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Abstract
Molecular property prediction stands as a cornerstone task in AI-

driven drug design and discovery, wherein the atoms within a

molecule serve as nodes, collectively forming a graph with bonds

acting as edges. Given the crucial role of geometric structures in

molecular property prediction, the integration of 3D information

with various graph learning methods has been explored to enhance

prediction performance. Despite the increasing adoption of the

“Graph pre-training and fine-tuning" paradigm to refine molecular

representations, a significant challenge persists due to the mis-

alignment between pre-training objectives and downstream tasks.

Drawing inspiration from prompt tuning techniques in Natural Lan-

guage Processing (NLP), several graph prompt-based methods have

emerged. However, existing approaches tend to overlook the unique

properties inherent in molecular graphs. To address this gap, our

paper introduces a novel approach named 3DMOleculArprompT
(MOAT) designed specifically for geometric molecules. Specifi-

cally, we propose atom-level prompts to capture atom distribution,

geometry-level prompts tailored for molecular conformers, where

different conformations have distinct chemical properties, and task-

level prompts to leverage functional group properties. Results on

both 3D and 2D downstream tasks demonstrate its ability to success-

fully bridge the data gap across diverse settings. To the best of our
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knowledge, this paper is the first attempt to introduce geometric

graph-prompting learning for molecules.
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1 Introduction
Effective molecule representation learning is a fundamental step

for various AI-driven scientific research issues in recent years, such

as bioinformatics, virtual screening, drug discovery, cancer pre-

diction [11–13, 27, 37]. Molecules can naturally be abstracted as

graph-structured data, with atoms and bonds representing nodes

and edges, respectively. Additionally, commonly used 3D molecules

include chemical bond lengths and rotation angles, which are con-

verted into 3D graphs where all nodes are assigned Cartesian co-

ordinates [15, 18, 36, 38]. Due to the presence of 3D structures,

3D molecules can exhibit numerous conformers, each potentially

having significantly different properties. Therefore, a key challenge

in developing effective 3D molecular representations is ensuring

rotational invariance [34, 41, 43].
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Traditional approaches generally adopt the Graph Neural Net-

works (GNNs) architectures tomodel the 3D structures of molecules,

we categorize these works into two classes, i.e., Equivariant GNNs

and chemical GNNs. Equivariant GNNs [2, 14, 50, 56] typically oper-

ate on inputs containing absolute 3D information, such as Cartesian

coordinates. While success has been achieved, each part of these

models must be very carefully designed to maintain the rotation

equivariance [50]. Furthermore, the performance of such models

generally tends to be worse than invariant ones due to the expressiv-

ity of equivariant neural networks [34]. Another class of methods

exclusively utilizes relative 3D information, including Euclidean

distances of the atom Cartesian coordinates and relative polar an-

gles. These extracted relative 3D geometries by chemical tools are

naturally SE(3)-invariant [17]. In this paper, we follow the archi-

tecture of chemical GNNs. For chemical GNNs, they always adopt

the end-to-end supervised learning architecture [2, 20]. In light

of the constraints associated with supervised learning, significant

efforts have been directed towards embracing the “pre-training and

fine-tuning" framework for GNNs [53, 54, 65], drawing inspiration

from the successful utilization of pre-trained models in domains

such as Computer Vision (CV) and Natural Language Processing

(NLP) [8, 32]. The paradigm adopted for 3D molecular generation

or property prediction comprises two principal phases. Firstly, in

the pre-training phase, the self-supervised learning tasks are metic-

ulously designed specifically for unlabeled 3D molecules. These

tasks aim to furnish GNNs with a broad comprehension of the in-

herent correlations among geometric substructures and chemical

connections. For example, GNNs can amass general insights into the

relationships among atoms and chemical rotation angles through

tasks such as masked 3D molecule generation. Subsequently, dur-

ing the fine-tuning phase, the pre-trained molecular GNNs can be

adjusted to predict 3D molecular properties or geometry with a

fewer number of training epochs and annotations.

Despite the diagram of “pre-training and fine-tuning" in 3D

molecular GNNs achieving success in efficient fine-tuning, their

performance is still hindered by the misalignment of objectives

between the pre-training and fine-tuning stages. Self-supervised re-

construction objectives are adopted on the pertaining 3D molecules

in the pre-training stage [2, 53], thereby facilitating the reconstruc-

tion of fundamental 3D geometric substructures. Conversely, the

fine-tuning process deviates from the pre-training objective, aiming

to minimize a task-specific loss driven by the quality of annota-

tions. This misalignment poses challenges for the seamless transfer

of chemical geometric knowledge acquired during pre-training,

potentially resulting in catastrophic forgetting and, consequently,

constraining overall performance [7, 10].

In response to these challenges, researchersmade several prompt-

based explorations on graph-structured data to mitigate the mis-

alignment between the pre-training and fine-tuning stages [10,

35, 54] and achieved great success. The general idea behind these

models is inspired by prompt tuning techniques in the domain of

NLP [24, 26] and CV [8, 32]. They share the common principle

that by reconfiguring the fine-tuning process to align with the

pre-training framework, which can seamlessly transfer general

knowledge to fine-tuning tasks without loss. However, all exist-

ing graph-prompting explorations are conducted on general 2D

graphs, such as social networks, citation networks, and knowledge

(a) (b) (c)

Figure 1: Three types of 3D conformer for Butadiene (C4H6)
[4] with varying conformational energies.

graphs, which can not directly extend to geometric 3D molecules.

We summarize the specific challenges as follows,

• Gaps of atom distribution: Molecular graphs, being a dis-

tinctive form of heterogeneous graphs, consist of diverse

nodes that represent atoms [5]. These atoms exhibit notable

variations in distribution and chemical attributes across dif-

ferent types [62], especially in different molecular datasets.

However, existing methods overlook this crucial aspect by

applying prompt templates uniformly to all nodes, disregard-

ing the distinctive chemical properties inherent to individual

atoms. Consequently, these approaches fail to capture the

nuanced characteristics of molecular structures, potentially

leading to suboptimal performance in tasks related to molec-

ular property prediction.

