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Abstract

Spatial transcriptomics (ST) enables joint profiling of gene
expression and spatial positions, thereby revealing spatially
resolved biological functions. However, many existing ST
analysis methods often fail to explicitly quantify the belief
and uncertainty in decisions caused by noisy ST data, making
it difficult to handle spots of varying quality in a fine-grained
manner. In addition, domain identification is a fundamental
and critical task in ST, but commonly used models that sepa-
rate expression learning and clustering often struggle to learn
cluster-friendly latent representations effectively. To address
these issues, we propose PREST, a prototype-based evidence-
aware integration framework for ST data. PREST performs
multi-scale representation learning with fine-grained atten-
tion fusion and introduces learnable class prototypes to quan-
tify belief and uncertainty in model decisions. We aim to
align overall belief scores with latent semantic information
to enhance uncertainty quantification and prototype learning,
thereby promoting the learning of clustering-friendly repre-
sentations. PREST further integrates an uncertainty-aware re-
construction module and spatial regularization to reduce over-
fitting to unreliable spots and promote denoised, discrimina-
tive representations. Extensive experiments on several bench-
mark datasets validate the effectiveness and superiority of our
proposed PREST across various downstream tasks.

Code — https://github.com/wayc04/PREST
Appendix — https://github.com/wayc04/PREST

Introduction
Spatial transcriptomics (ST) captures gene expression while
preserving the spatial context of spots within tissue sec-
tions (Williams et al. 2022), enabling comprehensive anal-
ysis of tissue architecture and cellular organization (Rao
et al. 2021; Asp, Bergenstråhle, and Lundeberg 2020). By
jointly profiling molecular and spatial information, ST pro-
vides unprecedented insights into how cells interact and

*Corresponding authors
Copyright © 2026, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

function within their native environments. Current ST tech-
nologies can be broadly categorized into imaging-based in
situ methods, such as MERFISH (Moffitt et al. 2018), osm-
FISH (Codeluppi et al. 2018) and seqFISH (Lubeck et al.
2014; Shah et al. 2016), and barcode-based sequencing ap-
proaches, including 10x Visium (Ji et al. 2020), SLIDE-
seq (Rodriques et al. 2019), and Stereo-seq (Chen et al.
2022). Since the resolution of most platforms does not reach
single-cell level, gene expression is measured at discrete
units called spots, each aggregating transcripts from mul-
tiple cells. Despite this limitation, ST has rapidly become
a cornerstone technology in spatial genomics and has moti-
vated the development of numerous computational methods
tailored to analyze such data.

ST integrates gene expression and spatial information
to decode biological processes, such as cell distribution,
gene regulation, and tissue heterogeneity, offering deeper
insights into tissue organization and function. Early ap-
proaches primarily employed unsupervised algorithms, in-
cluding PCA, k-means (Likas, Vlassis, and Verbeek 2003)
and Louvain (Blondel et al. 2008). These methods treat
spots as independent observations and overlook the spatial
continuity inherent in tissues. To better capture spatial de-
pendencies, recent methods have leveraged graph-based ap-
proaches, particularly Graph Neural Networks (GNNs, Kipf
and Welling 2017; Veličković et al. 2018; Ju et al. 2024b,
2025), which represent spots as nodes in a graph and in-
corporate both gene expression and neighborhood relation-
ships (Liu et al. 2023; Li et al. 2022; Dong and Zhang 2022;
Zhu et al. 2024). DeepST (Xu et al. 2022) pioneers domain
identification with deep learning, enabling effective batch
integration. GraphST (Long et al. 2023) builds on this with
self-supervised contrastive learning, improving clustering
and multi-slice analysis. SpaGCN (Hu et al. 2021) then uses
graph convolution to integrate gene expression and spatial
data, detecting coherent expression patterns. stMMR (Zhang
et al. 2024) enhances this with self-attention for robust mul-
timodal learning, while DUSTED (Zhu et al. 2025) com-
bines gene channel and attention in a graph autoencoder to
capture spatial features and expression variability.



Despite the success of existing ST analysis methods, sev-
eral intrinsic limitations remain. (1) First, ST data is in-
herently noisy due to low capture efficiency and shallow
sequencing depth stemming from cost control or techni-
cal constraints, as well as biological factors such as vari-
ations in cell permeability that cause mRNA drift or dif-
fusion (Du et al. 2024). These factors lead to high spar-
sity and over-dispersion in ST data, introducing uncertainty
in downstream analyses and decisions. Existing methods
often denoise data implicitly without explicitly modeling
the belief and uncertainty of model decisions, including
autoencoder-based (Xu et al. 2022; Long et al. 2023; Zhu
et al. 2025), smoothing-based (Holdener and De Vlaminck
2025), and image-enhanced approaches (Wang et al. 2022).
These methods typically treat noise as an undesirable factor
to be removed, processing all spots equally without indicat-
ing which ones are unreliable, and may overfit to low-quality
or boundary regions. (2) Second, clustering analysis serves
as the foundation for many ST downstream tasks, includ-
ing spatial domain identification, cell type annotation, differ-
entially expressed gene detection, and trajectory inference.
However, many deep learning-based ST methods focus pri-
marily on representation learning while neglecting the mod-
eling of class information. A common paradigm involves
first learning embeddings and then performing clustering on
them using algorithms such as k-means, Leiden, Louvain, or
GMM (Long et al. 2023; Zhang et al. 2024; Zhu et al. 2025).
This two-step process is often not clustering-friendly, result-
ing in suboptimal performance in downstream analyses.

To address these issues, we propose the PRototype-
based Evidence-aware integration framework for Spatial
Transcriptomics data (PREST). We begin by performing
multi-scale representation learning followed by fine-grained
cross-attention fusion. Then, we introduce learnable class
prototypes to capture cluster information and utilize subjec-
tive logic (SL, Jøsang 2016) to explicitly quantify both ev-

idence / belief and uncertainty of model decisions caused
by noisy or dropout ST data. To enhance the reliability of
these quantifications and prototype learning, we impose con-
straint to encourage the belief scores to capture the overall
semantic information in the latent space. To effectively han-
dle the highly sparse nature of ST data, we adopt the zero-
inflated negative binomial (ZINB, Yu et al. 2022) model
to reconstruct original expressions. We also leverage spa-
tial coordinates to regularize spot representations, enabling
learning discriminative representations enriched with spa-
tial context. Furthermore, we incorporate quantified uncer-
tainties into reconstruction and regularization to assess spot
reliability, enabling the model to softly down-weight low-
belief regions. It reduces overfitting to low-quality data and
enhances overall model trustworthiness. Finally, we conduct
various downstream analyses based on the learned spot rep-
resentations and class prototypes. Extensive experiments on
multiple datasets show the superiority of our framework.

