε ∈ R
NT/ε×d into

both the dynamic hypergraph structure learning block and

the interactive graph convolution block. In the first block, we

construct the temporal hypergraph for hypergraph convolution

while in the second block we build temporal graphs along the

subsequence for inter-graph convolution. Finally, we take the

average of both outputs. Moreover, this procedure is conducted

in an iterative manner. In formulation, we have the holistic

state representation matrix Δε
l ∈ R

NT/ε×d at the l-th layer:

Δε
l =

1

2
(BLOCKH(Δ

ε
l−1) +BLOCKI(Δ

ε
l−1)) (13)

where BLOCKH(·) and BLOCKI(·) denote the DHSL

and the IGC blocks. After stacking Ls layers, we get Δε
Ls

eventually. Then we decompose the matrix into a tensor

Γε ∈ R
N×T/ε×d and then aggregate the embedding matrix

along the time dimension, producing sequence embeddings

γμ
i ∈ R

d for each node. In practice, mean-pooling is uti-

lized for aggregation. Considering that various scales could

characterize diverse intrinsic properties such as variances in

traffic data, we choose J different window sizes ε1, ε2, · · · , εJ ,

which result in three granularity-aware sequence embeddings

γε1
i , γε2

i ,· · · γεJ
i , respectively.

In a nutshell, we obtain global sequence embeddings and

then adaptively decide their contributions to the final global

embeddings. To be specific, we introduce J learnable param-

eters {wεj}Jj=1, and the final global embedding is written as:

γi =

∑J
j=1 exp(w

εj)γ
εj
i∑J

j=1 exp(w
εj)

. (14)

The global embedding γi is then concatenated with the local

embedding vector at the last time step, i.e., hT , forming the

final output y ∈ R
T ′×1 through a fully-connected layer for

each node. The model is optimized using the standard mean

absolute error (MAE) loss for regression. The whole algorithm

is summarized in Algorithm 1.

The computational complexity of Algorithm 1 mainly de-

pends on Step 4-5. Recall that the number of nodes and the

length of observations are denoted as N and T , respectively.

2308

Authorized licensed use limited to: Peking University. Downloaded on November 07,2023 at 09:26:10 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Training Algorithm of DyHSL

Require: Road network G, Graph Signal Tensor X;

Ensure: Predictions of traffic signals in T ′ future time steps;

1: Generate the temporal graph using Eq. 4;

2: repeat
3: Compute each ht

i using Eq. 5;

4: Conduct temporal pooling;

5: for i = 1, · · · , Ls do
6: Calculate the output of the Dynamic Hypergraph

Structure Learning (DHSL) block;

7: Calculate the output of the Interactive Graph Convo-

lution (IGC) block;

8: Update state representations by taking the average;

9: end for
10: Calculate the final prediction and the MAE loss;

11: Update the model parameters using stochastic gradient

descend (SGD);

12: until convergence

TABLE II: The summary of the datasets used in the experiments.

Dataset |V | |E| Time Steps Time Range

PEMS03 358 547 26,208 09/2018 - 11/2018
PEMS04 307 340 16,992 01/2018 - 02/2018
PEMS07 883 866 28,224 05/2017 - 08/2017
PEMS08 170 295 17,856 07/2016 - 08/2016

Ls denotes the number of hidden layers in multi-scale holistic

correlation extraction, respectively. ||A||0 denotes the number

of nonzeros in the adjacency matrix. d denotes the hidden

dimension. On the one hand, the complexity of our dynamic

hypergraph structure learning block is about O(NTILs). On

the other hand, the complexity of the interactive graph con-

volution block is about O(Ls||A||0FT +LsNF 2T +NTF),
which is linearly related to both ||A||0 and T . This demon-

strates that the computation time grows linearly with the size

of the traffic network (||A||0) and length of observation (T).

Moreover, our method adopts a low-rank incidence matrix,

which is more efficient with fewer parameters.

V. EXPERIMENTS

In this section, we conduct experiments to demonstrate the

effectiveness of the proposed DyHSL. Moreover, we provide

comprehensive analysis on the performance of the model as

well as the role of dynamic hypergraph structure learning.

A. Experimental Setup

1) Datasets: In the experiments, we use four widely

adopted, publicly available datasets: PEMS03, PEMS04,

PEMS07 and PEMS08. These datasets are collected by Cali-

fornia Transportation Agencies (CalTrans) Performance Mea-

surement Systems (PEMS)1. The traffic data are collected

every 30 seconds and aggregated into 5-minute time steps.

1https://pems.dot.ca.gov/

We use the standard data processed and released by [45] in

alignment with previous works.

The spatial graph for each dataset is constructed with regard

to the real road network. In all the experiments, standard

spatial graphs are adopted which are also provided by [45].

The detailed statistics about these spatial graphs and time

ranges of the aforementioned datasets are listed in Table II.

2) Evaluation Setting and Metrics: The model takes 60

minutes (12 time steps) of historical data as input and outputs

the prediction of traffic flow in the next 60 minutes (12 time

steps). We follow the standard dataset split and use 60% of

the data for training, 20% for evaluation and the remaining

20% for testing the model’s performance. To evaluate the

prediction error, standard metrics are used including Mean

Absolute Error (MAE), Root Mean Squared Error (RMSE),

and Mean Absolute Percentage Error (MAPE).

3) Baselines: We compare the proposed DyHSL with a

wealth of baselines, ranging from traditional statistic-based

methods to the recent neural network-based methods. The

details about the baselines are listed as follows:

Traditional statistic-based methods:
• HA: Historical Average uses weighted averages of his-

torical data as predictions for future values.