• Gaps of geometric substructures:Molecular graphs pos-

sess a notably intricate structure, particularly in terms of

their geometric arrangements [4, 60]. A real molecule is

essentially an ensemble of interconverting 3D structures, re-

ferred to as conformers.While different conformers share the

same 2D molecular graph, they exhibit distinct 3D arrange-

ments [23, 31]. Typically, a molecule’s conformer exists with

a certain probability and may manifest unique properties.

Fig. 1 illustrates this concept, showcasing three conformers

of Butadiene (C4H6) with varying conformational energies.

Among these conformers, the most stable configuration of

1,3-butadiene is the s-trans conformation, where the mole-

cule lies planarly, with its two pairs of double bonds oriented

in opposite directions. Another conformer, the gauche ge-

ometry, involves the twisting of double bonds from the s-cis

geometry, resulting in a dihedral angle of approximately 38°.

This conformer is approximately 12.0 kJ/mol (2.9 kcal/mol)

higher in energy compared to the s-trans conformer. Given

the significance of molecular conformers, it is imperative

to identify them accurately. However, existing methods pri-

marily focus on designing prompts for fundamental links,

thereby neglecting the geometric intricacies inherent within

molecular graphs.

• Gaps ofmolecular properties:Differentmolecular datasets

can have significant molecular properties [29, 47]. Functional

groups are pivotal components within molecular graphs

[46, 70], as they play a fundamental role in determining

molecular properties. The amalgamation of diverse func-

tional groups profoundly impacts molecular characteristics

[19]. For example, molecules with benzene rings generally
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have consistent physical or chemical properties, such as sol-

ubility [44]. However, existing research works suffer from

a deficiency in prompts tailored for graph motifs or func-

tional groups, thereby constraining their capacity to preserve

critical structural information.

In this paper, we propose a 3D MOleculArprompT, abbrevi-

ated as MOAT. MOAT is an elaborately designed geometric graph

prompt for molecules from multi-level perspectives. To the best of

our knowledge, MOAT is the first attempt to introduce geometric

graph-prompting learning for 3D molecular graphs. Firstly, for the

atom-level prompt, we present a novel prompting template that dis-

criminates the various types of atoms. For the geometry-level gap,

we design prompts for 3D geometrical structures through spheri-

cal Bessel function decomposition based on the relative position,

which can be integrated into node representation seamlessly with

message-passing, alleviating the gap of geometrical conformation

in 3D molecular graphs. In addition, we design a prompt template

for common functional groups in graph representation, seamlessly

adapting it into node representation. The prompt-tuning process

is also naturally compatible with the pre-training one through

through functional group alignment tasks. Through experiments

conducted on popularly used benchmark 3D datasets, we demon-

strate the effectiveness of our model in bridging the data gap across

diverse settings and the motivation we put forth.

2 Related Work
2.1 Pre-training and Fine-tuning

Molecular-GNNs
The “Pre-training and fine-tuning" paradigm has witnessed signifi-

cant advancements in the field of molecular graph representation

learning. Numerous pretraining tasks have been proposed to extract

valuable information from large-scale molecular datasets, typically

falling into two categories. The first category, termed Pre-training
with 2D Information, which utilizes the molecular 2D structural

data for pre-training. For instance, GraphCL [67] and its various

iterations [55, 61, 66] introduce an embedding-enhanced frame-

work, distinguishing embeddings of adjacent molecular graphs and

elevating embeddings of other molecules. GPT-GNN [22] utilizes

an attribute graph generation task aiming at pre-training GNNs to

capture both structural and semantic attributes of graphs. GraphFP

[42] uses subgraph mining and fragment-based tasks to enhance

GNN performance on molecular benchmarks by integrating multi-

resolution structural information. However, these methods only

focus on 2D pretraining structure information, disregarding 3D in-

formation. Certain molecular properties, like potential energy, are

strongly correlated withmolecular 3D structure and conformer [49],

indicating potential enhancements in predictions with this informa-

tion. The second category, Pre-training with 3D Information,
includes approaches such as 3D Infomax [52], which maximizes

mutual information between representations encoded from both

2D and 3D models, and GraphMVP [33], which incorporates 3D

information into the 2D model using contrastive and generative

methods. The NoisyNode [69] study applied denoising regulariza-

tion to graph neural networks for pretraining equilibrium confor-

mations, resulting in state-of-the-art performance for molecular

property predictions. Nevertheless, the underlying motivation of

these methods is to enhance 2D models with 3D information [25],

thus their performance is still influenced by inconsistencies between

the objectives of the pretraining and fine-tuning stages. 3D-GPT

[59] introduces a 3D pre-training method that utilizes bond angle,

bond length, and dihedral angle to optimize the effective molecular

representations through a generative multi-task architecture and a

total energy-based surrogate metric. In contrast, this paper endeav-

ors to pretrain 3D models via graph prompting, focusing on their

utilization in downstream 3D tasks.

2.2 3D Molecular-GNNs
The encoding of 3D geometric structures into molecular represen-

tations is crucial for determining molecular properties, thereby

driving the development of 3D graphs tailored to handle 3D infor-

mation, especially in cases where pretraining models inadequately

utilize such information. Within the realm of 3D molecular graph

research, an important research direction is Equivariant Graph

Neural Networks (EGNN), including Tensor Field Networks (TFN)

[56], SE(3)-transformers [14], PaiNN [50], NequIP [2], etc. These

methods typically operate on inputs containing absolute 3D in-
formation, such as Cartesian coordinates. While effective, each

component of these models must be very carefully designed to

maintain equivariance to rotations of the input graph. Further-

more, the performance of such equivariant GNNs generally tends

to be worse than invariant ones [34]. Another class of methods

exclusively utilizes relative 3D information, including Euclidean

distances of the atom Cartesian coordinates and relative polar an-

gle. These relative 3D geometries are naturally SE(3)-invariant [17].