Preliminaries & Problem Definition
Notations. Let P = {(ui, vi)}Ni=1 denote the spatial coordi-
nates of N spots and X = (x1, . . . ,xN )> 2 RN⇥G be the

gene expression matrix after preprocessing, where G is the
number of genes and xi 2 RG corresponds to the expres-
sion profile at spot i. The objective is to learn class proto-
types T = (t1, . . . , tK)> 2 RK⇥D and spot representations
Z = (z1, . . . , zN )> 2 RN⇥D with D ⌧ G that jointly en-
codes both the spatial positions and gene expressions.
Downstream Analyses. We perform several downstream
analysis tasks, including: (i) Domain identification (or spa-

tial clustering), which assigns coherent regions by group-
ing similar representations; (ii) Differentially expressed gene

(DEG) detection, which identifies marker genes character-
istic of each spatial domain; (iii) Expression imputation,
which predicts missing or unobserved gene expression val-
ues to enhance data completeness and downstream analysis.
and (iv) Enrichment analysis, which interprets the biological
significance of identified genes or clusters by linking them
to known pathways or ontologies.

Methodology
In this section, we introduce a novel framework, PREST,
designed for domain identification and related downstream
analyses in ST. The framework is composed of three key
modules: (i) Multi-scale Representation Extraction and Fu-

sion; (ii) Prototype-based Belief and Uncertainty Estima-

tion; and (iii) Uncertainty-weighted Expression Reconstruc-

tion and Spatial Regularization. An overview of the entire
pipeline is depicted in Figure 1.

Multi-scale Representation Extraction and Fusion
ST enables the identification of similar cells by incorporat-
ing spatial context. To effectively utilize this spatial informa-
tion and take advantage of the expressive power of GNNs,
we first transform the spatial coordinates P into an undi-
rected graph. Specifically, we construct the spatial adjacency
matrix A using a fixed-radius nearest neighbor approach,
and assign the expression matrix X as the node attributes.

In GNNs, the graph convolutional network (GCN, Kipf
and Welling 2017) updates node representations by aggre-
gating information from their neighbors, thereby effectively
capturing the structural patterns of graph data. The layer-
wise propagation rule of a GCN is typically defined as:

Z
s,(l+1) = �(ÃZ

s,(l)
W

s,(l)), (1)

where Ã denotes the normalized adjacency matrix, Ws,(l)

is the trainable weight matrix, and �(·) is a non-linear acti-
vation function. In contrast, multi-layer perceptrons (MLPs)
operate purely on node attributes, making them particularly
effective at capturing semantic patterns embedded in at-
tribute space. A standard MLP layer can be form

Z
e,(l+1) = �

⇣
Z

e,(l)
W

e,(l) + be,(l)
⌘
, (2)

where We,(l) and be,(l) are learnable parameters, and �(·) is
an activation function such as ReLU. To further enhance rep-
resentational capacity and stabilize training, each encoder
layer can be augmented with self-attention (Vaswani et al.
2017) and skip connection (He et al. 2016), which help mit-
igate issues like vanishing or exploding gradients.
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Figure 1: Illustration of the proposed framework PREST.

In ST data, due to technical limitation or biological vari-
ation, the measured expression data can be inherently noisy.
Meanwhile, due to limitations in imaging resolution, tissue
deformation, or inaccuracy in graph construction heuristics,
the spatial graph may be also not precise. In such cases,
when expression signals are strong but the spatial structure
is unreliable, MLPs can help mitigate the influence of noisy
connections by focusing on attribute-driven features. Con-
versely, when expression is sparse or noisy, the spatial topol-
ogy can provide useful contextual cues that GCN is well-
suited to exploit. Even in challenging scenarios where both
gene expression and spatial structure are affected by noise,
learning from multiple scales remains beneficial, as it en-
ables the model to integrate complementary patterns across
views and attenuate view-specific noise. To this end, we in-
tegrate GCN and MLP into a unified framework for multi-
scale representation learning, facilitating the extraction of
more robust and informative embeddings.

Based on the embeddings obtained from GCN and MLP
encoders, denoted as Z

s and Z
e, we introduce a structure-

guided cross-attention mechanism (CroAtt) to perform fine-
grained representation fusion. The fusion process is:

Z = Norm
⇣
CroAtt(Zs,Ze) + CroAtt(Ze,Zs)

⌘
, (3)

CroAtt(Zs,Ze) = Softmax

 
Mask

 
Z

e
Z

s>
p
D

,A

!!
Z

s.

This mechanism dynamically evaluates the contribution of
spatial- and expression-level representations to one another,
thereby enabling adaptive and content-aware fusion. The
masking operation based on the spatial adjacency matrix
helps eliminate redundant or spurious dependencies, ensur-
ing that the attention is focused on meaningful local inter-
actions. By explicitly modeling fine-grained dependencies
across the two encoder outputs, rather than performing naive
cross-view averaging, it facilitates a more comprehensive in-
tegration of spatial and expression information.

Prototype-based Belief and Uncertainty Estimation
The presence of inherent noise in the ST data inevitably
leads to predictive uncertainty (Malinin and Gales 2018).
Therefore, while ensuring representation richness through
multi-scale extraction, it is also crucial to quantify the de-
cision uncertainty of the fused information and leverage it
to enhance model training. To this end, we adopt subjective
logic (SL, Jøsang 2016; Li et al. 2023) to characterize the
belief or evidence of domain identification decision, as well
as the uncertainty caused by the lack of sufficient evidence.