• ARIMA [44]: Auto-Regressive Integrated Moving Aver-

age is a well-known statistic-based model widely used

for time series forecasting.

• VAR [51]: Vector Auto-Regression is another traditional

method for time series forecasting.

• SVR: Support Vector Regression uses a support vector

machine for regression.

Neural network methods without the spatial graph:
• FC-LSTM [52]: LSTM [53] network with fully con-

nected hidden units is a well-known model for capturing

sequential dependencies.

• TCN [54]: Temporal Convolution Network uses a stack

of dilated casual convolution layers with exponentially

growing dilation factors. The performance without casual

convolution is also presented.

• GRU-ED [55]: Gated Recurrent Units with encoder-

decoder architecture is also a commonly used baseline

for multi-step time series forecasting.

• DSANet [56]: Dual Self-Attention Network is a powerful

multivariate time series forecasting method that utilizes

both CNNs and the self-attention mechanism.

Neural network methods using the spatial graph:
• STGCN [57]: This model combines graph convolutions

with temporal convolutions.

• DCRNN [13]: Diffusion Convolutional Recurrent Neural

Network uses diffusion convolution to replace the fully-

connected layers in GRU [55].

• Graph WaveNet [14]: This method uses dilated convo-

lution and diffusion graph convolution, and also proposes

a self-adaptive adjacency matrix.

• ASTGCN [46]: This model adopts both spatial attention

and temporal attention. The (r) notation in Table III indi-

2309

Authorized licensed use limited to: Peking University. Downloaded on November 07,2023 at 09:26:10 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Forecasting errors on PEMS03, PEMS04, PEMS07 and PEMS08 datasets.

Model PEMS03 PEMS04 PEMS07 PEMS08

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

HA 31.58 52.39 33.78% 38.03 59.24 27.88% 45.12 65.64 24.51% 34.86 59.24 27.88%
ARIMA 35.41 47.59 33.78% 33.73 48.80 24.18% 38.17 59.27 19.46% 31.09 44.32 22.73%

VAR 23.65 38.26 24.51% 24.54 38.61 17.24% 50.22 75.63 32.22% 19.19 29.81 13.10%
SVR 21.97 35.29 21.51% 28.70 44.56 19.20% 32.49 50.22 14.26% 23.25 36.16 14.64%

FC-LSTM 21.33 35.11 23.33% 26.77 40.65 18.23% 29.98 45.94 13.20% 23.09 35.17 14.99%
TCN 19.32 33.55 19.93% 23.22 37.26 15.59% 32.72 42.23 14.26% 22.72 35.79 14.03%

TCN(w/o causal) 18.87 32.24 18.63% 22.81 36.87 14.31% 30.53 41.02 13.88% 21.42 34.03 13.09%
GRU-ED 19.12 32.85 19.31% 23.68 39.27 16.44% 27.66 43.49 12.20% 22.00 36.22 13.33%
DSANet 21.29 34.55 23.21% 22.79 35.77 16.03% 31.36 49.11 14.43% 17.14 26.96 11.32%
STGCN 17.55 30.42 17.34% 21.16 34.89 13.83% 25.33 39.34 11.21% 17.50 27.09 11.29%
DCRNN 17.99 30.31 18.34% 21.22 33.44 14.17% 25.22 38.61 11.82% 16.82 26.36 10.92%

GraphWaveNet 19.12 32.77 18.89% 24.89 39.66 17.29% 26.39 41.50 11.97% 18.28 30.05 12.15%
ASTGCN(r) 17.34 29.56 17.21% 22.93 35.22 16.56% 24.01 37.87 10.73% 18.25 28.06 11.64%

STG2Seq 19.03 29.83 21.55% 25.20 38.48 18.77% 32.77 47.16 20.16% 20.17 30.71 17.32%
DHGNN 16.99 28.16 17.02% 20.96 32.64 14.55% 22.73 35.67 10.27% 18.10 28.53 10.82%
LRGCN 17.96 30.37 18.54% 20.02 33.21 17.43% 22.53 36.27 10.33% 16.41 26.37 11.88%
LSGCN 17.94 29.85 16.98% 21.53 33.86 13.18% 27.31 41.46 11.98% 17.73 26.76 11.20%

STSGCN 17.48 29.21 16.78% 21.19 33.65 13.90% 24.26 39.03 10.21% 17.13 26.80 10.96%
AGCRN 15.98 28.25 15.23% 19.83 32.26 12.97% 22.37 36.55 9.12% 15.95 25.22 10.09%

HGC-RNN 17.04 28.17 17.99% 20.39 32.42 13.58% 22.4 35.37 9.69% 16.28 25.6 10.68%
DSTHGCN 17.09 27.54 16.14% 21.12 33.54 14.24% 23.22 36.93 9.95% 16.49 25.98 10.22%
STFGNN 16.77 28.34 16.30% 20.48 32.51 16.77% 23.46 36.60 9.21% 16.94 26.25 10.60%
STGODE 16.50 27.84 16.69% 20.84 32.82 13.77% 22.59 37.54 10.14% 16.81 25.97 10.62%

Z-GCNETs 16.64 28.15 16.39% 19.50 31.61 12.78% 21.77 35.17 9.25% 15.76 25.11 10.01%
STG-NCDE 15.57 27.09 15.06% 19.21 31.09 12.76% 20.53 33.84 8.80% 15.45 24.81 9.92%
DSTAGNN 15.57 27.21 14.68% 19.30 31.46 12.70% 21.42 34.51 9.01% 15.67 24.77 9.94%

DyHSL 15.49 27.06 14.38% 17.66 29.46 12.42% 18.84 31.65 8.11% 14.01 22.91 8.60%

cates that only recent components of modeling periodicity

are included for a fair comparison.