SchNet [49] solely considers distance information, while DimeNet

[17] further integrates angles between bonds. Nevertheless, both

approaches incorporate incomplete 3D information, limiting net-

work capacity. SphereNet [34] generates an approximate complete

3D representation using distance, angle, and torsion information,

albeit with a complexity of𝑂 (𝑛𝑘2). GemNet [17], relying on quadru-

plet nodes, introduces even higher computational overheads. But

these methods incur high computational costs. Building on this,

ComENet [58] achieves the currently best performance by propos-

ing essential rotation angles to fulfill global completeness, with

a time complexity of 𝑂 (𝑛𝑘). Equiformer [31] adapts Transformer

architectures with SE(3)/E(3)-equivariant features and a novel equi-

variant graph attention mechanism, achieving competitive results

on several 3D molecular datasets. In this paper, we follow the way

of relative-information-based models, avoiding the inherent limi-

tations of equivariant 3D GNNs. We elaborately design geometric

prompts for better utilizing the relative 3D characteristics.

2.3 Graph Prompt Learning
Prompt learning has been developed to address the inherent gap

between pre-training and fine-tuning tasks. It has achieved signifi-

cant success across various fields, including sentence classification

and sentiment analysis in Natural Language Processing (NLP), as

well as image recognition and segmentation in Computer Vision

(CV)[8, 13, 32, 39]. The general idea behind prompt learning is to re-

shape data representations or fine-tuning tasks into pre-training for-

mats. Inspired by this, many researchers naturally extend this idea

into graph-structured data, for remitting the gap in graph-specific
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tasks [28, 40, 54, 65]. Typically, GraphPrompt [35] improves its

performance with types of task-oriented learnable readout prompt

functions. All-in-One [54] designs an extra graph token structure

and token insertion technique, developing the model’s ability in

generalization for various downstream tasks. GPF [10] integrates

universal prompt templates and offers related theoretical analysis

for a comprehensive understanding. HGPrompt [68] is designed

for heterogeneous graphs. It proposes a dual-prompting module,

which includes the feature prompt and heterogeneity prompt. The

heterogeneity prompts rely on the meta-paths. MolCPT [7] extends

the general idea to 2D molecules. It considers the motif structure

and ignores the heterogeneous atom types and critical geometry

information, which encounters the specific challenges for 3Dmolec-

ular graphs. To sum up, all existing graph prompt learning methods

ignore the critical and specific characteristics for distinguishing 3D

molecular graphs, such as the geometric information and the 3D

conformer.

v
u

(a) 𝑑𝑣𝑢 , 𝜃𝑣𝑢 and 𝜙𝑣𝑢

v
u

(b) 𝜏𝑣𝑢

Figure 2: Illustration for computing relative 3D molecular
information Ω(G).

3 Preliminaries
3.1 Problem Definition
A 3D molecule can be represented as a geometric graph G =

(V, E,P), where V denotes the set of node (atom) attributes, |V|
denotes the number of nodes (atoms), and |E | denotes the number

of edges (bonds). The position matrix P = [𝑝1, 𝑝2, ..., 𝑝 |V | ]𝑇 ∈
R |V |×3

, where 𝑝𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 ) denotes the position vector for node

𝑖 in Cartesian coordinate system (CSC). Molecule properties y con-

stitute the targets of the predictive task. Given a molecule G𝑛 , we

aim to predict the properties or energy y𝑛 according to its graph rep-

resentation ℎ(G𝑛), i.e., to learn a mapping function 𝑓𝜃 : G𝑛 → Y𝑛 .

3.2 3D Pretraining MolecluarGNNs
The 3D molecular machine learning models generally follow the

GNN architectures due to their superior ability in modeling graph-

structured data [52]. In this paper, we focus on the non-equivariant

MolecluarGNNs [34]. They converts absolute Cartesian coordinates

P into relative 3D expressions Ω(G), which is naturally 𝑆𝐸 (3)-
invariants.

Ω(G) = {(𝑑𝑣𝑢 , 𝜃𝑣𝑢 , 𝜙𝑣𝑢 , 𝜏𝑣𝑢 ) ∈ R | E |×4 |𝑣 ∈ V, 𝑢 ∈ N (𝑣)}, (1)

where N(𝑣) denotes the connected neighbor-atoms around atom

𝑣 , 𝑑𝑣𝑢 denotes the relative Euclidean distance between node 𝑢 and

𝑣 , 𝜃𝑣𝑢 denotes the relative polar angle, 𝜙𝑣𝑢 denotes the azimuthal

angle. 𝜏𝑣𝑢 denotes the rotation angle for edge 𝑒𝑣𝑢 , which determines

the orientation of the local neighborhood. The detailed calculation

of Ω(G) [58] is shown in Algo. 1. The 3D geometry structure guides

the aggregation of local neighborhood information and leads to a

more contextual representation for each node. Then a graph pooling

operation is adopted to get the representation for the whole graph.

Let ℎ
(𝑙 )
𝑣 denote the representation of node 𝑣 at the 𝑙-th layer of

GNN, andN(𝑣) denote all the neighbor nodes of node 𝑣 , the update
procedure from the (𝑙 − 1)-th layer to the 𝑙-th layer is:

ℎ
(𝑙 )
𝑣 = COMB

(
ℎ
(𝑙−1)
𝑣 ,AGG𝑢∈N(𝑣) ({ℎ

(𝑙−1)
𝑣 , ℎ

(𝑙−1)
𝑢 , 𝑑𝑣𝑢 , 𝜃𝑣𝑢 , 𝜙𝑣𝑢 , 𝜏𝑣𝑢 })

)
,

(2)

where AGG denotes the aggregation function (e.g., mean or max op-

erator). COMB combines the information of neighbours and node 𝑣

(e.g., concatenation operator). After 𝐿 iterations of message passing,

the hidden states ℎ
(𝐿)
𝑣 in the last iteration are the embeddings of 𝑣 .