Formally, a spot i (i 2 {1, . . . , N}) in SL is associated
with a multinomial opinion consisting of a belief mass distri-
bution {bik}Kk=1 over K clusters and an uncertainty value ui,
satisfying the constraint

PK
k=1 bik+ui = 1 and bik, ui � 0.

Let eik(� 0) represent the extracted evidence from data sup-
porting the association of spot i with cluster k. The belief
and uncertainty are then computed as:

bik =
eikPK

k=1(eik + 1)
, ui =

K
PK

k=1(eik + 1)
. (4)

To facilitate the learning of cluster-relevant evidence and
support domain identification, we introduce learnable class
prototypes T = (t1, . . . , tK)>, initialized via k-means on
pre-trained spot embeddings (details provided in the Exper-
iment Section). Based on this and fused representation ma-
trix Z = (z1, . . . , zN )> from Eq. (3), we define the spot-
to-prototype similarity matrix E = (Eik) 2 RN⇥K and the
spot-to-spot similarity matrix S = (Sij) 2 RN⇥N as:

Eik =
zi>tk

kzik · ktkk
, Sij =

zi>zj
kzik · kzjk

. (5)

The similarity score Eik, after applying a positive activation,
can be interpreted as the evidence eik, allowing us to com-
pute belief score bik and uncertainty ui according to Eq. (4).

To ensure meaningful quantification, we first impose con-
straints on the class prototypes by encouraging high diver-
sity among them, which promotes better separability. To this



end, we introduce a prototype diversity learning (PDL) loss:

LPDL =
1

2K(K � 1)

X
1k<k0K

✓
t>k tk0

ktkk · ktk0k

◆2

.

With the prototypes, to ensure better uncertainty quantifica-
tion, the prototype-based beliefs should effectively encap-
sulate the global semantic structure of the data in the latent
space. To encourage this, we require that the total beliefs as-
signed to a spot aligns closely with its total similarities to
all other spots. Accordingly, we introduce the belief-based
semantics learning (BSL) loss:

LBSL =
1

N

XN

i=1

✓
1

K

XK

k=1
bik � �

N

XN

j=1,j 6=i
Sij

◆2

,

where � is a scaling factor that compensates for potential dif-
ferences in magnitude. We then formulate a joint diversity-
semantics learning loss (DSL) as:

LDSL = LPDL + LBSL. (6)

Uncertainty-weighted Expression Reconstruction
and Spatial Regularization
To effectively handle highly sparse ST data and impute
dropout values, we introduce a ZINB-based decoder built
upon the fused representations to reconstruct the original
gene expression in a self-supervised manner. It is worth not-
ing that the raw expression data may contain noise; thus,
different spots should be assigned different self-supervision
weights to prevent overfitting on low-quality data. Techni-
cally, we leverage the uncertainty estimated in Eq. (4) to
reweight the loss, assigning lower weights to spots with
higher uncertainties. It leads to the uncertainty-weighted
ZINB-based reconstruction (UZR) loss:

LUZR = �
XN

i=1
!i log ZINB(xi | µ̂i, ✓̂i, ⇡̂i), (7)

with !i =
1/uiPN
j=1 1/uj

,

where µ̂, ✓̂, and ⇡̂ denote the estimations of ZINB parame-
ters µ (the expected gene expression), ✓ (the over-dispersion
characteristic of count-based data), and ⇡ (the dropout prob-
ability arising from technical noise or low expression levels).
With the dropout indicator function �0(·), the ZINB distribu-
tion is formulated as:

ZINB(x |µ,✓,⇡)=⇡�0(x)+(1�⇡)NB(x), with

NB(x |µ,✓)=�(x+✓) [✓/(✓+µ)]✓ [µ/(✓+µ)]x /[x!�(✓)].

We utilize three distinct MLPs (genc) to estimate the parame-
ters of the ZINB distribution from the fused latent represen-
tation zi. Specifically, each MLP is responsible for predict-
ing one of the distribution parameters:

µ̂i = Exp (gdec1(zi)) , ✓̂i = Softplus (gdec2(zi)) ,

⇡̂i = Sigmoid (gdec3(zi)) , i 2 {1, . . . , N},

where the use of non-linear activations ensures the validity
of the parameter ranges required by the ZINB distribution.

To preserve the intrinsic spatial structure in the latent
space and also enhance the discriminative power of learned
representations, we introduce a spatial regularization loss
that encourages neighboring spots to have similar repre-
sentations while pushing apart those that are not spatially
connected. Specifically, with A = (Aij), we define the
uncertainty-weighted spatial regularization (USR) loss as:

LUSR =�
XN

i=1
!i

X
Aij=1

log �(Sij)+ (8)

X
Aiq=0

log(1� �(Siq))

�
,

where Sij is defined in Eq. (5) and �(·) is a sigmoid function
that transforms the similarity scores into the range [0, 1]. The
weight !i, consistent with the definition in Eq. (8), is simi-
larly designed to down-weight the supervisory signals from
spurious structures on the latent representations, thereby en-
abling the model to learn spot representations that better re-
flect the underlying patterns of the ST data.
Joint Optimization. In summary, the proposed PREST
framework combines three loss components: (i) the joint
diversity-semantics learning loss LDSL, (ii) the ZINB-based
reconstruction loss LUZR, and (iii) the spatial regularization
loss LUSR. The overall training objective is formulated as:

L = LDSL + ↵LUZR + �LUSR, (9)

where ↵ and � are tunable coefficients that balance the in-
fluence of reconstruction and spatial constraints.

After training converges, domain identification is
achieved by aligning the optimized spot representations
with the class prototypes through belief-based matching.
Then the clustering results are used for various downstream
analyses to validate the domain identification outcomes. The
training procedure of our proposed PREST is summarized
in Algorithm 1 in the Appendix.