• STG2Seq [58]: This work adopt a sequence-to-sequence

framework with multiple gated graph convolution module

and the attention mechanism for multi-step prediction.

• DHGNN [36]: This method uses kNN and K-means

algorithms to learn hypergraphs and perform convolutions

based on them. We adapt it in traffic flow forecasting.

• LRGCN [47]: This method uses LSTM [53] and grapn

convolution networks to encode spatio-temporal graphs.

We also adapt this method in traffic flow forecasting.

• LSGCN [59]:This work uses spatial gated blocks and

gated linear units in conjunction with the attention mech-

anism and graph convolution.

• STSGCN [45]: This method models the spatial and

temporal dependencies synchronously and adopts local

spatio-temporal subgraph modules.

• AGCRN [60]: Adaptive Graph Convolutional Recurrent

Network learns the node-specific features and the hidden

inter-dependencies among nodes.

• HGC-RNN [48]: This method uses hypergraph convolu-

tion in conjunction with RNNs. We adapt this method in

traffic flow forecasting.

• DSTHGCN [49]: This method uses dynamic hypergraphs

to process spatio-temporal data. Since it is originally

proposed for metro passenger flow prediction, we adapt

this method for traffic flow forecasting.

• STFGNN [61]: This model utilizes a spatial fusion graph

and a generated temporal graph.

• STGODE [62]: This model adopts ordinary differential

equations (ODEs) for traffic flow forecasting.

• Z-GCNETs [63]: This method introduces the zigzag

persistence that can be used to track important topological

features from the observed data over time.

• STG-NCDE [64]: This work designs two neural con-

trolled differential equations (NECDs) for spatial and

temporal processing, respectively.

• DSTAGNN [65]: This model learns a spatio-temporal

graph and uses multi-head attention to represent dynamic

spatial relevance.

4) Implementation Details: The proposed model is imple-

mented with PyTorch and is trained on an NVIDIA RTX GPU.

In the Prior Graph Convolution, we use 6 convolutional layers

(i.e. Lp = 6). In the Dynamic Hypergraph Structure Learning

block, we use 32 hyperedges (i.e. I = 32). In Multi-scale

Holistic Correlation Extraction, we use a set of 6 window

sizes, i.e. J = 6 and ε ∈ {1, 2, 3, 4, 6, 12}, and the number of

hidden layers is set to 2 (i.e. Ls = 2). The dimension for the

hidden features is set to 64 (i.e. d = 64). More analysis about

hyperparameters in our model can be found in Section V-E.

For optimization, we use Adam optimizer [66] and train the

model for 100 epochs, setting the learning rate to 0.001 and

batch size to 32.

B. The Performance of DyHSL

The performance of DyHSL in comparison with baselines

are listed in Table III. According to the results, we have several

observations described as follows.

2310

Authorized licensed use limited to: Peking University. Downloaded on November 07,2023 at 09:26:10 UTC from IEEE Xplore. Restrictions apply.

Firstly, the proposed DyHSL achieves a consistent lead in

all three metrics on four datasets, which shows the superiority

of the proposed Dynamic Hypergraph Structure Learning

(DHSL) block, Interactive Graph Convolution (IGC) block and

the Multi-scale Holistic Correlation Extraction (MHCE). More

specifically, the significant improvement can be attributed to

three aspects: i) The model is able to learn complex dynamic

structures among multiple nodes. Most existing works (e.g.
DCRNN [13], STSGCN [45], DSTAGNN [65]) models pair-
wise dependencies between nodes, whereas our model also

considers the correlations among multiple nodes. ii) The pro-

posed IGC block is able to capture higher-order interactions in

the graph, while many previous works fall short in learning the

interaction of adjacent nodes. iii) The multi-scale framework

is suitable for capturing the traffic pattern with different

periodicity, whereas many existing algorithms ignore this.

Besides, the proposed model achieves a greater improve-

ment (i.e. 8.2% relative improvement on MAE, 6.5% relative

improvement on RMSE and 7.8% relative improvement on

MAPE) on the PEMS07 dataset, which is the largest dataset

among the four. This suggests that our proposed model is able

to handle large-scale traffic data more efficiently.

Generally, traditional statistic-based methods (e.g.
ARIMA [44], SVR) perform worse than the deep learning

algorithms, because they require the stationary assumption

(which is often violated in the real world) and ignore

the spatial topology. Some deep learning methods (e.g.
FC-LSTM [52], TCN [54], GRU-ED [55]) only consider the

temporal dependencies and thus fall short in capturing spatial

correlations, which result in weak performance compared

to GNN-based methods. The recently proposed GNN-based

algorithms are able to capture both spatial and temporal

relations, which leads to better performances compared to the

previous methods. Among these methods, DyHSL achieves

the best performance, which shows the effectiveness of the

proposed DHSL block, IGC block and MHCE.

C. Scalability Studies

TABLE IV: The number of parameters, training and testing time
(measured in terms of seconds) of DyHSL compared to some baseline
models. The results show that our model has less parameters and
comparable training/testing time with superior performance.

Model # Parameters Training Time (/epoch) Testing Time

STGODE 714K 92.49 8.5
DSTAGNN 3.58M 190.5 15.8

DyHSL 256K 104.5 14.2

In addition to the prediction performance, the computational

efficiency is also a crucial factor in real-world practice. In

this part, we compare the number of parameters, training and

testing times of our DyHSL compared with two baselines. As

can be seen in Table IV, our model has the least parameters

among the three models. Additionally, the training and testing

time of our model is comparable with current SOTA methods.