Finally, a READOUT operation (e.g., averaging, sum or graph pool-

ing) is adopted to get the representation ℎ𝐺 for the whole graph

G,

ℎG = READOUT

(
{(ℎ (𝐿)𝑣 |𝑣 ∈ V}

)
. (3)

3.3 Pretraining and Graph-Promoting Paradigm
Let𝑔𝜃 denote theGNNs pre-trained on 3DmoleculesG = (V, E,P),
and D denote the data distribution of downstream tasks. Then

the “pretraining and finetuning" paradigm [22] optimizes the pa-

rameters of the pre-trained molecular GNN 𝑔𝜃 and the learnable

projection head 𝑔𝜙 to maximize the likelihood of correct labels Y𝑐
for the downstream prediction tasks,

arg max

𝜃,𝜙
𝑃

(
Y|𝑔𝜙 (𝑔𝜃 (X, E,P))

)
. (4)

For the “pretraining and graph-promoting" paradigm [35, 54],

the parameters of the pre-trained model are frozen. The target of

graph promoting is to obtain the optimized learnable prompts T
to maximize the likelihood of correct labels Y𝑐 . The node (atom)

embeddings
¯X and edge embeddings

¯E of the downstream graphs

are initialized by the pre-trained model 𝑔𝜃 before graph prompt

learning, and the initialization process is formulated as,

¯X, ¯E, ¯P = 𝑔𝜃 (X, E,P) . (5)

General graph prompting templates include two learnable compo-

nents, i.e., feature (node-level) prompts and adjacency (edge/motif-

level) prompts. To adapt the downstream tasks, the optimization of

graph prompting aims at finding the optimal prompt parameters T
that maximize the likelihood of predicting the correct labels. The

optimization process in this paper is formally defined as,

G∗
: ( ˆX, ˆP, ˆE) = T ( ¯X, ¯E, ¯P),

T ∗ = arg max 𝑃
(
Y|G∗) . (6)

4 MODEL: MOAT
In this paper, we design a 3D MOleculArPrompT for geometric

molecules from multi-level perspectives, abbreviated as MOAT.

MOAT has three main components, i.e., node-level, geometry-level,

and task-level graph prompts. Fig. 3 shows the framework of MOAT.

Compared with the traditional graph “pre-training and fine-tuning"
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Figure 3: Overview of the proposedMOAT. a)We design an atom-level prompt to depict the atom type distribution. b)We propose
a structure-level prompt for the 3D geometrical structures based on relative positions and utilize the attention mechanism to
aggregate geometric information. c) Finally, we present a task-level prompt to utilize the properties of functional groups.

paradigm, graph prompt learning relieves the misalignments be-

tween pre-training objectives and downstream tasks with greater

efficiency.

4.1 Node-Level Prompting.
To address the gap in atom distribution between the pre-training

and fine-tuning stages, we first propose an atom-level prompting.

Generally, graph prompt methods view the node-level gap as a

feature perturbation and propose compensating for it by using a

learnable prompt. Specifically, for node feature ℎ𝑣 the equation is

expressed as follows,

ℎ𝑣 = ¯ℎ𝑣 + 𝑝𝑣, (7)

where 𝑝𝑣 represents the learnable prompt for node 𝑣 . However,

this kind of prompt template employs a learnable prompt for every

node indiscriminately, ignoring the characteristics in molecular

graphs. Compared with general graphs, the nodes (atoms) have

different types in molecular graphs, i.e., the molecular graph is a

heterogeneous graph. To capture the heterogeneity, we design a set

of atom-type-related prompts to tackle the gap. The compensation

process is described as the following,

ℎ𝑣 = ¯ℎ𝑣 + 𝑝𝑇 (𝑣) , (8)

where 𝑇 (𝑣) denotes the atom type of node 𝑣 , 𝑝𝑇 (𝑣) is a learnable
vector of type 𝑇 (𝑣).

4.2 Geometry-Level Prompting.
Themolecular geometry structure is strongly correlated withmolec-

ular properties [4, 47], such as the orbital energy. In this paper, we

follow invariant 3D GNN that takes relative 3D information, i.e.,

Ω(G) = (𝑑, 𝜃, 𝜙, 𝜏), as inputs to networks. The relative geometric in-

formation is naturally SE(3)-invariant and crucial for distinguishing

the molecular 3D structure, as shown in the following theorem.

Theorem 1. Given two 3D molecular graphs, G1 = (V, E,P1)
and G2 = (V, E,P2), the geometry transformation Ω(G) uniquely

determined the 3D structure [58], i.e.,

Ω(G1) = Ω(G2) ⇔ ∃𝑅 ∈ 𝑆𝐸 (3),P1 = 𝑅(P2) .

where 𝑆𝐸 (3) denotes the three-dimensional Special Euclidean group,

and 𝑅 denotes a transformation that combines rotation and transla-

tion. The theorem indicates that if P1 and P2 are in the same 𝑆𝐸 (3)
group, then G1 and G2 would share the same 3D conformation,

they are the same 3D graph.

Following previous studies [21], the relative geometric informa-

tion Ω(G) among atoms are generally transformed into physically

meaningful vectors based on quantum-based basis functions for

better performance. The spherical Bessel harmonics function gen-

erally performs the best and most robustly. The basic functions of

𝑑 , (𝑑, 𝜏) and (𝑑, 𝜃, 𝜙) are RBF, SBF and TBF [17] respectively, which
are formally defined as follows,

eRBF,𝑛 (𝑑) =
√︂

2

𝑐

sin( 𝑛𝜋𝑐 𝑑)
𝑑

,

e
TBF,𝑙,𝑚,𝑛 (𝑑, 𝜃, 𝜙) =

√︄
2

𝑐3 𝑗2
𝑙+1

𝑧𝑙𝑛
𝑗𝑙 (

𝑧𝑙𝑛

𝑐
𝑑)𝑌𝑙𝑚 (𝜃, 𝜙),

e
SBF,𝑙,𝑛 (𝑑, 𝜏) =

√︄
2

𝑐3 𝑗2
𝑙+1

𝑧𝑙𝑛
𝑗𝑙 (

𝑧𝑙𝑛

𝑐
𝑑)𝑌𝑙0 (𝜏),

(9)

where 𝑐 denotes the cutoff boundary of the electron wave function,

𝑛 denotes the order of the radial Bessel basis, 𝑗𝑙 denotes the spherical

Bessel function of order 𝑙 . 𝑧𝑙𝑛 denotes the 𝑛-th root of the 𝑙 -order

Bessel function, and is precomputed numerically. 𝑌𝑙𝑚 denotes the

spherical harmonic function of order 𝑙 with degree𝑚. 𝑙,𝑚, 𝑛 are

three hyper-parameters. The value of𝑚 is related to 𝑙 , the range

of𝑚 is [0, 𝑙 − 1]. Especially, we design a set of learnable prompts

to represent each order of basis function, 𝑉𝑅 ∈ R𝑛×ℎ for RBF

functions, 𝑉𝑇 ∈ R𝑙×𝑛×ℎ for TBF functions and 𝑉 𝑆 ∈ R𝑙×𝑚×𝑛×ℎ
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for SBF functions,