Experiments
Experimental Setup
To validate the superiority of our proposed PREST, we con-
duct extensive experiments on three benchmark datasets,
i.e., DLPFC (Maynard et al. 2021), HBC (Buache et al.
2011), and MAB (Dong 2008). We conduct comparisons on
the performance of domain identification with several state-
of-the-art models, including SCANPY (Wolf, Angerer, and
Theis 2018), SpaGCN (Hu et al. 2021), STAGATE (Dong
and Zhang 2022), DeepST (Xu et al. 2022), stLearn (Pham
et al. 2023), SCGDL (Liu et al. 2023), GraphST (Long et al.
2023), stMMR (Zhang et al. 2024), and DUSTED (Zhu et al.
2025). We adopt supervised metrics, i.e., ARI (Vinh, Epps,
and Bailey 2009), NMI (Pfitzner, Leibbrandt, and Pow-
ers 2009) and Jaccard similarity coefficient (Levandowsky
and Winter 1971), and unsupervised metrics, i.e., Moran’s
I score (Moran 1950) to evaluate the performance of do-
main identification. Several downstream analyses are also
performed to validate the effectiveness of PREST. Further
experimental configurations and implementation details are
provided in the Appendix.



Slice Metric SCANPY SpaGCN STAGATE DeepST stLearn SCGDL GraphST stMMR DUSTED PREST
GB18 NM21 NC22 NAR22 NC23 BIB23 NC23 GS24 AAAI25 (Ours)

151507 ARI 0.20 0.39 0.54 0.46 0.49 0.49 0.48 0.58 0.46 0.75
NMI 0.21 0.49 0.66 0.64 0.64 0.55 0.64 0.72 0.65 0.78

151508 ARI 0.15 0.33 0.49 0.46 0.31 0.34 0.49 0.52 0.45 0.56
NMI 0.21 0.43 0.63 0.61 0.53 0.44 0.54 0.64 0.64 0.66

151509 ARI 0.19 0.35 0.53 0.48 0.45 0.32 0.52 0.58 0.45 0.59
NMI 0.27 0.51 0.66 0.62 0.62 0.48 0.64 0.67 0.64 0.69

151669 ARI 0.10 0.23 0.35 0.42 0.32 0.24 0.48 0.47 0.47 0.66
NMI 0.16 0.36 0.58 0.53 0.49 0.38 0.59 0.55 0.59 0.64

151670 ARI 0.09 0.33 0.32 0.36 0.23 0.26 0.46 0.49 0.29 0.57
NMI 0.16 0.43 0.53 0.54 0.41 0.38 0.68 0.56 0.51 0.60

151671 ARI 0.12 0.42 0.51 0.48 0.39 0.31 0.61 0.67 0.50 0.81
NMI 0.24 0.53 0.65 0.63 0.54 0.41 0.72 0.71 0.65 0.79

151672 ARI 0.12 0.52 0.54 0.44 0.63 0.34 0.34 0.60 0.57 0.78
NMI 0.23 0.60 0.66 0.59 0.61 0.47 0.46 0.71 0.67 0.82

151673 ARI 0.20 0.40 0.45 0.57 0.30 0.34 0.63 0.60 0.57 0.59
NMI 0.29 0.55 0.63 0.71 0.49 0.42 0.74 0.68 0.70 0.68

151674 ARI 0.22 0.31 0.48 0.48 0.38 0.27 0.43 0.51 0.46 0.56
NMI 0.31 0.46 0.58 0.60 0.54 0.38 0.61 0.63 0.63 0.69

151675 ARI 0.23 0.27 0.36 0.52 0.38 0.30 0.55 0.56 0.56 0.58
NMI 0.32 0.41 0.50 0.65 0.56 0.41 0.62 0.66 0.65 0.68

151676 ARI 0.22 0.31 0.49 0.50 0.40 0.29 0.61 0.54 0.52 0.56
NMI 0.31 0.48 0.63 0.60 0.56 0.42 0.66 0.65 0.67 0.69

Table 1: Domain identification performance of different methods on the 11 slices of the DLPFC dataset. The bold and underlined
values indicate the best and the runner-up results, respectively.
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Figure 2: Spatial visualization of identification results for the DLPFC (151507), HBC, and MAB datasets.

Experimental Results

Quantitative Analysis. To evaluate the domain identifi-
cation performance of our PREST, we conduct quantita-
tive comparisons with several competitive baselines on the
DLPFC dataset, as summarized in Table 1. From the re-
sults, we observe that spatially-aware methods consistently
outperform non-spatial counterparts, highlighting the impor-
tance of incorporating spatial context in domain identifi-
cation. Notably, PREST achieves superior performance on
most tissue slices, demonstrating its effectiveness and sta-
bility. We attribute this to PREST’s capability to effectively
integrate spatial information while leveraging uncertainty
to dynamically guide and supervise different spots, thereby
preventing overfitting to low-quality data. The box plot of
the results across all slices of the DLPFC dataset for various
methods can be found in Figure 8 of the Appendix. Addi-
tional experimental results on HBC and MAB datasets are
presented in Table 5 and the comparisons of Moran’s I score
and Jaccard similarity coefficient across these datasets are
shown in Table 6 of the Appendix, which further demon-
strate the superiority of our proposed PREST.

Visualization. We visualize the domain identification results
of our PREST alongside manually annotated tissues across
all three datasets, with slice 151507 from the DLPFC dataset
used as an example. As shown in Figure 2, our PREST per-
forms exceptionally well in identifying spatial domains. By
comparing the manual annotations with the results detected
by PREST, it is clear that our method can accurately de-
lineate spatial domains and effectively capture the bound-
aries between distinct tissue layers. Furthermore, for a more
comprehensive comparison, including domain identification
and UMAP projections of other methods, the results are dis-
played in Figure 7 of the Appendix, which further supports
the superiority of our PREST in domain identification.

Ablation Study and Sensitivity Analysis
Effectiveness of Loss Function. We conduct an ablation
study to verify the effectiveness of each module we pro-
posed, and the results are presented in Table 2. The term
“PREST w/o LDSL” denotes the model that excludes the
LDSL loss, while other variants follow similar naming con-
ventions. From the results, we observe that removing any
module leads to a decrease in performance. For slice 151507



Model Metric DLPFC (151507) HBC MAB

PREST w/o LDSL
ARI 0.62 0.63 0.37
NMI 0.70 0.67 0.63

PREST w/o LUZR
ARI 0.62 0.68 0.40
NMI 0.72 0.69 0.69

PREST w/o LUSR
ARI 0.60 0.66 0.40
NMI 0.69 0.68 0.66

PREST (Ours) ARI 0.75 0.72 0.43
NMI 0.78 0.73 0.72

Table 2: Ablation study across all three datasets.