As with most traffic flow forecasting models, the proposed

DyHSL scales linearly with respect to the size of the graph

and the length of observations (explained in Section IV-D). In

conclusion, the proposed DyHSL is also competitive in terms

of the number of parameters and training/testing time.

D. Ablation Studies

In this subsection, we conduct ablated studies to evaluate the

effectiveness of each proposed Dynamic Hypergraph Structure

Learning block, Interactive Graph Convolution block and

Multi-scale Holistic Correlation Extraction.

TABLE V: Ablated study about Dynamic Hypergraph Structure
Learning block on PEMS03 and PEMS04 datasets. Different ap-
proaches for structure learning (SL) is compared.

SL PEMS03 PEMS04

MAE RMSE MAPE MAE RMSE MAPE

DHSL 15.49 27.06 14.38% 17.66 29.46 12.42%
NSL 16.43 29.09 15.21% 18.19 29.88 13.45%
FS 18.91 33.85 20.54% 24.32 40.35 15.57%

Dynamic Hypergraph Structure Learning block. In table V,

we perform ablation studies on the Dynamic Hypergraph

Structure Learning (DHSL) block of the model by comparing

different approaches with respect to structure learning (SL).

Line 1 (DHSL) is the original model using DHSL. Line 2 is

the model without structure learning (NSL). Comparing Line 1

and Line 2, we can see that the proposed dynamic hypergraph

structure learning block is important for traffic prediction,

since removing the module lead to a significant performance

drop in all metrics. This also suggests that the predefined road

network is not perfect. Incomplete or corrupted data might

exist, and more importantly, the semantic information beyond

the topological proximity is lost. To solve this problem, a

simple approach is to learn the adjacency matrix from scratch

(i.e. using a learnable adjacency matrix as parameters), which

is shown in Line 3 (FS). As we can see, learning the proximity

of all the nodes from scratch is catastrophic, and we blame

this on the coupling of structure learning and data learning that

results in too many parameters without proper supervision. In

comparison, the proposed “low-rank” solution and hypergraph

structure learning lead to fewer parameters that are under

better supervision.

TABLE VI: Ablated study about the Interactive Graph Convolution
(IGC) block on PEMS03 and PEMS04 datasets.

IGC PEMS03 PEMS04

MAE RMSE MAPE MAE RMSE MAPE

w/ 15.49 27.06 14.38% 17.66 29.46 12.42%
w/o 16.95 29.46 17.15% 17.99 30.37 14.13%

Interactive Graph Convolution block. Table VI lists the

results of ablation studies with respect to the Interactive Graph

Convolution (IGC) block in DyHSL. As can be seen from the

results, removing the IGC block causes the prediction errors to

rise on all metrics, which demonstrates the effectiveness of the

2311

Authorized licensed use limited to: Peking University. Downloaded on November 07,2023 at 09:26:10 UTC from IEEE Xplore. Restrictions apply.

PEMS04 Dataset PEMS08 Dataset

Fig. 5: The parameter sensitivity experiments of the proposed DyHSL with respect to three metrics (MAE, RMSE and MAPE) on two
datasets (PEMS04 and PEMS08). The first line studies the number of hidden layers in the Multi-scale Holistic Correlation Extraction module
(i.e. Ls). The second line shows the influence of the number of hyperedges (i.e. I) in DHSL. The third line focuses on the number of hidden
feature dimensions (i.e. d).

proposed mechanism. It is worth noting that without the IGC

block, there is a significant increase in RMSE, which weighs

more on large errors, and MAPE, which weighs more on errors

with small ground truth value (an extreme example would be:

if the ground truth traffic flow is 4 and the predicted value is

20, the MAPE of the prediction will be 500%; if the ground

truth is 100 and the predicted value is 116, with the same

MAE, the MAPE of this prediction drops to 16%). On the one

hand, the change in RMSE shows that the IGC block can make

the prediction more reasonable, avoiding large mistakes to

some extent. This suggests that using the high-order interactive

features among neighbors yields more robust representations

for the center node. On the other hand, the change in MAPE

shows that the IGC block can help the model when the traffic

flow is lower, which often occurs during sudden external

events (e.g. car accidents). One possible explanation for this is

that learning complex high-order interactions among adjacent

locations is helpful for detecting sudden external events and

reasoning their influence on the traffic flow.

TABLE VII: Ablated study about multi-scale feature extraction on
PEMS03 and PEMS04 datasets.

#Scale PEMS03 PEMS04

MAE RMSE MAPE MAE RMSE MAPE

1 15.61 27.26 15.28% 18.14 29.95 12.99%
2 15.54 27.17 14.81% 18.07 29.76 12.47%
6 15.49 27.06 14.38% 17.66 29.46 12.42%

Multi-scale Holistic Correlation Extraction. Table VII

shows the results in regard to the Multi-scale Holistic Cor-

relation Extraction (MHCE). The first line shows the model’s

performance using only one scale; the second line shows the

performance with two scales (i.e. J = 2 and ε ∈ {1, 3});
the third line shows the performance with six scales, which is

the design choice of DyHSL. As can be seen from the data,

increasing the number of scales leads to an improvement in

prediction. This suggests that there are traffic patterns with

different periodicity, which need to be captured in different

granularity. The proposed DyHSL extracts features from a

variety of scales, which equip the model with the ability to

capture patterns with different granularity.