𝑝𝑅𝑣𝑢 =
∑︁
𝑛

eRBF,𝑛 (𝑑𝑣𝑢 )𝑉𝑅
𝑛 ,

𝑝𝑆𝑣𝑢 =
∑︁
𝑙,𝑚,𝑛

e
SBF,𝑙,𝑚,𝑛 (𝑑𝑣𝑢 , 𝜃𝑣𝑢 , 𝜙𝑣𝑢 )𝑉 𝑆

𝑙,𝑚,𝑛
,

𝑝𝑇𝑣𝑢 =
∑︁
𝑙,𝑛

e
TBF,𝑙,𝑛 (𝑑𝑣𝑢 , 𝜏𝑣𝑢 )𝑉𝑇

𝑙,𝑛
.

(10)

To incorporate these geometric prompts into the node repre-

sentations, we design an attentive interaction layer. Specifically,

three prompts are merged as edge-level auxiliary features. Then

the prompt of edge 𝑒𝑣𝑢 is concatenated with the features of node 𝑣

and node 𝑢. The above processes are formally defined as,

𝑝𝑒𝑣𝑢 = 𝑝𝑅𝑣𝑢 + 𝑝𝑆𝑣𝑢 + 𝑝𝑇𝑣𝑢 ,

˜ℎ𝑣𝑢 = 𝑝𝑒𝑣𝑢 | |ℎ𝑣 | |ℎ𝑢 ,
(11)

where | | denotes the concatenation operation. Then the attention

mechanism is utilized to aggregate information from different

edges,

˜ℎ𝑣 =
∑︁

𝑢∈N(𝑣)

exp(𝑎 · ˜ℎ𝑣𝑢 )∑
𝑘∈N(𝑣) exp(𝑎 · ˜ℎ𝑣𝑘 )

𝑊 ˜ℎ𝑣𝑢 , (12)

where 𝑎 ∈ R3ℎ
and𝑊 ∈ Rℎ×3ℎ

are two learnable parameters.

Algorithm 1 Algorithm of MOAT.

Require: Input molecules G = (V, E,P), pretrained 3D molecu-

larGNN𝑔𝜃 , downstream labels y𝑛 , such as molecular properties.

Ensure: Molecular representation
˜ℎG ,

1: Initialize atom embeddings with pretrained model
¯X, ¯E =

𝑔𝜃 (X, E);
2: for all 𝑢 = 1,...,|V| do
3: for all 𝑣 ∈ N (𝑣) do
4: Compute 𝑑𝑢𝑣 = ∥𝑝𝑣 − 𝑝𝑢 ∥2;

5: end for
6: end for
7: for all 𝑢 = 1,...,|V| do
8: Find reference nodes of the center node 𝑢, i.e., 𝑓𝑢 =

arg min𝑣∈N(𝑢 ) 𝑑𝑢𝑣, 𝑠𝑢 = arg min𝑣∈N(𝑢 )\𝑓𝑢 𝑑𝑢𝑣 ;
9: for all 𝑣 ∈ N (𝑢) do
10: Compute 𝜃𝑢𝑣 = angle(𝑓𝑣, 𝑣,𝑢);
11: Compute 𝜙𝑢𝑣 = angle; (plane𝑓𝑣 ,𝑣,𝑠𝑣 , plane𝑓𝑣 ,𝑣,𝑠𝑣 );
12: Compute 𝜏𝑢𝑣 = angle(plane𝑓𝑣\𝑢 ,𝑣,𝑢 , plane𝑣,𝑢,𝑓𝑢\𝑣 );
13: end for
14: end for
15: for all 𝑢 = 1,...,|V| do
16: Node-level prompt learning, as shown in Eqn. (7);

17: end for
18: for all 𝑒𝑣𝑢 ∈ E do
19: Geometry-level prompt learning, as shown in Eqn. (12);

20: end for
21: Task-level prompt learning, as shown in Eqn. (13);

22: Finding the optimal prompt parameters T that maximize the

likelihood of predicting the correct labels with Eqn. (14).

4.3 Task-Level Prompting.
Except for the atom distribution and geometric substructure gap,

the inconsistency of 3D molecular properties between the pre-

training and fine-tuning process from different molecular datasets

also needs to be considered. General graph prompting models align

the fine-tuning task with the pre-training one through learnable

task-level prompting. For 3D molecular graphs, we consider the gap

can be relieved through the functional groups. Previous research

shows that the functional groups are relative to the downstream

3D molecular property prediction analysis [63]. For example, the

functional groups with impression on molecular toxicity [9], e.g.,

trifluoromethyl and cyanide, known as two toxic functional groups,

are considered to be associated with the toxicity property of 3D

molecules. Another example is that 3D molecules with benzene

rings typically share analogical physical properties, such as solubil-

ity, as well as chemical characteristics like aromaticity [44]. In this

paper, we consider eighty-five usual functional groups [3, 4]. These

functional groups can be identified by RDKit tools based on the

input SMILES sequence. Then the task-level prompts are formally

defined as,

˜ℎG = READOUT({( ˜ℎ𝑣 |𝑣 ∈ V}),
˜ℎG = ˜ℎG +

∑︁
𝑗∈𝑆 (G)

𝑝𝐹𝑗 ,
(13)

where 𝑆 (G) denotes the set of functional groups that appeared in

the graph, 𝑝 𝑗 ∈ 𝑃𝐹
𝑓
denotes the set of functional-group prompts. The

dimension of 𝑝𝐹
𝑗
is the number of molecular properties. READOUT

denotes the mean pooling operation in this paper.

The 3D downstream tasks are generally regression objectives.