Dataset Metric M1 M2 M3 M4 Ours
DLPFC
(151507)

ARI 0.61 0.63 0.72 0.54 0.75
NMI 0.71 0.73 0.74 0.69 0.78

HBC ARI 0.60 0.63 0.66 0.61 0.72
NMI 0.67 0.70 0.71 0.66 0.73

MAB ARI 0.32 0.30 0.35 0.30 0.43
NMI 0.64 0.63 0.66 0.59 0.72

Table 3: Impact of different representation fusion strategies.

of the DLPFC, removing either LDSL or LUSR has a con-
siderable impact, while for HBC and MAB, removing LDSL
shows a more significant effect. It indicates that uncertainty
modeling plays a crucial role in our model.
Influence of Representation Fusion Mechanism. To inves-
tigate the impact of different representation fusion strategies,
we compare four variants: M1: Additive fusion; M2: Learn-
able parameter fusion; M3: Attention score weighting; M4:
Cross-attention without adjacency information. As shown in
Table 3, we observe that M4 performs worse than the other
fusion strategies. This may be because the target spot attends
to all other spots indiscriminately, which can easily intro-
duce noise and lead to semantic ambiguity. In contrast, our
structure-guided cross-attention fusion effectively leverages
spatial topology by attending only to relevant neighboring
spots, achieving state-of-the-art performance and underscor-
ing the critical importance of spatial information.
Sensitivity Analysis. We assess hyperparameter sensitivity
for ↵ and � in Eq. (9) across all datasets, and full results in
Figure 9 (Appendix) consistently confirm model robustness.

Uncertainty and Noise Resistance Analysis
We further investigate the role of estimated uncertainty in
our PREST and the model’s robustness against noise.
Influence of Uncertainy. To assess the impact of evidence-
aware uncertainty, we conduct an analysis on slice 151507
of DLPFC, comparing domain identification results without
and with uncertainty weighting in Eqs. (7)-(8). As shown in
Figure 3b, the uncertainty-weighted model (right) yields re-
sults more consistent with the ground-truth annotations (Fig-
ure 3a); for example, White Matter(WM) (pink), Layer 2
(orange), and Layer 4 (red) more closely match the true re-
gion shapes. The UMAP plots in Figure 3d further show that
our model (right) learns more coherent representations for
spatially distant but categorically identical spots (e.g., Layer

(a) Manual Annotation &
Image

(b) Domain Identification
(w/o & w uncertainty weighting)

(c) True Dropouts v.s.

Estimated Uncertainty
(d) UMAP Visualization

(w/o & w uncertainty weighting)

Figure 3: Visual comparison without (w/o) v.s. with (w) un-
certainty weighting on slice 151507 of DLPFC.

Method Raw Gaussian Noise Dropout
✏ = 1 ✏ = 5 p = 0.3 p = 0.6

GraphST 0.41 0.21 0.15 0.32 0.15

DUSTED 0.40 0.16 0.13 0.30 0.14

PREST (Ours) 0.43 0.30 0.24 0.36 0.26

Table 4: Performance comparison of domain identification
on MAB via ARI under different expression noise (✏: vari-
ance of Gaussian noise; p: dropout probability).

2 and Layer 3), while the non-weighted version fails to do
so (as seen in the left subplot of Figure 3d, where the green
and orange regions are dispersed). It demonstrates that our
uncertainty weighting scheme enhances the model’s ability
to capture the underlying cluster structure.
Uncertainty Attribution. To understand the effectiveness
of uncertainty weighting, we analyze the sources of uncer-
tainty. As shown in Figure 3c (right), high-uncertainty spots
are mainly located in Layers 1-3 and WM. The left panel in
Figure 3c shows dropout counts per spot, with high-dropout
regions concentrated in Layer 1 and WM. These observa-
tions suggest: (i) high uncertainty in Layer 1 and WM may
arise from high dropout rates; while (ii) that in Layers 2-
3 may result from discontinuous spatial distributions; the
strong influence of spatial information on slice 151507 (see
Table 2) contributes higher uncertainty in Layers 2-3. There-
fore, for spots in these regions, using raw data for self-
supervised learning risks overfitting; down-weighting their
supervision promotes more discriminative representations.
Robustness Analysis against Noise. To illustrate model ro-
bustness, we artificially add various types of noise to the
original dataset and compare our proposed PREST with
competitive baselines. We consider Gaussian noise N (0, ✏)
(simulate inaccurate measure) with ✏ = 1, 5 and random
masking (simulate dropout events) with probability p =
0.3, 0.6. Table 4 reports the results on the MAB dataset un-
der these noise conditions. It shows that our PREST consis-
tently outperforms GraphST and DUSTED across different
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Figure 4: DEG detection on slice 151507 of DLPFC.

Gaussian noise levels and dropout rates, highlighting its su-
perior ability to mitigate noise effects. This robustness likely
stems from our uncertainty estimation mechanism, which
dynamically adjusts supervision strength for each spot, pre-
venting overfitting to low-quality data and effectively com-
pensating for missing data patterns typical in spatial tran-
scriptomics. Additional results on other datasets are pro-
vided in Table 7 of the Appendix.

Downstream Analysis
We conduct differentially expressed genes (DEGs) detec-
tion, gene expression imputation, and pathway enrichment
analysis (in Figure 12 of the Appendix) to highlighting the
superior biological interpretability of our PREST.
DEG Analysis. DEGs or marker genes show statistically
significant expression differences across biological condi-
tions and serve as key indicators of tissue structure and reg-
ulation. Based on the identified domains, we perform DEG
detection on all three datasets. Figure 4a presents the top
three DEGs for each cluster in slice 151507 of DLPFC.
For example, MBP, a gene linked to myelin formation and
oligodendrocyte differentiation, is highly expressed in the
WM layer, aligning with prior knowledge that oligodendro-

Figure 5: Visual comparison of expression imputation
(MAB and COL6A1) for DLPFC and HBC, respectively.

cytes are enriched in WM (Emery 2010), thus validating our
PREST biologically. We further quantify DEGs in WM and
Layer 1 using volcano plots (Figures 4b-4c), showing low
p-values and high log2FC values, indicating significant ex-
pression differences. Additionally, log2FC comparisons are
also conducted across methods (Figures 4d-4e), which re-
veal that our PREST consistently achieves higher log2FC in
both clusters than SCANPY, GraphST, and DUSTED, sug-
gesting better inter-cluster separation. The detection results
for other datasets are shown in Figure 10 of the Appendix.