E. Hyperparameter Analysis

Here we study the hyperparameters of DyHSL. Specifically,

we focus on the number of hidden layers (i.e. Ls) in MHCE,

the number of hyperedges (i.e. I) in the DHSL block and

the hidden dimension (i.e. d) of the feature. The experimental

results on two datasets (PEMS04 and PEMS08) are shown in

Fig. 5. Note that when studying the effect of one hyperparam-

eter, others are kept as the default values. Our observations

and analysis are summarized as follows:

• Generally, the proposed DyHSL is not sensitive to

changes in hyperparameters. As can be seen from the

data, changing the number of hidden layers and the

number of hyperedges does not influence the performance

very much, and in most cases (except the cases when

we use small hidden dimensions like 16 and 32), the

change in errors (MAE, RMSE, MAPE) is minimal. This

shows the robustness of our model. We also observe that

the model is less sensitive to hyperparameter changes in

2312

Authorized licensed use limited to: Peking University. Downloaded on November 07,2023 at 09:26:10 UTC from IEEE Xplore. Restrictions apply.

Visualization of Sensor No. 105 Visualization of Sensor No. 5

Visualization of Sensor No. 49 Visualization of Sensor No. 78

Fig. 6: Visualization of prediction results on PEMS08 dataset. The results show that the model has the ability to not only capture regular
patterns (upper left) but also adapt to pattern changes (upper right). Moreover, the model yield reasonable predictions in adverse cases when
there is too much noise (lower left) and strange patterns (lower right).

the PEMS08 dataset, compared to the PEMS04 dataset.

A possible explanation for this is that the traffic flow

in PEMS08 is easier to predict (the prediction errors in

PEMS08 are lower than those in PEMS04).

• We vary the number of hidden layers in the range of

{1, 2, 3, 4}. The first line in Fig. 5 shows the results.

Although the performances do not change too much,

the best performance is achieved by 2 hidden layers.

One explanation for this result is that the model requires

enough layers to enlarge the receptive field and to learn

higher-order relations in the structured data. On the other

hand, deeper layers introduce extra parameters, which

might be harder to learn. Therefore, a moderate number

of hidden layers (i.e. 2) is adopted in DyHSL.

• We also perform an experiment with the number of hy-

peredges (I) in the DHSL block. Specifically, we vary the

number of hyperedges I in the range of {8, 16, 32, 64},
and the result is shown in the second line in Fig. 5.

As can be seen from the results, using 32 hyperedges is

relatively better on the two datasets. A possible reason for

this phenomenon is that a small number of hyperedges

only allow the model to capture coarse information in

the graph, which hinders prediction accuracy. On the

contrary, too many hyperedges bring extra structural

correlations, which might introduce unnecessary noise to

the model. Thus, an intermediate number of hyperedges

is more helpful for the model.

• For the number of hidden dimensions (d), we vary the

value in the range of {16, 32, 64, 128}, and the result

is shown in the third line in Fig. 5. From the data,

we can see that the model performs badly when the

number of hidden dimensions is very small, which affects

the model’s ability to capture complex spatio-temporal

dynamics. On the other end, we observe that there is

no significant performance gain when the number of

hidden dimensions grows beyond 64. Therefore, we set

the hidden dimension of our model as 64.

F. Case Study

In this subsection, we visualize four prediction results in

comparison to the ground truth data on the PEMS08 dataset,

which is shown in Fig. 6. The upper-left figure is the prediction

results of Sensor 105, from August 23 to 25 in 2016. The

three days are all workdays. As can be seen from the results,

the daily patterns are similar, and the model can learn these

easily. The upper-right figure is the prediction results of Sensor

5, from August 25 to 27 in 2016. The first two days are

workdays while the last day is Saturday. As we can see, the

last day’s traffic pattern is different from the first two days.

Despite this pattern change, the model can adapt to this nicely.

For example, around 12 a.m. on August 27, the traffic flow

suddenly decreases, and our model quickly adapt to the change

and predict lower traffic flow.

The lower-left figure is the prediction results of Sensor

49, from August 22 to 25. Although the three days are all

workdays, there is much noise in the traffic signal, which

2313

Authorized licensed use limited to: Peking University. Downloaded on November 07,2023 at 09:26:10 UTC from IEEE Xplore. Restrictions apply.

Time step 1 Time step 6 Time Step 12

Fig. 7: Visualization of hypergraph incidence matrix (i.e. Λ). The experiment is performed on the PEMS08 dataset, and we extract three
time steps in the feature (time step 1, 6 and 12). For better visualization, we only show the submatrices of the incidence matrix.

makes the prediction task challenging. As we can see from

the prediction results, our model yields reasonable predictions,

which shows that the model is robust to noises in the traffic

flow signal. The lower-right figure is the prediction results

of Sensor 78, from August 21 to 23. This sensor exhibits a

strange pattern: at night the traffic flow drops to somewhere

around 60 and then becomes stable around that point. This

could be a defect in the data, or it might result from some

regular events like police patrol. Although our model does not

yield a constant value for these time periods, this could be a

shortcoming among most data-driven methods.

G. Analysis of the Dynamic Hypergraph Structure Learning

In this subsection, we provide some further analysis of the

Dynamic Hypergraph Structure Learning block in our model.

Fig. 7 shows the visualization results of the incidence matrix

(i.e. Λ in Eq. 6). Remember that the entries in the incidence

matrix denote the closeness between a node and a hyperedge:

the larger the value, the closer a node is to the hyperedge.

For better visualization, the figure only shows submatrices

of the incidence matrix. From the results, we can see that

different nodes have different degrees of closeness to different

hyperedges. For example, in the left matrix, Node 0 and 2 are

closer to Hyperedge 2, whereas Node 4 and 5 are closer to

Hyperedge 3. This shows that different nodes are linked by

different hyperedges so that we can learn the relations among

multiple nodes on the hypergraph more efficiently.