Finally, the overall objective function of MOAT is defined as,

L =
1

𝑁

𝑁∑︁
𝑛=1

| | ˜ℎG𝑛
− Y𝑛 | |2 . (14)

4.4 Complexity analysis
The algorithmic pseudo-code of the proposed MOAT is shown in

Algorithm. 1. The time complexity of MOAT is 𝑂 (𝑁 ) + 𝑂 ( |𝐸 |).
Compared with other 3D molecular models, such as the popular

SphereNet and DimeNet++, it is efficient. The complexity of MOAT

mainly comes from geometry-level prompts, as the complexity of

atom-level and task-level prompting are both𝑂 (𝑁 ). The formulas of

𝑑𝑖 𝑗 , 𝜃𝑖 𝑗 , and 𝜙𝑖 𝑗 , and 𝜏𝑖 𝑗 are shown in Algorithm 1 and are specified

with the 1-hop local neighborhood. Thus their time complexity

is 𝑂 (𝑁𝑘), where 𝑘 denotes the average degree in 3D molecular

graphs, and is generally less than 100. The complexity of Eq (10) is

𝑂 (𝑙 ×𝑚 × 𝑛 × ℎ), where 𝑙 = 3,𝑚 = 2, 𝑛 = 6, ℎ = 512 in our model.

The complexity of Eq (12) is𝑂 ( |𝐸 | × ℎ × 3ℎ × 3ℎ) = 𝑂 ( |𝐸 |ℎ3). Thus
complexity of geometry-level is 𝑂 ( |𝐸 |ℎ3) = 𝑂 (𝐸).

The space complexity of MOAT is 𝑂 ( |𝐸 |). Let ℎ denote prompt

dimension and 𝑡 denote types of atoms, the complexity of atom-level

is 𝑂 (ℎ𝑡), and 𝑡 is generally less than 10. Complexity of geometry-

level is𝑂 ( |𝐸 |ℎ2). The complexity of task-level is𝑂 ( |𝑆 (𝐺) |ℎ), where
|𝑆 (𝐺) | is 85 and ℎ is 64.
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Table 1: The overall performance on QM9 dataset. Results with * are taken from [58] and [34].

Property 𝜇 𝛼 𝜖𝐻𝑂𝑀𝑂 𝜖𝐿𝑈𝑀𝑂 Δ𝜖 < 𝑅2 > ZPVE 𝑈 𝑈0 𝐻 𝐺 𝑐𝑣

Unit D 𝑎3

0
meV meV meV 𝑎2

0
meV meV meV meV meV cal/molK

PPGN
∗

0.0470 0.1310 40.3 32.7 60.0 0.592 3.12 36.80 36.80 36.30 36.40 0.055

SchNet
∗

0.0330 0.2350 41.0 34.0 63.0 0.073 1.7 14 19 14 14 0.033

PhysNet
∗

0.0529 0.0615 32.9 24.7 42.5 0.765 1.39 8.15 8.34 8.42 9.40 0.028

Cormorant
∗

0.1300 0.0920 36.0 36.0 60.0 0.673 1.98 28 - - - 0.031

MGCN
∗

0.0560 0.0300 42.1 57.4 64.2 0.110 1.12 12.9 14.4 14.3 16.2 0.038

DimeNet
∗

0.0286 0.0469 27.8 19.7 34.8 0.331 1.29 8.02 7.89 8.11 8.98 0.025

DimeNet++
∗

0.0297 0.0435 24.6 19.5 32.6 0.331 1.21 6.32 6.28 6.53 7.56 0.023

SphereNet
∗

0.0245 0.0449 22.8 18.9 31.1 0.268 1.12 6.26 6.36 6.33 7.78 0.022

ComENet
∗

0.0241 0.0404 21.7 18.5 30.2 0.239 1.20 6.18 6.40 6.13 7.98 0.024

GPF 0.0311 0.0479 27.8 20.9 36.2 0.348 1.39 8.69 8.23 8.78 9.29 0.027

GraphPrompt 0.0299 0.0475 29.9 20.8 35.4 0.355 1.35 8.21 8.47 8.57 9.67 0.026

MolCPT 0.0297 0.0470 26.4 19.3 33.7 0.349 1.34 8.33 8.28 7.76 8.56 0.025

MOAT 0.0236 0.0441 22.6 18.4 30.9 0.228 1.04 6.17 6.34 6.02 7.55 0.022

5 Experiments
5.1 Experimental Settings
5.1.1 Datasets. We examine the performance of MOAT on com-

monly used 3D molecular dataset QM9 [45] and OC20 dataset [6].

The QM9 dataset is widely used to predict different properties

of molecules. It includes 134,000 stable small organic molecules

and offers data on their geometric, energetic, electronic, and ther-

modynamic properties. The dataset includes 110,000 molecules in

the training set, 10,000 molecules in the validation set, and 10,831

molecules in the test set. The dataset covers twelve properties,

including dipole moment (𝜇), isotropic polarizability (𝛼), highest

occupied molecular orbital energy (𝜖HOMO), lowest unoccupied

molecular orbital energy (𝜖LUMO), the energy gap between 𝜖HOMO

and 𝜖LUMO, electronic spatial extent (< 𝑅2 >), zero-point vibra-

tional energy (ZPVE), internal energy at 0K (𝑈0), internal energy at

298.15K (𝑈 ), enthalpy at 298.15K (𝐻 ), free energy at 298.15K (𝐺), and

heat capacity at 298.15K (𝑐𝑣 ). These properties are vital for under-

standing molecular behavior and have wide-ranging applications

in chemistry and material science.

The OC20 dataset [6] is tailored for catalyst exploration and

refinement. It encompasses 1,281,040 Density Functional Theory

(DFT) relaxations, involving approximately 264,890,000 single-point

evaluations, spanning a diverse array of materials, surfaces, and

adsorbates. The dataset encompasses three key tasks: Structure to

Energy and Forces (S2EF), Initial Structure to Relaxed Structure

(IS2RS), and Initial Structure to Relaxed Energy (IS2RE). In this

paper, we focus on the IS2RE task, which is a fundamental element

in catalysis due to the correlation between relaxed energies and

catalyst performance. The dataset for IS2RE is originally split into

training/validation/test sets. There are 460,318 structures in the

training set. Test labels are not publicly available. Model perfor-

mance is assessed on the validation set, which includes four splits:

In Domain (ID), Out of Domain Adsorbates (OOD Ads), Out of

Domain Catalysts (OOD Cat), and Out of Domain Adsorbates and

Catalysts (OOD Both), each split contains approximately 24,000

structures.