Gene Expression Imputation. Due to the low capture effi-
ciency, ST data is often significantly sparse and noisy. which
poses challenges for downstream analysis. The goal of im-
putation is to recover the biological signal by imputing the
dropouts. To validate the biologically meaningful imputa-
tion of PREST, we introduce artificial dropouts by randomly
masking gene expression with a dropout rate of 0.3, and then
perform reconstruction based on the remaining data. Impu-
tation accuracy is quantified via Pearson correlation coeffi-
cient (PCC) between imputed and ground-truth expression.
As demonstrated in Figure 5, our PREST achieves superior
performance in both gene expression restoration and spatial
pattern preservation compared to baselines (e.g., +0.22 PCC
for MBP gene imputation). The results for other datasets and
marker genes can be found in Figure 11 in the Appendix.

Conclusion
In this study, we propose a prototype-based evidence-aware
framework PREST for spatial transcriptomics analysis. By
integrating multi-scale representation learning, structure-
guided cross-attention fusion, and uncertainty-aware mod-
ules, PREST facilitates robust uncertainty estimation and
clustering-friendly latent representations. Extensive exper-
iments across multiple benchmark datasets demonstrate
that our proposed PREST consistently outperforms exist-
ing approaches in accuracy of domain identification. Ad-
ditional experimental analysis illustrates the interpretability
of uncertainty estimation and the robustness of our PREST
against noise. Various downstream analyses further reveal
the effectiveness of our PREST in biological discovery.
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Appendix: Supplementary of Evidence-aware
Integration and Domain Identification of

Spatial Transcriptomics Data

Pseudo-Code of PREST
Our proposed PREST can be summarized in Algorithm 1.

Algorithm 1: The Optimization Framework of PREST
Input: Spatial positions P = {(ui, vi)}Ni=1; Gene expres-
sion matrix X 2 RN⇥G; Domain number K; Maximum
number of iterations Imax;
Output: Domain identification result {y1, . . . , yN};

1: Construct the spatial graph with adjacency matrix A.
2: Initialize the model parameters and class prototypes;
3: while not converge do
4: Update the spatial- and expression-level representa-

tions Hs,He through Eqs. (1)-(2);
5: Perform structure-guided cross-attention mechanism

to achieve fused representations H in Eq. (3);
6: Calculate spot-to-prototype and spot-to-spot similar-

ity matrices E,S in Eq. (5);
7: Estimate the belief and uncertainty of identification

decision in Eq. (4);
8: Compute the joint diversity-semantics learning loss

LDSL in Eq. (6);
9: Compute uncertainty-weighted ZINB-based recon-

struction loss in LUZR in Eq. (7);
10: Compute uncertainty-weighted spatial regularization

loss LUSR in Eq. (8);
11: Perform backpropagation and update the entire net-

work by minimizing L in Eq. (9);
12: end while
13: Domain identification is performed by yi =

argmaxk{bi1, . . . , biK} for all spots.

Related Work
GNN for Spatial Transcriptomics Data. Spatial transcrip-
tomics (ST) provides valuable information for studying the
spatial distribution and functions of cells in tissues (Rao
et al. 2021; Asp, Bergenstråhle, and Lundeberg 2020). In
recent years, Graph Neural Networks (GNNs) (Kipf and
Welling 2017; Ju et al. 2023, 2024a) have shown great po-
tential in processing such data (Liu et al. 2023; Li et al. 2022;
Dong and Zhang 2022; Zhu et al. 2024). By modeling spatial
relationships between cells as graph structures, GNNs can
capture spatial dependencies among cells, thereby enhanc-
ing the understanding of spatial patterns in gene expression.
For example, GNNs have been used to analyze spatial tran-
scriptomics data from mouse brains, revealing gene expres-
sion differences and spatial patterns across brain regions (Hu
et al. 2021). Additionally, GNNs have been utilized for tasks
such as spatial domain identification, cell type annotation,
and trajectory inference (Xu et al. 2022; Long et al. 2023;
Zhang et al. 2024; Zhu et al. 2025). However, current GNNs
fail to capture the belief and uncertainty in decision-making
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Figure 6: Data images and manual annotations.

caused by noise in spatial transcriptomics data. Our pro-
posed PREST, which incorporates evidence and belief, ad-
dresses this limitation by effectively handling points of vary-
ing quality in a fine-grained manner, thereby enhancing the
accuracy of downstream tasks.

Denoising of Spatial Transcriptomics Data. ST data are
frequently affected by sequencing errors, background sig-
nals, and sample preparation biases, lowering data quality
and downstream analyses (Du et al. 2024). Recent efforts
have increasingly leveraged spatial information to enhance
denoising. For instance, Sprod (Wang et al. 2022) inte-
grates spatial coordinates and histological images via latent
graph learning for efficient denoising and imputation. Sim-
ilarly, STAGATE (Dong and Zhang 2022) uses graph atten-
tion to model heterogeneous local expression patterns, im-
proving spatial domain detection. Building on this direction,
Smoother (Su et al. 2023) incorporates modular spatial pri-
ors to support expression recovery and cell-type deconvolu-
tion, even in non-spatial models. More recently, SiGra (Tang
et al. 2023) applies hybrid graph transformers over cell-
level graphs and multi-channel histology to enhance expres-
sion inference in noisy, low-expression data. In contrast,
our PREST leverages class prototypes and subjective logic
to model belief and uncertainty from noisy or dropout ST
data, enabling uncertainty-aware reconstruction that down-
weights unreliable spots and improves robustness.
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Figure 7: Visualization of domain identification of different methods on (a),(d) DLPFC (171705) (b),(e) HBC (c),(f) MAB
datasets. The bold and underlined values indicate the best and the runner-up results, respectively

Figure 8: The box plot of the ARI and NMI values of our
PREST on DLPFC.