Moreover, the closeness of a node and a hyperedge changes

over time, which shows that hypergraph learning can capture

the spatio-temporal dynamics in the traffic data. Fig. 7 shows

three time steps (time step 1, time step 6 and time step 12) in

the temporal graph data. As we can see, the closeness between

nodes and hyperedges evolves over time. For example, at time

step 1, Node 0 is closely related to Hyperedge 2. However,

in time step 6, the node is leaving Hyperedge 2 and joining

Hyperedge 7. This shows that our model can capture a shift of

influence in the traffic network across time. For instance (also

illustrated in Fig. 1), a node near the residential area may

exhibit similar patterns with other nodes inside the residential

area (and thus they are closer to Hyperedge A, influenced

more by this hyperedge). However, a car accident nearby could

change the future traffic pattern of this node, and the node

tends to leave Hyperedge A and join Hyperedge B, which

represents the impact of the car accident.

Interestingly, some hyperedges exhibit functions similar to

other components commonly used in traffic flow prediction

(or more generally, multi-variate time series forecasting). For

example, Hyperedge 1 at time step 12 connects to most nodes,

which functions like a spatial aggregation at some time step.

For another example, Hyperedge 6 at time step 12 is close to

some nodes and distant from others. When the node features

aggregate to this hyperedge, some features are multiplied by

positive values and others are multiplied by negative values,

which indicates that this hyperedge is performing convolution

operation on the node features, and that its functionality is

similar to graph convolutions.

VI. CONCLUSION

This paper proposes a novel model named DyHSL for traffic

flow forecasting, which models both non-pairwise and high-

order relationships in the traffic network. To describe non-

pairwise dynamic interactions, we offer a block for construct-

ing a temporal hypergraph in which all nodes are obser-

vations at every timestamps. Then, we develop hypergraph

convolution to update node representations using data from

their related hyperedges. In addition, to investigate high-order

spatio-temporal interactions in the road network, an interactive

graph convolution block is introduced. Finally, we combine

these two block into a comprehensive multi-scale correlation

extraction framework. One limitation of our model is that

although we have tried to reduce the parameters, it might also

have the risk of overfitting.

ACKNOWLEDGMENTS

This paper is partially supported by grants from the National

Key Research and Development Program of China with Grant

No. 2018AAA0101902 and the National Natural Science

Foundation of China (NSFC Grant Number 62276002).

2314

Authorized licensed use limited to: Peking University. Downloaded on November 07,2023 at 09:26:10 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] X. Wu, D. Zhang, C. Guo, C. He, B. Yang, and C. S. Jensen, “Autocts:
Automated correlated time series forecasting,” Proceedings of the VLDB
Endowment, vol. 15, no. 4, pp. 971–983, 2021.

[2] J. Ji, J. Wang, Z. Jiang, J. Jiang, and H. Zhang, “Stden: Towards physics-
guided neural networks for traffic flow prediction,” in Proceedings of the
AAAI Conference on Artificial Intelligence, 2022.

[3] R. Wang, R. Walters, and R. Yu, “Physics-guided deep learning
for spatiotemporal forecasting,” in Proceedings of the Conference on
Knowledge-Guided Machine Learning. Chapman and Hall/CRC, 2022,
pp. 179–210.

[4] Z. Huang, Y. Sun, and W. Wang, “Coupled Graph ODE for Learning
Interacting System Dynamics,” in Proceedings of the International ACM
SIGKDD Conference on Knowledge Discovery & Data Mining, 2021.

[5] S. Zheng, Z. Gao, W. Cao, J. Bian, and T.-Y. Liu, “Hierst: A unified
hierarchical spatial-temporal framework for covid-19 trend forecasting,”
in Proceedings of the International Conference on Information and
Knowledge Management, 2021, pp. 4383–4392.

[6] F. Li, J. Feng, H. Yan, G. Jin, F. Yang, F. Sun, D. Jin, and Y. Li,
“Dynamic graph convolutional recurrent network for traffic prediction:
Benchmark and solution,” ACM Transactions on Knowledge Discovery
from Data, 2022.

[7] D. Ni, Traffic flow theory: Characteristics, experimental methods, and
numerical techniques. Butterworth-Heinemann, 2015.

[8] X. Di and R. Shi, “A survey on autonomous vehicle control in the
era of mixed-autonomy: From physics-based to ai-guided driving policy
learning,” Transportation Research Part C: Emerging Technologies, vol.
125, p. 103008, 2021.

[9] Z. Mo, R. Shi, and X. Di, “A physics-informed deep learning paradigm
for car-following models,” Transportation research part C: emerging
technologies, vol. 130, p. 103240, 2021.

[10] B. M. Williams and L. A. Hoel, “Modeling and forecasting vehicular
traffic flow as a seasonal arima process: Theoretical basis and empirical
results,” Journal of Transportation Engineering, vol. 129, no. 6, pp.
664–672, 2003.

[11] Z. Sun and G. Fox, “Traffic flow forecasting based on combination of
multidimensional scaling and svm,” International Journal of Intelligent
Transportation Systems Research, vol. 12, no. 1, pp. 20–25, 2014.

[12] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in arXiv, 2016.

[13] Y. Li, R. Yu, C. Shahabi, and Y. Liu, “Diffusion convolutional recurrent
neural network: Data-driven traffic forecasting,” in Proceedings of the
International Conference on Learning Representations, 2018.

[14] Z. Wu, S. Pan, G. Long, J. Jiang, and C. Zhang, “Graph wavenet for deep
spatial-temporal graph modeling,” in Proceedings of the International
Joint Conference on Artificial Intelligence, 2019.

[15] C. Zheng, X. Fan, C. Wang, and J. Qi, “Gman: A graph multi-attention
network for traffic prediction,” in Proceedings of the AAAI Conference
on Artificial Intelligence, 2020, pp. 1234–1241.