5.1.2 Baselines. We select the following representative baselines

as our competitors:

3D Molecular Pretrain-finetuning GNNs conduct the message

passing scheme to capture the 3D information for enhancing the

performance of molecule embeddings. PhysNet [57], CGCNN [48],

Cormorant [1], MGCN [41], PaiNN [50], and GemNet-T [51] are

representative works of equivariant molecular GNNs, and they

directly operate on the Cartesian coordinates. SchNet [49], PPGN

[43], SphereNet [34], DimeNet [17], DimeNet++ [16], GemNet [15]

and ComENet [58] are representative works of chemical GNNs, and

they utilize the relative 3D information as the input of GNNs.

General Graph Prompting methods adopt the “pre-train and

prompt" paradigm on 2D graphs. In this setting, their pre-trained

models are frozen, and parameters of task-specific prompts are

learnable to maximize the likelihood of predicting the correct down-

stream labels. Representative works include GPF [10] and Graph-

Prompt [35]. These methods are designed to relieve the gap between

pre-training and downstream tasks in common graphs, such as so-

cial networks and citation networks.

Molecular Graph Prompting models utilize the “pre-train and

prompt" paradigm for molecules. MolCPT [7] is the sole related

work, which extends the general graph prompting idea to 2D

molecules. It only considers the motif structure and ignores the

heterogeneous atom types and geometry information, which en-

counters the specific challenges for 3D molecular graphs.

5.1.3 Experimental Settings. For molecular property prediction

with 3D molecular dataset, we focus on predicting twelve proper-

ties on QM9, including dipole moment (𝜇), isotropic polarizability

(𝛼), etc. Additionally, we work on the Initial Structure to Relaxed

Energy (IS2RE) task on OC20. All of these are regression tasks,

measuring various aspects of the molecular property. For molecular

property prediction with 2D molecular dataset, we use RDKit [30]

to extract their 3D information as the input of our model. For a fair
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Table 2: Performance on IS2RE in terms of energy MAE and the percentage of EwT of the ground truth energy. Results with *
are taken from [58].

Method

Energy MAE [eV] (↓) EwT (↑)
ID OOD Ads OOD Cat OOD Both Average ID OOD Ads OOD Cat OOD Both Average

CGCNN
∗

0.6203 0.7426 0.6001 0.6708 0.6585 3.36% 2.11% 3.53% 2.29% 2.82%

SchNet
∗

0.6465 0.7074 0.6475 0.6626 0.6660 2.96% 2.22% 3.03% 2.38% 2.65%

DimeNet++
∗

0.5636 0.7127 0.5612 0.6492 0.6217 4.25% 2.48% 4.40% 2.56% 3.42%

GemNet-T
∗

0.5561 0.7342 0.5659 0.6964 0.6382 4.51% 2.24% 4.37% 2.38% 3.38%

SphereNet
∗

0.5632 0.6682 0.5590 0.6190 0.6023 4.56% 2.70% 4.59% 2.70% 3.64%

ComENet
∗

0.5558 0.6602 0.5491 0.5901 0.5888 4.17% 2.71% 4.53% 2.83% 3.56%

GPF 0.5743 0.7207 0.5966 0.7108 0.6506 4.20% 2.47% 4.31% 2.31% 3.32%

GraphPrompt 0.6059 0.7690 0.5665 0.6651 0.6516 3.83% 2.37% 4.09% 2.31% 3.15%

MolCPT 0.5772 0.7178 0.5733 0.6762 0.6361 4.16% 2.48% 4.15% 2.42% 3.30%

MOAT 0.5556 0.6598 0.5488 0.5897 0.5864 4.21% 2.74% 4.63% 2.85% 3.67%

comparison, the results of some baselines are taken from the origi-

nal paper. In addition, we select typical open-sourced baselines and

run them in all datasets. The results are generally consistent with

those reported in the original paper. The evaluated typical baselines

include ComE, SphereNet, DimeNet, and DimeNet++. We use scaf-

fold splitting to split the molecules according to their structures to

mimic real-world use cases. The split for train / val / test sets is 80% :

10% : 10%. We select the ComE [58] as the pre-trained 3D molecular

model on Molecule3D, which contains 3.89 billion molecules [64].

For a fair comparison with general prompting models in the 3D

molecular dataset, their initialized embeddings are also predicted

by the pre-trained ComE model. All models are trained on NVIDIA

GeForce RTX A100 80GB GPU. The optimal hyper-parameters of

MOAT are obtained on validation sets using grid search. We take

Adam as the optimizer. The cutoff 𝑐 is set to 5, the order 𝑙 of the

Bessel function is set to 3, the order 𝑛 of the radial Bessel basis is

set to 6, the batch size is set to 1024, and the learning rate is set to

5𝑒−4
with a decay factor 0.5.

5.2 Overall Performance
To verify the effectiveness of MOAT, we conducted experiments on

the 3D molecular datasets, i.e., QM9 and OC20 datasets, which are

widely used to assess the capabilities of models in predicting proper-

ties of quantum chemistry systems. We compared MOAT with base-

line models using the Mean Absolute Error (MAE) metric for each

property. The comparison results are summarized in Table. 1. Gen-

eral graph prompting models, such as GPF and GraphPrompt, fail

to leverage the coordinate information of molecules, instead treat-

ing homogeneous graphs without incorporating heterogeneous

molecular information. To ensure a fair comparison between these

general prompting models and MOAT, their initial embeddings

were all predicted by the pre-trained ComE model. Based on the

results in Table. 1, we draw the following conclusions: (1) Overall,
Equivariant molecular GNNs exhibit poorer performance compared