Additional Experimental Results
Complete Visualization of Domain Identification
To further validate the effectiveness of our method PREST,
we present domain identification visualization and UMAP
visualization, as shown in Figure 7, which displays com-

parative domain identification results and UMAP visual-
izations for various methods across three spatial transcrip-
tomics datasets: DLPFC (151507), HBC, and MAB. It can
be observed that our PREST consistently demonstrates su-
perior identification quality, achieving well-defined domain
boundaries and high concordance with expert annotations in
all cases. In contrast, non-spatial methods such as SCANPY
fail to capture spatial autocorrelation within biological do-
mains due to their omission of spatial context, resulting in
fragmented and inconsistent domain assignments. This lim-
itation is further evidenced in UMAP visualizations, where
our proposed PREST exhibits tightly clustered domains
with distinct hierarchical organization, while competing ap-
proaches display significant inter-domain overlap. Such dif-
ferences highlight the superior spatial coherence and struc-
tural fidelity of our results, underscoring PREST’s effective-
ness in preserving spatial information.

Box plot of ARIs and NMIs on DLPFC
To facilitate comparative analysis of domain identification
performance across different methods, we present boxplot
visualizations of results across all DLPFC slices, as shown



Dataset Metric SCANPY stLearn SCGDL GraphST stMMR DUSTED PREST
(Ours)

HBC ARI 0.49 0.55 0.35 0.53 0.62 0.57 0.72
NMI 0.52 0.63 0.43 0.67 0.67 0.65 0.73

MAB ARI 0.23 0.38 0.26 0.41 0.40 0.40 0.43
NMI 0.45 0.66 0.64 0.71 0.68 0.70 0.72

Table 5: Domain identification performance on HBC and
MAB datasets. The bold and underlined values indicate the
best and the runner-up results, respectively.

Model Metric SCANPY STAGATE GraphST DUSTED PREST
(Ours)

DLPFC
(151507)

Jaccard 0.31 0.49 0.37 0.40 0.65
Moran’s I 0.47 0.86 0.77 0.66 0.90

HBC Jaccard 0.22 0.31 0.40 0.43 0.47
Moran’s I 0.36 0.77 0.76 0.62 0.79

MAB Jaccard 0.15 0.25 0.23 0.22 0.28
Moran’s I 0.17 0.74 0.59 0.64 0.82

Table 6: Performance comparison of Jaccard similarity co-
efficient and Moran’s I score across three datasets. The bold
and underlined values indicate the best and the runner-up re-
sults, respectively.

in Figure 8. Critically, our PREST achieves median scores of
0.64 (ARI) and 0.70 (NMI), with tight interquartile ranges
indicating consistent performance. These results represent
absolute improvements of +0.08 in ARI and +0.05 in NMI
over the second-best performing methods, confirming supe-
rior robustness in spatial domain identification.

Comparison of ARI and NMI on HBC and MAB
To rigorously assess and compare domain identification per-
formance across other benchmark datasets, we evaluate our
method against other baselines on HBC and MAB, as sum-
marized in Table 5. From the results, we observe that PREST
consistently achieves state-of-the-art results on both HBC
dataset and MAB dataset, notably attaining absolute im-
provements of 0.10 in ARI and 0.06 in NMI over the second-
best method (stMMR) on HBC. These quantitative advances
directly correspond to PREST’s enhanced ability to resolve
biologically meaningful spatial domains, as evidenced by
histologically consistent domain boundaries.

Comparison under Other Metrics
To rigorously evaluate spatial domain coherence, we bench-
mark PREST against established methods using Jaccard
similarity (quantifying the concordance between domain
identification results and ground truth) and Moran’s I (mea-
suring spatial autocorrelation of domain assignments) across
three benchmark datasets, as shown in Table 6. Building
on this framework, PREST achieves statistically significant
improvements over all baselines, with +0.16 higher Jaccard
score on DLPFC slice 151507 and superior spatial autocor-
relation (Moran’s I = 0.79 vs. STAGATE’s 0.77) on HBC.
Critically, non-spatial methods like Scanpy exhibit severe
degradation in spatial coherence, demonstrating that explicit
spatial modeling is fundamentally necessary for biologically

(a) DLPFC (151507) (b) HBC

(c) MAB

Figure 9: Sensitivity analysis of loss weights ↵ and �.

meaningful domain identification.

Hyperparameter Sensitivity Analysis

To assess robustness to hyperparameter variations across all
datasets, we perform comprehensive sensitivity analysis of
loss weights ↵ and �, as shown in Figure 9. The analysis
reveals PREST’s consistent performance stability across pa-
rameter ranges, with particularly robust domain identifica-
tion observed for ↵ 2 [1, 100] and � 2 [10, 100] where ARI
and NMI metrics remain consistently high. Critically, the
stability enables reliable spatial domain identification with-
out parameter tuning, demonstrating PREST’s practical ro-
bustness in biological applications.

Performance Comparison on DLPFC (151507) and
HBC under Different Noise

To evaluate PREST’s robustness under realistic noise con-
ditions, we conduct perturbation HBC and DLPFC tis-
sue slice 151507, as presented in Table 7. This analy-
sis reveals PREST’s consistent domain identification per-
formance across Gaussian noise (variances 1 and 5) and
dropout noise (probabilities 0.3 and 0.6), achieving ARIs
of 0.48/0.36 under Gaussian noise and 0.57/0.51 under
dropout noise on HBC. Critically, this stability may stem
from our method’s capability of modeling spot uncertainty,
which helps avoid low-quality overfitting while effectively
learning robust spot representations. Furthermore, as quan-
titatively demonstrated in Table 7, where dropout-induced
degradation remains substantially lower than Gaussian-
induced degradation across all methods, this consistent pat-
tern confirms that spatial transcriptomic frameworks inher-
ently align with biologically meaningful sparsity patterns,
where dropout effects mirror natural data characteristics.



Figure 10: DEG detection on the MAB and HBC datasets.