[16] Z. Wu, S. Pan, G. Long, J. Jiang, X. Chang, and C. Zhang, “Connecting
the dots: Multivariate time series forecasting with graph neural net-
works,” in Proceedings of the International ACM SIGKDD Conference
on Knowledge Discovery & Data Mining, 2020, pp. 753–763.

[17] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Ben-
gio, “Graph attention networks,” in Proceedings of the International
Conference on Learning Representations, 2017.

[18] Z. Fang, L. Xu, G. Song, Q. Long, and Y. Zhang, “Polarized graph neural
networks,” in Proceedings of the Web Conference, 2022, pp. 1404–1413.

[19] X. Luo, W. Ju, M. Qu, C. Chen, M. Deng, X.-S. Hua, and M. Zhang,
“Dualgraph: Improving semi-supervised graph classification via dual
contrastive learning,” in Proceedings of the IEEE Conference on Data
Engineering, 2022, pp. 699–712.

[20] F. Hu, Y. Zhu, S. Wu, W. Huang, L. Wang, and T. Tan, “Graphair: Graph
representation learning with neighborhood aggregation and interaction,”
Pattern Recognition, vol. 112, p. 107745, 2021.

[21] W. Ju, Y. Qin, Z. Qiao, X. Luo, Y. Wang, Y. Fu, and M. Zhang,
“Kernel-based substructure exploration for next poi recommendation,”
arXiv preprint arXiv:2210.03969, 2022.

[22] X. Luo, W. Ju, M. Qu, Y. Gu, C. Chen, M. Deng, X.-S. Hua, and
M. Zhang, “Clear: Cluster-enhanced contrast for self-supervised graph
representation learning,” IEEE Transactions on Neural Networks and
Learning Systems, 2022.

[23] W. Ju, X. Luo, Z. Ma, J. Yang, M. Deng, and M. Zhang, “Ghnn: Graph
harmonic neural networks for semi-supervised graph-level classifica-
tion,” Neural Networks, vol. 151, pp. 70–79, 2022.

[24] H. Zhu, F. Feng, X. He, X. Wang, Y. Li, K. Zheng, and Y. Zhang, “Bi-
linear graph neural network with neighbor interactions,” in Proceedings
of the International Joint Conference on Artificial Intelligence, 2020.

[25] M. Zhang and Y. Chen, “Link prediction based on graph neural
networks,” in Proceedings of the Conference on Neural Information
Processing Systems, 2018.

[26] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl,
“Neural message passing for quantum chemistry,” in Proceedings of the
International Conference on Machine Learning, 2017.

[27] W. Jin, T. Derr, Y. Wang, Y. Ma, Z. Liu, and J. Tang, “Node similarity
preserving graph convolutional networks,” in Proceedings of the Inter-
national ACM Conference on Web Search & Data Mining, 2021, pp.
148–156.

[28] J. Yang, P. Zhao, Y. Rong, C. Yan, C. Li, H. Ma, and J. Huang,
“Hierarchical graph capsule network,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 35, no. 12, 2021, pp. 10 603–
10 611.

[29] Y. Gao, Z. Zhang, H. Lin, X. Zhao, S. Du, and C. Zou, “Hypergraph
learning: Methods and practices,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2020.

[30] Y. Yang, C. Huang, L. Xia, Y. Liang, Y. Yu, and C. Li, “Multi-behavior
hypergraph-enhanced transformer for sequential recommendation,” in
arXiv, 2022.

[31] L. Xia, C. Huang, Y. Xu, J. Zhao, D. Yin, and J. Huang, “Hypergraph
contrastive collaborative filtering,” in Proceedings of the International
ACM SIGIR Conference on Research and Development in Information
Retrieval, 2022.

[32] D. Li, Z. Xu, S. Li, and X. Sun, “Link prediction in social networks
based on hypergraph,” in Proceedings of the Web Conference, 2013.

[33] I. Chien, C.-Y. Lin, and I.-H. Wang, “Community detection in hyper-
graphs: Optimal statistical limit and efficient algorithms,” 2018.

[34] P. Li and O. Milenkovic, “Submodular hypergraphs: p-laplacians,
cheeger inequalities and spectral clustering,” in Proceedings of the
International Conference on Machine Learning, 2018.

[35] Y. Feng, H. You, Z. Zhang, R. Ji, and Y. Gao, “Hypergraph neural net-
works,” in Proceedings of the AAAI conference on artificial intelligence,
vol. 33, no. 01, 2019, pp. 3558–3565.

[36] J. Jiang, Y. Wei, Y. Feng, J. Cao, and Y. Gao, “Dynamic hypergraph
neural networks.” in Proceedings of the International Joint Conference
on Artificial Intelligence, 2019.

[37] N. Yin, F. Feng, Z. Luo, X. Zhang, W. Wang, X. Luo, C. Chen, and X.-
S. Hua, “Dynamic hypergraph convolutional network,” in Proceedings
of the IEEE Conference on Data Engineering, 2022.

[38] W. Zhao, Y. Gao, T. Ji, X. Wan, F. Ye, and G. Bai, “Deep temporal
convolutional networks for short-term traffic flow forecasting,” IEEE
Access, vol. 7, pp. 114 496–114 507, 2019.

[39] R.-G. Cirstea, B. Yang, C. Guo, T. Kieu, and S. Pan, “Towards spatio-
temporal aware traffic time series forecasting,” in Proceedings of the
IEEE Conference on Data Engineering, 2022, pp. 2900–2913.