to chemical GNNs. For instance, in the QM9 dataset, Cormorant,

MGCN, and PhysNet perform worse than DimeNet, DimeNet++,

SphereNet, and ComENet. Similarly, in the OC20 dataset, while

CGCNN has the lowest performance, SchNet (a chemical GNN)

underperforms relative to other Equivariant molecular GNNs. (2)
MOAT achieves competitive performance across all property pre-

diction tasks on the QM9 dataset, achieving optimal results in 8

out of 12 tasks. At the same time, MOAT achieved the best perfor-

mance in all tasks on the OC20 dataset. The overall performance of

MOAT demonstrates superior accuracy, validating the effectiveness

of our approach. In addition, MOAT outperforms mostly relative-

information-based 3D models, which verifies the motivation we put

forth. (3)MOAT significantly outperforms general graph prompting

models (GPF and GraphPrompt). It indicates the effectiveness of

incorporating both bond direction and the geometric structure of

3D molecules. Specifically, MOAT achieves notable improvements

on the property prediction tasks in both 3D benchmark datasets

compared with state-of-the-art methods with the “pre-train and

prompt” paradigm. (4)MOAT also outperforms the 2D molecular

prompting method MolCPT, demonstrating the importance of in-

troducing geometry-level prompts for 3D molecules. Furthermore,

compared to fine-tuning-based methods, MOAT achieves compa-

rable or superior results, proving that the "pre-training and graph

prompting" paradigm can be effectively and efficiently applied to a

wide variety of molecular task scenarios.

5.3 Efficiency Analysis
We conduct model efficiency analysis on MOAT and several popu-

lar and representative 3D molecular baselines, i.e. ComENet and

SphereNet, in the QM9 benchmark dataset. Table 3 reports the num-

ber of parameters, average training and inference time per epoch for

these models. All running time data results are tested on the same

GPU with no other processes running simultaneously. Compared

with other 3D molecular baselines, MOAT has the fewest parame-

ters. The parameter count of MOAT is 25% of that in ComENet and

70% of that in SphereNet. In addition, MOAT demonstrates com-

petitive running efficiency in both training and inference phases,

attributable to its minimal parameter count. The results indicate

that MOAT excels not only in parameter efficiency but also in com-

putational performance, exhibiting scalability to large-scale 3D

molecular datasets.



MOAT: Graph Prompting for 3D Molecular Graphs CIKM ’24, October 21–25, 2024, Boise, ID, USA

4 5 6 7 80.022
0.023
0.024
0.025
0.026
0.027
0.028
0.029
0.030

/D

(a) Cutoff boundary 𝑐 of the electron wave.

1 2 3 4 50.022

0.024

0.026

0.028

0.030 /D

(b) Order 𝑙 of Bessel function.

4 6 8 10 120.022

0.024

0.026

0.028

0.030 /D

(c) Order 𝑛 of the radial Bessel basis.

64 128 256 5120.022
0.023
0.024
0.025
0.026
0.027
0.028
0.029
0.030

/D

(d) Embedding size

Figure 4: Parameter analysis of MOAT on the QM9 dataset.
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Figure 5: Performance of 𝜇 and𝐻 onQM9dataset, with switch-
ing model components.

Model # Parameters Training Time / s Inference Time/ s

ComENet 4.3M 219 9

SphereNet 1.3M 121 8

MOAT 0.9 M 92 5

Table 3: Parameters and running efficiency analysis.

5.4 Ablation Study
To assess the contribution of each component, we conducted an

ablation study of MOAT using the QM9 benchmark dataset. For this

evaluation, we selected the prediction of dipole moment (𝜇) and

enthalpy at 298.15K (𝐻 ) as two representative tasks. We compare

MOAT with the following variants: i)MOAT-v1: MOAT without

atom-level prompting; ii) MOAT-v2: MOAT without geometry-

level prompting; iii) MOAT-v3: MOAT without task-level prompt-

ing. Results are shown in Fig. 5. Compared with other components,

the geometry-level prompting objective plays the most significant

role, and the atom-level prompting has the tiniest effect. This val-

idates the crucial role of modeling 3D geometry characteristics,

i.e., SE(3)-invariant, for 3D molecular property analysis, which is

consistent with the motivation we put forth. Also, the performance

of MOAT on all datasets surpasses that of its variants, proving the

effectiveness of each component.

5.5 Parameter Analysis
We conducted a parameter analysis to evaluate the performance

variability with changes in hyper-parameters, thereby validating

the robustness of the model. Specifically, we examined four critical

hyper-parameters in MOAT, namely the cutoff boundary of the

electron wave function in Eqn. 9, the order 𝑙 of the Bessel function,

the order 𝑛 of the radial Bessel basis, and the embedding size. We

conduct experiments on the QM9 dataset, whose results are shown

in Fig. 4. We make the following findings: i) The hyper-parameters

in Eqn. 9 need to be chosen appropriately instead of choosing

arbitrarily large values. The performance first goes good and later

becomes bad with the change of parameters. ii) A larger embedding

size does not necessarily lead to better performance. For MOAT,

the size of 256 is the best.

6 Conclusion
Molecular property prediction is widely regarded as a cornerstone

task in AI-driven drug design and discovery. Recognizing the crucial

role of molecular geometry in accurate property prediction, we have

integrated 3D information with advanced graph learning methods

to enhance predictive performance. Despite the growing popularity

of the "Graph pre-training and fine-tuning" paradigm for refining

molecular representations, there remains a persistent mismatch

between pre-training objectives and downstream tasks. Drawing

inspiration from prompt tuning techniques in natural language

processing (NLP), we propose a novel approach: 3D MOleculAr

prompT, abbreviated as MOAT, specifically tailored for geometric

molecules. MOAT introduces prompts at various levels to accurately

depict the properties of atom distribution, geometrical conforma-

tion, and functional group distribution. Through comprehensive

experiments on both 3D and 2D downstream tasks, we have demon-

strated the effectiveness and robustness of our model. To the best

of our knowledge, this paper marks the first attempt to introduce

geometric graph-prompting learning for 3D molecular graphs. Our

findings underscore the potential of MOAT to significantly advance

AI-driven scientific research issues, offering a robust and versatile

framework for future research and practical applications.
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