Additional Downstream Analysis
Detection of HBC and MAB
To evaluate biological relevance, we perform differential ex-
pression analysis using PREST’s spatially domains. This
analysis reveals PREST’s superior sensitivity in detecting bi-
ologically meaningful DEGs, as demonstrated by the violin
plots in Figure 10(a)-10(b). Critically, this enhanced resolu-
tion captures nuanced biological mechanisms, exemplified
by MGP in HBC (Gong et al. 2019): its significant upreg-
ulation in triple-negative breast cancer promotes prolifer-
ation and metastasis, while downregulation in ER-positive
subtypes correlates with chemoresistance and poorer out-
comes—patterns only detectable through PREST’s precise
domain delineation. Consistent with this biological resolu-
tion, the volcano plots in Figure 10(c)-10(d) further confirm
PREST’s effectiveness in preserving interpretable transcrip-
tomic signatures across HBC and MAB datasets, establish-
ing its capability for spatially informed biological discovery.

Expression Imputation on Genes PLP1 of DLPFC
and Efhd2 of MAB
To further validate biological relevance, we extend im-
putation experiments to marker genes across benchmark
datasets. Figure 11 quantitatively demonstrates PREST’s su-
perior performance in imputing PLP1 for DLPFC and Efhd2
for MAB, where the method precisely reconstructs quanti-
tative expression values while maintaining biological rele-
vance across spatial domains. Critically, this molecular fi-

Figure 11: Visual comparison of gene expression imputation
(PLP1 and Efhd2) for DLPFC and MAB, respectively.

delity enables the preservation of distinctive spatial distri-
bution patterns, as evidenced by substantial PCC improve-
ments of +0.21 for PLP1 and +0.26 for Efhd2 over base-
lines. Consequently, these results establish that PREST not
only recovers missing gene expression values with high ac-
curacy but also maintains the critical spatial context essential
for biological interpretation in spatial transcriptomics.

Pathway Enrichment Analysis.
To validate PREST’s biological utility, we perform KEGG
pathway analysis on Layer 6 of DLPFC slice 151507,
mapping differentially expressed genes to functional patch-
way to elucidate regulatory mechanisms in cortical orga-



Method Raw Gaussian Noise Dropout
✏ = 1 ✏ = 5 p = 0.3 p = 0.6

GraphST 0.48 0.21 0.10 0.40 0.17

DUSTED 0.46 0.19 0.12 0.37 0.16

PREST (Ours) 0.75 0.49 0.34 0.60 0.55

(a) DLPFC (151507)

Method Raw Gaussian Noise Dropout
✏ = 1 ✏ = 5 p = 0.3 p = 0.6

GraphST 0.53 0.23 0.14 0.36 0.34

DUSTED 0.57 0.31 0.19 0.39 0.34

PREST (Ours) 0.72 0.48 0.36 0.57 0.51

(b) HBC

Table 7: Performance comparison under Gaussian noise and
dropout noise on (a) DLPFC (151507) and (b) HBC via ARI
(✏: variance of Gaussian noise, p: dropout probability).
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Figure 12: KEGG pathway enrichment visualization.

nization. As quatified in Figure 12, PREST reveals sig-
nificant enrichment in the circadian entrainment pathway
(hsa04713), wherein phototransduction cascades synchro-
nize the suprachiasmatic nucleus (SCN) master clock via en-
vironmental light cues. This finding strongly correlates with
the established biological function of Layer 6, namely, its
critical role in regulating sleep rhythms and attention, which
confirms PREST’s superior capability in resolving complex,
spatially-contextualized regulatory mechanisms.

Complete Experimental Setup
Datasets. To validate the superiority of our PREST, we
conduct extensive experiments on three benchmark datasets
related to spatial transcriptomics. The first dataset is de-
rived from the LIBD study of the human dorsolateral pre-
frontal cortex (DLPFC), which consists of multiple tissue
slices and includes expert-curated annotations by Maynard
et al. (2021). The second dataset comes from the 10x plat-
form, which constains human breast cancer (HBC) samples
(Buache et al. 2011). The third dataset is the mouse anterior
brain (MAB) tissue, which is annotated with 52 different re-
gions and contains 32,285 genes (Dong 2008). The image
and manual annotations are presented in Figure 6.
Baselines. We compare our PREST with several state-of-
the-art models, including classical non-spatial clustering
methods, i.e., SCANPY (Wolf, Angerer, and Theis 2018),

and spatial clustering methods, i.e., SpaGCN (Hu et al.
2021), STAGATE (Dong and Zhang 2022), DeepST (Xu
et al. 2022), stLearn (Pham et al. 2023), SCGDL (Liu et al.
2023), GraphST (Long et al. 2023), stMMR (Zhang et al.
2024), and DUSTED (Zhu et al. 2025).
Evaluation Metrics. To evaluate the domain identification
performance, we adopt the supervised Adjusted Rand Index
(ARI, Vinh, Epps, and Bailey 2009), Normalized Mutual In-
formation (NMI, Pfitzner, Leibbrandt, and Powers 2009) and
the Jaccard similarity coefficient (Levandowsky and Winter
1971) as performance evaluation metrics, which are used to
assess the quality of clustering results and the consistency
between predicted clustering labels and the ground truth
cluster labels, respectively. For unsupervised assessment, we
further compute Moran’s I (Moran 1950) to quantify spatial
autocorrelation of cluster assignments. For each metric, a
larger value indicates better performance.
Implement Details. For all datasets, we first filter out genes
with extremely low expression or variance, then select the
top 3,000 genes with the highest variance. Based on this, we
construct an undirected spatial graph using Euclidean dis-
tance with a fixed radius r (set to 550 in our experiments) to
capture spatial relationships. We adopt a pre-training pro-
cedure similar to DFCN (Tu et al. 2021), with key mod-
ifications including adjusted network depth, fusion strat-
egy, training epochs, and the integration of self-attention
and skip connections. The PREST model is implemented
in PyTorch v2.4 platform and trained on a single NVIDIA
RTX 3090 GPU with 24GB of memory. We use the AdamW
(Loshchilov and Hutter 2017) optimizer with a learning rate
of 1e-3 for the DLPFC dataset and 1e-4 for the others. Based
on hyperparameter tuning, ↵ and � are consistently fixed at
10 and 100, respectively, across all datasets.