[40] R.-G. Cirstea, C. Guo, B. Yang, T. Kieu, X. Dong, and S. Pan,
“Triformer: Triangular, variable-specific attentions for long sequence
multivariate time series forecasting,” in Proceedings of the Thirty-First
International Joint Conference on Artificial Intelligence, 2022, pp. 1994–
2001.

[41] Z. Li, C. Huang, L. Xia, Y. Xu, and J. Pei, “Spatial-temporal hy-
pergraph self-supervised learning for crime prediction,” arXiv preprint
arXiv:2204.08587, 2022.

[42] Y. Liang, Z. Cui, Y. Tian, H. Chen, and Y. Wang, “A deep generative
adversarial architecture for network-wide spatial-temporal traffic-state
estimation,” Transportation Research Record, vol. 2672, no. 45, pp. 87–
105, 2018.

[43] X. Luo, D. Li, Y. Yang, and S. Zhang, “Spatiotemporal traffic flow
prediction with knn and lstm,” Journal of Advanced Transportation, vol.
2019, 2019.

[44] G. E. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time series
analysis: forecasting and control. John Wiley & Sons, 2015.

[45] C. Song, Y. Lin, S. Guo, and H. Wan, “Spatial-temporal synchronous
graph convolutional networks: A new framework for spatial-temporal
network data forecasting,” in Proceedings of the AAAI Conference on
Artificial Intelligence, 2020, pp. 914–921.

2315

Authorized licensed use limited to: Peking University. Downloaded on November 07,2023 at 09:26:10 UTC from IEEE Xplore. Restrictions apply.

[46] S. Guo, Y. Lin, N. Feng, C. Song, and H. Wan, “Attention based spatial-
temporal graph convolutional networks for traffic flow forecasting,” in
Proceedings of the AAAI Conference on Artificial Intelligence, 2019, pp.
922–929.

[47] J. Li, Z. Han, H. Cheng, J. Su, P. Wang, J. Zhang, and L. Pan, “Predicting
path failure in time-evolving graphs,” in Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining, 2019, pp. 1279–1289.

[48] J. Yi and J. Park, “Hypergraph convolutional recurrent neural network,”
in Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 2020, pp. 3366–3376.

[49] J. Wang, Y. Zhang, Y. Wei, Y. Hu, X. Piao, and B. Yin, “Metro passenger
flow prediction via dynamic hypergraph convolution networks,” IEEE
Transactions on Intelligent Transportation Systems, vol. 22, no. 12, pp.
7891–7903, 2021.

[50] Z. Fang, Q. Long, G. Song, and K. Xie, “Spatial-temporal graph ode
networks for traffic flow forecasting,” in Proceedings of the International
ACM SIGKDD Conference on Knowledge Discovery & Data Mining,
2021.

[51] H. Lütkepohl, New introduction to multiple time series analysis.
Springer Science & Business Media, 2005.

[52] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Proceedings of the Conference on Neural
Information Processing Systems, 2014, pp. 3104–3112.

[53] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[54] S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation of
generic convolutional and recurrent networks for sequence modeling,”
arXiv:1803.01271, 2018.

[55] K. Cho, B. van Merrienboer, D. Bahdanau, and Y. Bengio, “On the
properties of neural machine translation: Encoder-decoder approaches,”
in SSST@EMNLP, 2014.

[56] S. Huang, D. Wang, X. Wu, and A. Tang, “Dsanet: Dual self-attention
network for multivariate time series forecasting,” in CIKM, November
2019.

[57] B. Yu, H. Yin, and Z. Zhu, “Spatio-temporal graph convolutional
networks: A deep learning framework for traffic forecasting,” in IJCAI,
7 2018. [Online]. Available: https://doi.org/10.24963/ijcai.2018/505

[58] L. Bai, L. Yao, S. S. Kanhere, X. Wang, and Q. Z. Sheng,
“Stg2seq: Spatial-temporal graph to sequence model for multi-step
passenger demand forecasting,” in IJCAI, 7 2019. [Online]. Available:
https://doi.org/10.24963/ijcai.2019/274

[59] R. Huang, C. Huang, Y. Liu, G. Dai, and W. Kong, “Lsgcn: Long short-
term traffic prediction with graph convolutional networks.” in IJCAI,
2020, pp. 2355–2361.

[60] L. Bai, L. Yao, C. Li, X. Wang, and C. Wang, “Adaptive graph
convolutional recurrent network for traffic forecasting,” Advances in
neural information processing systems, vol. 33, pp. 17 804–17 815, 2020.

[61] M. Li and Z. Zhu, “Spatial-temporal fusion graph neural networks for
traffic flow forecasting,” in AAAI, May 2021.

[62] Z. Fang, Q. Long, G. Song, and K. Xie, “Spatial-temporal graph ode
networks for traffic flow forecasting,” in KDD, 2021.

[63] Y. Chen, I. Segovia-Dominguez, and Y. R. Gel, “Z-gcnets: Time zigzags
at graph convolutional networks for time series forecasting,” in ICML,
2021.

[64] J. Choi, H. Choi, J. Hwang, and N. Park, “Graph neural controlled
differential equations for traffic forecasting,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 36, no. 6, 2022, pp. 6367–
6374.

[65] S. Lan, Y. Ma, W. Huang, W. Wang, H. Yang, and P. Li, “Dstagnn:
Dynamic spatial-temporal aware graph neural network for traffic flow
forecasting,” in International Conference on Machine Learning. PMLR,
2022, pp. 11 906–11 917.

[66] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in arXiv, 2014.

2316

Authorized licensed use limited to: Peking University. Downloaded on November 07,2023 at 09:26:10 UTC from IEEE Xplore. Restrictions apply.

